
Real Analysis Qualifier — 2017

Undergraduate Problems

Choose one problem from 1–2 and one problem from 3–4. Please show all work. Unsupported
claims will not receive credit.

1. Prove or disprove this statement: if fn : R → R is a sequence of continuous functions and
fn → f uniformly, then f is continuous.

2. Prove or disprove this statement: if f, g : R → R are continuous, then their product fg is
continuous.

3. Prove or disprove this statement: if f, g : R→ R are uniformly continuous, then their product
fg is uniformly continuous.

4. Give a function f : [0, 1]→ R that is not Riemann integrable, and prove that it is not.
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209A

Choose one problem from 1–3 and one problem from 4–6. Please show all work. Unsupported
claims will not receive credit.

1. Suppose thatM is any σ-algebra of subsets of a set X, and µ is a measure on this σ-algebra.
Prove or disprove this statement: there is always a σ-algebraM containingM and a complete
measure µ extending µ.

2. A collection A of subsets of X is closed under countable increasing unions if whenever
Ai ∈ A is a sequence of sets with Ai ⊆ Ai+1, then

⋃∞
i=1Ai ∈ A. Prove or disprove this

statement: if A is an algebra closed under countable increasing unions, then A is a σ-algebra.

3. Prove or disprove this statement: if the functions fn : [0, 1]→ R are continuous and for every
x ∈ [0, 1] we have limn→∞ fn(x) = 0, then

lim
n→∞

∫ 1

0
fn(x) dx = 0.

4. A sequence of measurable functions fn : X → R converges to zero in measure if for any
ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)| > ε}

)
= 0.

Prove that if fn converges to zero in measure and µ is a finite measure then

lim
n→∞

∫
X

fn
1 + |fn|

dµ = 0.

5. Let f be a nonnegative function on Rn such that
∫
Rn f(x)pdx <∞. Prove that∫

Rn

f(x)pdx =

∫ ∞
0

ptp−1m{x : f(x) > t} dt.

where m(S) is the Lebesgue measure of the set S. Hint: use the Fubini–Tonelli theorem.

6. Let f be an integrable function on R. Prove that

lim
h→0

∫
|f(x+ h)− f(x)|dx = 0.
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Choose one problem from 1–2 and two problems from 3–6. Please show all work. Unsupported
claims will not receive credit.

1. Prove or disprove: finite linear combinations of the functions {e−nx}n∈N are dense in C[0, 1]
with its usual sup norm topology.

2. Prove that if µ, ν, λ are measures on the measurable space (X,M) and µ � λ, ν � λ, then
µ+ ν � λ.

3. Let f = f(x) be an absolutely continuous function on [0, 1] such that f ′ is in L2[0, 1] and that
f(0) = 0. Prove that

lim
x→0+

f(x)

x1/2
= 0.

Hint: use the Fundamental Theorem of Calculus on f(x)− f(0).

4. Describe a set S ⊆ [0, 1] that is nowhere dense yet has positive Lebesgue measure. Prove that
it has these properties.

5. Suppose V is a real Banach space. Prove that a linear functional f : V → R bounded if and
only it is continuous.

6. Suppose f ∈ L2[0, 1] and f2 ∈ L2[0, 1]. Show that f + 1 ∈ L3[0, 1].
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Choose one problem from 1–2 and one from 3–6. Please show all work. Unsupported claims will
not receive credit. In what follows we use Lebesgue measure on [0, 1] and R.

1. Prove that if T is a linear map from a real Hilbert space H to itself that preserves the norm,
then T also preserves angles.

2. Show that L∞[0, 1] is nonseparable, i.e., it does not have a countable dense subset.

3. If f ∈ Lp ∩ L∞ for some p <∞ and f ∈ Lq for all q > p, then

||f ||∞ = lim
q→∞

||f ||q

4. Suppose f ∈ L2(R). Then the L2 derivative f ′ exists iff ξf̂ ∈ L2, in which case f̂ ′(ξ) =
2πiξf̂(ξ).

5. Suppose that f is continuously differentiable on R except at x1, . . . , xm, where f has jump
discontinuities, and that its pointwise derivative df/dx (defined except at the the points xj)
is in L1

loc(R). Then the distribution derivative f ′ of f is given by:

f ′ = (df/dx) +

m∑
j=1

[f(xj+)− f(xj−)]τxjδ

where τx is the operation that translates a distribution by x.
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Real Analysis Qualifier

Part I

Solve one problem out of (1)–(2), one out of (3)–(4) and one out of (5)–(6).
In what follows, let (X,M, µ) be a measure space.

(1) Prove or disprove this statement: if fn : R → R is a sequence of
continuous functions and fn → f uniformly, then f is continuous.

(2) Prove or disprove this statement: if f, g : R → R are continuous,
then their product fg is continuous.

(3) Prove or disprove this statement: there is a σ-algebraM containing
M and a complete measure µ extending µ.

(4) A collection A of subsets of X is closed under countable in-
creasing unions if whenever Ai ∈ A is a sequence of sets with
Ai ⊆ Ai+1, then

⋃∞
i=1Ai ∈ A. Prove or disprove this statement: if

A is an algebra closed under countable increasing unions, then A is
a σ-algebra.

(5) A sequence of measurable functions fn : X → R converges to zero in
measure if for any ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)| > ε}

)
= 0.

Prove that if fn converges to zero in measure then

lim
n→∞

∫
X

fn
1 + |fn|

dµ = 0.

(6) Prove or disprove this statement: if the functions fn : [0, 1]→ R are
continuous and for every x ∈ [0, 1] we have limn→∞ fn(x) = 0, then

lim
n→∞

∫ 1

0
fn(x) dx = 0.
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Part II

Solve 3 out of the 5 problems below.

(1) State the Hölder and Minkowski inequalities. Use the former to
prove the later.

(2) Let f ∈ L1(Rn) and let

M(f) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

where B(x, r) is the ball of radius r centered at x. Prove that there
exists a constant C > 0 such that for all α > 0:

|{x : Mf(x) > α}| ≤ C

α

∫
|f(y)|dy.

You may use this fact: Let C be a collection of open balls in Rn

that covers a set U of finite measure. Then there exist finitely many
disjoint balls B1, . . . , Bk in C such that the sum of the volume of
these balls is greater than 3−na, where a is any number less than the
measure of U .

(3) (a) State the definition of weak and strong convergence of sequences
in a Banach space.

(b) Does weak convergence imply strong convergence? Explain why
it does or does not.

(c) Show that every weakly convergent sequence in a Banach space
is bounded with respect to the norm of the Banach space. (You may
assume the uniform boundedness principle.)

(4) Prove that a linear functional f on a normed vector space is bounded
if and only if f−1({0}) is a closed subspace of X.

(5) Show that the Banach space X = L1[0, 1] is not reflexive, namely X
is a proper subset of X∗∗.



Part III

Solve 3 out of the 5 problems below.

(1) Prove that every closed convex set in a Hilbert space has a unique
element of minimal norm.

(2) If f ∈ Lp ∩ L∞ for some p <∞ and f ∈ Lq for all q > p, then

‖f‖∞ = lim
q→∞

‖f‖q

(3) Let f(x) = 1
2 − x on the interval [0, 1). Extend f to be periodic

function on R. Use Fourier series of f to show that∑
k≥1

1

k2
=
π2

6
.

(4) If ψ ∈ C∞(R), show that

ψδ(k) =

k∑
j=0

(−1)j
k!

j!(k − j)!
ψ(j)(0)δ(k−j)

where δ(k) is the k-th derivative of delta function.

(5) Show that L∞[0, 1] is not separable, i.e., it does not have a countable
dense subset.



Part I

Solve one problem out of (1)–(2), one problem out of (3)–(4), and one prob-
lem out of (5)–(6).

(1) Prove or disprove this statement: the subset S ⊆ [0, 1] consisting
of numbers without a 7 in their decimal expansion is a Borel set
with Lebesgue measure zero. (If there is a choice, always use the
expansion without an infinite repeating sequence of 9’s.)

(2) Prove or disprove this statement: if (X,M, µ) is a measure space
and fn : X → R is a sequence of measurable functions such that
fn → f pointwise, then f is measurable.

(3) Prove or disprove this statement: if X is a metric space then the σ-
algebra of Borel subsets of X is generated by the collection of closed
balls in X.

(4) Prove or disprove this statement: the σ-algebra of Borel subsets of
R is generated by intervals of the form [a, a+ 1] for a ∈ R.

(5) Prove or disprove this statement: if fn : R→ R are integrable func-
tions with fn → 0 pointwise and

|fn(x)| ≤ 1

|x|+ 1

for all n, x, then

lim
n→∞

∫
R
fn dx = 0.

(6) Prove or disprove this statement: if fn : R→ R are integrable func-
tions such that fn → 0 in measure, then fn → 0 in L1.
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Part II

Solve one problem out of (1)–(2), one problem out of (3)–(5), and one prob-
lem out of (6)–(7).

(1) Let f(x) :=
∫ +∞
0 e−xt tx dt, for x > 0. Show that f is well defined

and C1 (continuously differentiable) on (0,+∞), and compute its
derivative.

(2) Let p1, p2 be such that 1 ≤ p1 ≤ p2 <∞ and let f ∈ LP1∩LP2 . Show
that the map p 7→ ‖f‖p is well defined and continuous on [p1, p2].
[Hint: first state and prove a suitable inequality involving |f |p.]

(3) Show that the sequence of functions

fn(x) :=

(
2

π

)1/2

· sin(nx), for n = 1, 2, 3, . . .

is an orthonormal basis of L2[0, π] but not of L2[0, 2π], even though
it is an orthonormal sequence in L2[0, 2π].

(4) Prove that if f : [0,+∞) → R is a continuous function tending to
zero at infinity and such that∫ +∞

0
f(x)e−nx dx = 0 for n = 0, 1, 2, . . . ,

then f is the zero function.

(5) State the duality theorem for Lp spaces and give a sketch of its
proof when 1 < p <∞. Briefly explain what happens when p = 1 or
p =∞.

(6) Show that a uniform limit of continuous functions on [0, 1] is contin-
uous on [0, 1]. Is this true if [0, 1] is replaced by any metric space?

(7) Let f : Rn → R be continuously differentiable. Show that df ≡ 0 if
and only if f is constant, and that df is constant if and only if f is
an affine function.



Part III

Solve one problem out of (1)–(2) and two problems out of (3)–(6).

(1) Prove that if f : [0, 2π]→ R is continuous, then

lim
n→∞

∫ 2π

0
f(x) sin(nx) dx = 0.

(2) What is the power series expansion of the function
∫ x
0 exp(−t2)dt?

Prove the power series converges to this function for all x ∈ R.

(3) State and prove Hölder’s inequality for functions on R.

(4) Let f be a smooth function on R with compact support. Show that
if the Fourier transform of f also has compact support, then f is
identically zero.

(5) Show that L1[0, 1] is not the dual of L∞[0, 1].

(6) Show that any normed vector space can be embedded into a Banach
space.



Part I

Choose 3 problems from the following; however, you are not allowed to
choose both (1) and (2). A measure space is always a general (X,M, µ). A
measure on R is Lebesgue measure, unless otherwise is specified.

(1) Show that [0, 1] is uncountable.

(2) Let fn be a sequence of measurable real valued functions on R. Show
that A = {x ∈ R| limn→∞ fn(x) exists} is measurable.

(3) Let f ∈ L1(R, dx) and F (x) =
∫ x
−∞ f(t)dt. Show that F (x) is uni-

formly continuous.

(4) Prove that the product of two measurable real valued functions on
R is measurable. (Hint: show that if f is measurable, then f2 is
measurable.)

(5) Evaluate
∫∞
0 e−sxx−1 sin2 x dx for s > 0 by integrating e−sx sin(2xy)

in a domain in R2. Exchange of iterated integrals needs to be justi-
fied.

1

James
Text Box
   Real Analysis 2013



2

Part II

Solve any 3 out of the following 6 problems.

(1) Prove that for all 1 ≤ p <∞, the Lp norm and sup norm on C[0, 1]
are not equivalent, and also C[0, 1] is not complete in Lp[0, 1].

(2) Let (X, ‖ · ‖) be a normed space. A set E ⊂ X is called weakly
bounded if supx∈E ‖x‖∗ is finite. Here ‖x‖∗ is the weak norm. A set
E ⊂ X is called strongly bounded if supx∈E ‖x‖ is finite. Prove that
E is weakly bounded if and only if it is strongly bounded.

(3) Let X and Y be compact Hausdorff spaces. Show that the algebra
generated by functions of the form f(x, y) = g(x)h(y) where g ∈
C(X) and h ∈ C(Y ) is dense in C(X × Y ).

(4) Let f be integrable over (−∞,∞) and g ∈ L∞(−∞,∞). Prove:

lim
t→0

∫ ∞
−∞
|g(x)[f(x)− f(x+ t)]|dx = 0.

(5) Construct a function on [0, 1] which is continuous, monotone but not
absolutely continuous.

(6) Suppose f ∈ Lp([0, 1]) for all p > 0. Prove that

lim
p→0
‖f‖p = exp(

∫ 1

0
ln |f |).



3

Part III

Solve any 3 out of the following 5 problems.

(1) Prove that if f ∈ Lp(R) and f ∈ Lq(R) with 1 ≤ p < q < ∞, then
f ∈ Lr(R) for all r with p ≤ r ≤ q.

(2) Starting from the definition of a Hilbert space, prove that if H is a
complex Hilbert space and v, w ∈ H, then

|〈v, w〉| ≤ ‖v‖ ‖w‖.

(3) Suppose f is in the Schwartz space S(R), and define the Fourier
transform of f by

f̂(k) =

∫ ∞
−∞

f(x)e−2πikx dx

Prove that
f̂ ′ (k) = −2πik f(k).

Note: passing derivatives through integrals needs to be rigorously
justified.

(4) Prove that there exists a nonzero polynomial in n variables, P : Rn →
R, such that if f : Rn → C is measurable and

|f(x)| ≤ 1

P (x)

for all x ∈ Rn, then f ∈ L1(Rn).

(5) Find a distribution T on R whose Fourier transform is the Dirac
delta supported at the number 2. Rigorously prove that

T̂ (k) = δ(k − 2).



Printed Name: Signature:

Real Analysis Qualifying Exam 13 November 2010

Instructions:

• Work problems 1 through 3 and 6 of the remaining 9 problems.
• Show all your work and always justify your answers.

Hint: The length of a problem has little to do with its difficulty.

(1) Let f : Rn → R be a continuous function. Show that f is uniformly
continuous on any compact set K ⊆ Rn.

(2) Let f : [0, 1] → R be the function defined by

f(x) =

{
1 if x ∈ Q,

0 otherwise.

Use the definition of the Riemann integral to show that f is not
Riemann integrable.

(3) (a) Let f : [0, 1] → R be continuous with the property that
∫ 1

0
f(x)xn dx = 0

for all n = 0, 1, 2, . . . . Show that f is identically zero.

(b) Let (X, d) be a compact metric space. Show that the metric
space, C(X), equipped with the sup norm, is separable.

Hint: think of the distance function.
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(4) (a) Let (X,A, µ) be a measure space. Let (fn)n∈N be a sequence of
nonnegative measurable functions. Use the Monotone Conver-
gence Theorem to prove that∫

X
(lim inf

n
fn)dµ ≤ lim inf

n

∫

X
fndµ.

(b) Give an example of a sequence of nonnegative Borel measurable
functions on the real line for which the inequality in Fatou’s
Lemma is strict—and prove that the inequality is strict.

(5) Let µ be a finite measure on B(R). The goal of this problem is to
show that µ is regular, that is for all A ∈ B(R) and all ǫ > 0, there
exists an open set O and a closed set F such that F ⊆ A ⊆ O and
µ(O\F ) ≤ ǫ. In order to do this we define the family,

C = {A ∈ B(R) :∀ ǫ > 0, ∃O open and F closed

for which F ⊆ A ⊆ O and µ(O\F ) ≤ ǫ}.

(a) Show that (a, b) ∈ C for all −∞ < a < b < +∞.

(b) Show that C is a σ-algebra.
Hint: The infinite union of closed set is not necessarily closed;
however, you can remedy this problem by using the fact that a
measure is continuous from above.

(c) Conclude from (a) and (b) that µ is regular.

(6) Let f be a positive function in L1 ∩ L∞(X,M, µ) with ‖f‖L∞ ≤ 1,
where µ is a finite measure. Show that

lim
t→0+

1

t

∫

X
(f t − 1) dµ =

∫

X
log f dµ

when log f is in L1(X,M, µ).

Hint: You may use, without proof, the inequality log x < x− 1 < 0
for all 0 < x < 1.

(7) (a) Prove the Cauchy-Schwarz inequality for a real Hilbert space.

(b) Let K = K(x, y) be a continuous function on [0, 1] × [0, 1] and
define T : L2([0, 1]) → L2([0, 1]) for almost all x in [0, 1] by

Tf(x) =

∫ 1

0
K(x, y)f(y) dy.

Show that T is well-defined and is a bounded linear operator
that satisfies

‖T‖ ≤ ‖K‖L2([0,1]×[0,1]).
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(8) Let (X,A, µ) be a measure space and set Lp = Lp(X,A, µ). Show
that given f ∈ L1 ∩ L2 we have the following properties:
(a) f ∈ Lp for each 1 ≤ p ≤ 2.

(b) lim
p→1+

‖f‖Lp = ‖f‖L1 .

Hint: In this problem, if you use a non-standard inequality, other
than the Holder or the Minkowski inequality, you must both state it
and then prove it.

(9) Let l∞ = l∞R be the space of all bounded sequences in R and

c = {x = (xn)
∞
n=1 ∈ l∞ : lim

n→∞
xn exists and is finite}.

Equip c with the supremum norm, ‖x‖c = ‖x‖l∞ = supn≥1|xn|.

(a) Show that c is a Banach space.
Hint: Prove that c is closed in l∞.

(b) Set

L(x) = lim
n→∞

xn

for any x ∈ c. Show that L is a bounded linear functional on c.

(c) Define p : l∞ → R by

p(x) = lim sup
n→∞

xn.

Show that p is a sublinear functional on l∞ and that p(x) = L(x)
for all x ∈ c.

(d) Show that L has a linear extension (still denoted by L) from c

to l∞ such that L(x) ≤ p(x) for all x ∈ l∞ and:
(i) lim inf

n→∞
xn ≤ L(x) ≤ lim sup

n→∞

xn for all x ∈ l∞.

(ii) L(x) ≥ 0 for all x in l∞ such that x ≥ 0.

(iii) L is bounded with ‖L‖ = 1.

(10) (a) Show that {(2π)−1/2einx}n∈Z is an orthonormal basis for L2([0, 2π])

(or, more precisely, for L2
C([0, 2π]), the space of all square-

integrable, complex-valued measurable functions on [0, 2π]).

(b) Show that for any 2π-periodic, square-integrable function, f , on
R, we have the Fourier series expansion,

f =
∑

n∈Z

cne
inx

having the property that

‖f‖2L2 =
∑

n∈Z

|cn|
2,

and calculate the Fourier coefficients, cn, in terms of f .
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(c) Find the Fourier expansion of the 2π-periodic function,

f(x) =

{
1 if 0 ≤ x < π

2 ,

0 if π
2 ≤ x < 2π.

(11) Let X be a locally compact Hausdorff space (LCH). Recall that a
Borel measure, µ, on X is a Radon measure if it is finite on all
compact sets, outer regular on all Borel sets, and inner regular on
all open sets.
(a) State one form of the Riesz representation theorem as it applies

to Radon measures.
(b) For each of the following, determine whether or not they are

Radon measures and explain why:
(i) The Dirac delta function (also called the Dirac measure)

on R.
(ii) Counting measure on Rn.
(iii) Lebesgue measure on Rn.

(12) Assume that f lies in L1(Rd) ∩ C1(Rd), d ≥ 1, and that ∇f lies

in L1(Rd). Let f̂ be the Fourier transform of f . Show that (1 +

|ξ|2)
1

2 f̂(ξ) lies in L2(Rd) if and only if both f and ∇f lie in L2(Rd).



Real Analysis Qualifying Exam, 2011

Name Score

Please show all work. Unsupported claims will not receive credit.

Part I.

Answer three of the following problems.

1. Let C be a collection of open sets of real numbers. Show that there is a countable
subcollection Oi of C such that ∪O∈CO = ∪∞i=1Oi.

2. If f ≥ 0,
∫
fdµ <∞, then prove that for every ε > 0 there exists a measurable

set E such that µ(E) <∞,
∫
E
fdµ >

∫
f − ε.

3. Suppose that νj is a sequence of positive measures. Prove the following. If
νj ⊥ µ,∀j, then

∑∞
j=1 νj ⊥ µ, and if ν∞j=1 � µ,∀j, then

∑∞
j=1 νj � µ.

4. Let E be a Lebesgue measurable set in R, whose measure is positive. Prove that
E contains a subset which is not Lebesgue measurable. You may use without
proof the standard non-measurable set in [0, 1]

5. Let f ∈ L1(dx) and F (x) =
∫ x
−∞ f(t)dt. Show that F (x) is continuous.

Part II.
Answer three of the following problems.

1. State and prove a version of the Vitali covering lemma on Rn.

2. State a version of the Fubini theorem on double integrals. Give a counter
example when the absolute value sign is dropped from the integrand in the
condition of the theorem.

3. Show that every weakly convergent sequence in a Banach space is bounded with
respect to the norm of the Banach space.

4. State the open mapping and closed graph theorem. Assuming the open mapping
theorem, prove the closed graph theorem.

5. Let H be an infinite dimensional Hilbert space. Show that the unit sphere
S = {x ∈ H|||x|| = 1} is weakly dense in the unit ball B = {x ∈ H|||x|| ≤ 1}.

1



Part III.
Answer three of the following problems.

1. Show that set Σ := {f = Σn
1ajχEj

|n ∈ N, aj ∈ C,m(Ej) < ∞} is dense in Lp

for any p ∈ [1,∞).

2. State and prove Hölder’s inequality in R1.

3. Let f ∈ Lp(X) ∩ L∞(X). (recall that this means f ∈ Lq(X) for all q > p.)
Show that limq→∞ ||f ||q = ||f ||∞.

4. Let fn(x) = n
2
χ[−1/n,1/n]. Show (directly, instead of citing a theorem that im-

mediately implies this) that for any g ∈ L1(R), limn→∞ ||fn ? g||1 = 0.

5. (a) Compute the Fourier Transform of χ[−1,1].

(b) Compute the Fourier Transform of sin2 2πx
x2

.
(c) Are there any two non-zero elements f, g of L1(R) such that f ? g = 0 a.e.
? (Hint: τaĥ ?)
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Part I

Choose 3 problems from the following; however, you are not allowed to
choose both (1) and (2). A measure space is always a general (X,M, µ). A
measure on R is Lebesgue measure, unless otherwise is specified.

(1) Let X be a compact metric space. Show that if On is an open and
dense subset of X for n = 1, 2, . . . then O = ∩nOn is not empty.

Hint: Create a shrinking sequence of closed sets Fn so that Fn ⊂ On.

(2) Let {an} be a sequence in R and limn→∞ an = a. Show that

lim
n→∞

a1 + a2 + · · ·+ an

n
= a.

(3) Let f be a positive function in L1∩L∞(X,M, µ), where X is a finite
measure space and assume that ‖f‖L∞ ≤ 1. Show that

lim
t→0+

1
t

∫
X

(f t − 1) dµ =
∫

X
log f dµ

when log f is in L1(X,M, µ).

Hint: First show that log x < x− 1 < 0 for all x < 1.

(4) We know that there exist a non-measurable subset of [0, 1]. Prove
that E ⊂ [0, 1] with m∗(E) > 0 has a non-measurable subset.

(5) (a) Let f , g be measurable functions. Show that fg is also measur-
able. (Hint: show that f2 is measurable.)
(b) Let {fn} be a sequence of measurable functions and fn → f a.e.
as n →∞. Show that f is also measurable.

(6) For an integrable function, f , show that
∫
|f |dµ = 0 if and only if

f = 0 a.e.

1
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Part II

Solve any 3 out of the following 5 problems.

(1) Suppose 1 ≤ p < ∞. If fn, f ∈ Lp[0, 1] and fn → f a.e. in [0, 1],
prove:
‖fn − f‖p → 0 if and only if ‖fn‖ → ‖f‖p.
Give a counterexample if the condition ‖fn‖ → ‖f‖p is dropped.

(2) Let f : [0, 1] → R be an absolutely continuous function. Suppose
f ′(x) = 0 a.e. in [0, 1]. Prove f is a constant.

(3) State without proof a version of the Fubini-Tonelli theorem on double
integrals of nonnegative functions. Use a counterexample to show
that the nonnegativity is necessary.

(4) Let Y = C([0, 1]) and X = C1([0, 1]) both of which are equipped
with the L∞ norm. Show
(a) X is not complete.
(b) The map d

dx : X → Y is closed but not bounded.
(c) Is statement (b) a contradiction of the closed graph theorem?

Why?

(5) Prove that a linear functional f on a normed vector space X is
bounded if and only if f−1({0}) is closed.
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Part III

Solve any 3 out of the following 5 problems.

(1) Let f : X → R be µ-measurable on X with

(∗)
∫

supp f
e|f | dµ = 1.

Prove that for all f in Lp(X). For X = R and µ being Lebesgue
measure, give an example of f satisfying (∗) with f not lying in L∞.

(2) Let f lie in L2(R) and for any y > 0 define

gy(x) =
y

π

∫ ∞

−∞

1
(x− t)2 + y2

f(t) dt.

Show that:
(a) For each y > 0, gy lie in L2(R).
(b) For each y > 0, define the map, Ly, on L2(R) by Ly(f) = gy.

Show that Ly is a bounded linear operator from L2(R) to L2(R).
(c) As y → 0, gy → f in L2(R).

Hint: Think in terms of convolutions.

(3) Let f lie in L1(R) and recall that the Fourier transform of f is the
function f̂ : R → C defined by

f̂(y) =
∫

R
f(x)e−2πixy dx.

Prove that f̂ is uniformly continuous.

(4) Let f be in L2([0,∞)). Prove or (by producing a counterexample)
disprove each of the following:

(a) If f is also continuous then limx→∞ f(x) = 0.

(b) lim
n→∞

∫ n+1

n
|f(t)| dt = 0.

(5) Suppose that f lies in Lp([0,∞)) for 1 < p < ∞. Prove that

(a)
∣∣∣∣∫ x

0
f(t) dt

∣∣∣∣ ≤ ‖f‖Lp x
1− 1

p for all x > 0,

(b) lim
x→∞

x
1
p
−1

∫ x

0
f(t) dt = 0.
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