Printed Name:

\qquad Signature: \qquad

Applied Math Qualifying Exam Fall 2017

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1
(1) Let $\left(u_{n}\right)_{n=1}^{\infty}$ be a sequence of harmonic functions defined on an open bounded subset U of $\mathbb{R}^{d}, d \geq 2$, with each $u_{n} \in C^{2}(U)$. Assume that $u_{n} \rightarrow u$ uniformly on U. Prove that u is harmonic on U.
(2) Consider the transport equation,

$$
\left\{\begin{array}{l}
\partial_{t} f_{j}+\mathbf{u} \cdot \nabla f_{j}=0 \quad \text { on } \mathbb{R} \times U \\
f_{j}(0, x)=f_{0, j}(x) \quad \text { on } U
\end{array}\right.
$$

for $j=1,2$. Here,

- U is a bounded open subset of $\mathbb{R}^{d}, d \geq 2$, having C^{∞} boundary;
- \mathbf{u} is a given time-independent vector field in $C^{\infty}(\bar{U})$ with $\mathbf{u} \cdot \boldsymbol{n}=$ 0 on ∂U;
- $f_{j}=f_{j}(t, x), j=1,2$, is a scalar-valued function of time and space;
- $f_{0, j}, j=1,2$, lie in $C(\bar{U})$;

You may assume the existence and uniqueness of solutions and the existence and uniqueness of a flow map for \mathbf{u} without proof. (Both solutions and the flow map will be continuous in time and space.)
(a) Use an energy argument to prove that for all $t \geq 0$,

$$
\begin{aligned}
& \left\|f_{1}(t)-f_{2}(t)\right\|_{L^{2}}^{2} \\
& \quad \leq\left\|f_{0,1}-f_{0,2}\right\|_{L^{2}}^{2} \exp \int_{0}^{t}\|\operatorname{div} \mathbf{u}(s)\|_{L^{\infty}} d s .
\end{aligned}
$$

Here, the L^{2}-norm is defined by

$$
\|h\|_{L^{2}}^{2}=\int_{U} h(x)^{2} d x .
$$

(b) Using the flow map for \mathbf{u} (or any other method you can come up with) prove that for all $t \geq 0$,

$$
\left\|f_{1}(t)-f_{2}(t)\right\|_{L^{\infty}} \leq\left\|f_{0,1}-f_{0,2}\right\|_{L^{\infty}} .
$$

(3) Let $\mathbf{v}: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a time-varying vector field. Assume that for some $M_{1}>0,\|\mathbf{v}(t)\|_{L^{\infty}} \leq M_{1}$ for all $t \in \mathbb{R}$ and for some $M_{2}>0$, $\mathbf{v}(t)$ has a Lipschitz constant no larger than M_{2} for all $t \in \mathbb{R}$.
(a) Show that for any $\left(t_{0}, \mathbf{x}_{0}\right) \in \mathbb{R} \times \mathbb{R}^{d}$, solutions to

$$
\left\{\begin{array}{l}
\mathbf{x}^{\prime}(t)=\mathbf{v}(t, \mathbf{x}(t)), \\
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
\end{array}\right.
$$

are unique. (You do not need to prove existence.)
(b) Define $\mathbf{Y}: \mathbb{R} \times \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ by

$$
\mathbf{Y}\left(t_{0}, \mathbf{x}_{0}, t\right)=\mathbf{x}(t)
$$

where \mathbf{x} is the solution from (a). Prove that \mathbf{Y} is continuous.

Part 2

(1) Let U be a bounded open set with smooth boundary ∂U. Consider the initial boundary value problem for $u(x, t)$:

$$
\begin{cases}u_{t}-\Delta u+b u=f, & x \in U, t>0 \\ u(x, 0)=g(x), & x \in U, \\ u_{t}+\frac{\partial u}{\partial n}+u=0, & x \in \partial U, t>0\end{cases}
$$

where $\frac{\partial u}{\partial n}$ is the exterior normal derivative [and b is a constant]. Show that smooth solutions of this problem are unique.
(2) (a): Find an explicit solution to the problem:

$$
\begin{cases}u_{t}-u_{x x}=\cos x, & x \in[0,2 \pi], t>0, \\ u_{x}(0, t)=u_{x}(2 \pi, t)=0, & t>0, \\ u(x, 0)=\cos x+\cos 2 x, & x \in[0,2 \pi] .\end{cases}
$$

(Hint: consider $v(x, t)=u(x, t)-\cos x$, and employ the separation of variables to solve for v.)
(b): Does there exist a steady state solution to the equation in (a) with the boundary condition

$$
u_{x}(0)=1, \quad u_{x}(2 \pi)=0 ?
$$

Explain your answer.
(3) Find the solution of the partial differential equation

$$
u_{x}+x^{2} y u_{y}=-u,
$$

with the condition $u(x=0, y)=y^{2}$ using the method of characteristics.

Part 3
(1) Let U be a bounded domain in \mathbb{R}^{d} with a C^{∞} boundary, let $f \in$ $L^{2}(U)$, and let $\mu>0$ be a constant. Consider the Dirichlet problem,

$$
\begin{cases}-\Delta u+\mu u=f & \text { in } U, \\ u=0 & \text { on } \partial U .\end{cases}
$$

(a) Define what it means for $u \in H_{0}^{1}(U)$ to be a weak solution to this Dirichlet problem.
(b) Show that a weak solution exists.
(2) Let U be a bounded domain in \mathbb{R}^{d} with a C^{∞} boundary. Assume that $u \in C^{2}(\bar{U}) \cap H_{0}^{1}(U)$ is a strong solution to

$$
\left\{\begin{aligned}
\Delta u=u^{3}+u & \text { in } U, \\
u=0 & \text { on } \partial U .
\end{aligned}\right.
$$

Note that $u \equiv 0$ is clearly a solution, but this is a nonlinear problem, so we have no general uniqueness theorem that covers it.
(a) Use the weak maximum principle to show that $u \equiv 0$ is the only solution.
(b) Show the same thing using an energy method.
(3) (a) Prove that for any $u \in C^{1}\left(\mathbb{R}^{d}\right)$ and any $p \in(1, \infty)$,

$$
\partial_{j}|u|^{p}=p|u|^{p-1} \partial_{j} u \operatorname{sgn}(u) .
$$

Here, the derivative is a classical derivative. Also, sgn: $\mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{sgn}(x):= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

(b) Prove that for any $u \in H^{1}\left(\mathbb{R}^{d}\right)$ having the property that $|u|>\epsilon$ for some $\epsilon>0$,

$$
\partial_{j}|u|^{2}=2|u| \partial_{j} u \operatorname{sgn}(u),
$$

where now we mean the weak derivative. (This is the weak derivative version of part (a) specialized to $p=2$.)
Comment: The assumption that $|u(x)|>\epsilon$ is not necessary, but may help you in dealing with the sgn function, should you choose to employ a sequence of smooth approximating functions and use the result in part (a) for that sequence.

Printed Name: \qquad Signature:

Applied Math Qualifying Exam 11 October 2014

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1
(1) Let Ω be an open subset of \mathbb{R}^{d} and let

$$
C(\Omega)=\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is continuous }\}
$$

with the norm,

$$
\|f\|_{C(\Omega)}=\sup _{x \in \Omega}|f(x)| .
$$

Prove that $C(\Omega)$ is a Banach space.
(2) Let Ω be a bounded domain in $\mathbb{R}^{2}, d \geq 1$, with smooth boundary.
(a) Use the divergence theorem to derive Green's identity,

$$
\int_{\Omega} \Delta u v=-\int_{\Omega} \nabla u \cdot \nabla v+\int_{\partial \Omega}(\nabla u \cdot \mathbf{n}) v
$$

where u and v are smooth scalar-valued functions on $\bar{\Omega}$, and \mathbf{n} is the outward unit normal vector.
(b) Consider the Cauchy problem,

$$
\left\{\begin{aligned}
\partial_{t} u=\Delta u+c u & \text { for }(t, x) \in(0, \infty) \times \Omega, \\
u(t, x)=0 & \text { for }(t, x) \in(0, \infty) \times \partial \Omega, \\
u(0, x)=g(x) & \text { for } x \in \Omega,
\end{aligned}\right.
$$

on a bounded domain $\Omega \subseteq \mathbb{R}^{d}$ having a smooth boundary. Here, c is a positive constant. Suppose u_{1} and u_{2} are two smooth solutions of the above Cauchy problem with different initial conditions g_{1} and g_{2}. Show that if g_{1} and g_{2} are "close" in $L^{2}(\Omega)$ then the solutions u_{1} and u_{2} are also close in $L^{2}(\Omega)$ at any later time $t>0$. Derive an estimate of how close. (Green's identity and Gronwall's inequality will be useful here.)
(3) Let $A(t)$ be a continuous function from t in \mathbb{R} to the space of square, real-valued matrices.
(a) Show that for every solution of the (non-autonomous) linear system, $\dot{\mathbf{x}}=A(t) \mathbf{x}$, we have

$$
\|\mathbf{x}(t)\| \leq\|\mathbf{x}(0)\| e^{\int_{0}^{t}\|A(s)\| d s}
$$

where $\|A(s)\|$ is the operator norm and $\|\mathbf{x}(t)\|$ is the usual Euclidean norm.
(b) Show that if $\int_{0}^{t}\|A(s)\| d s<\infty$ then every solution, $\mathbf{x}(t)$, has a finite limit as $t \rightarrow \infty$.

PART 2
(1) (a) Find the entropy solution to the Burgers' equation $u_{t}+u u_{x}=0$ with the initial datum

$$
g(x)= \begin{cases}1 & \text { if } x \leq 0 \\ 1-x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

(b) Consider the Burgers' equation with source term 1 with the initial datum x :

$$
u_{t}+u u_{x}=1, \quad u(t=0)=x .
$$

Find the equation for the characteristics and also find an explicit formula for the solution of this initial value problem.
(2) Let $f \in C_{c}^{2}\left(\mathbb{R}^{3}\right)$ be given. Define for $x \in \mathbb{R}^{3}$

$$
u(x)=\int_{\mathbb{R}^{3}} \Phi(x-y) f(y) d y
$$

where $\Phi(x)=\frac{1}{4 \pi|x|}$. Prove that $-\Delta u=f$ in \mathbb{R}^{3}. You can use the fact $u \in C^{2}\left(\mathbb{R}^{3}\right)$ without a proof.
(3) Let u be a classical solution of the following initial boundary value problem:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad \text { in }(a, b) \times(0, T) \\
& u(a, t)=u(b, t)=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

where u_{0} is a continuous function.
(a) Show that the solutions are unique.
(b) Show that there exists a constant $\alpha>0$ such that

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \leq e^{-\alpha t}\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Part 3
(1) Let U be the open unit ball in \mathbb{R}^{d}.
(a) Let

$$
u(x)=|x|^{-\alpha} .
$$

For which values of $\alpha>0, d \geq 1$, and $p>1$ does u belong to $W^{1, p}(U)$?
(b) Show that

$$
u(x)=\log \log \left(1+|x|^{-1}\right)
$$

belongs to $W^{1,2}(U)$ but does not belong to $L^{\infty}(U)$.
(2) Let $U=(0,1)^{2}$, the unit square in \mathbb{R}^{2}. Can the Lax-Milgram theorem be applied to the bilinear form, $B[u, v]: H_{0}^{1}(U) \times H_{0}^{1}(U) \rightarrow \mathbb{R}$, defined by

$$
B[u, v]=\int_{0}^{1} \int_{0}^{1} \frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}-\frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}} ?
$$

(3) Suppose $u \in C^{2}(U) \cap C(\bar{U})$ and let

$$
L u=\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}},
$$

where the coefficient, $a^{i j}$, are continuous and satisfy the uniform ellipticity condition. Prove the weak maximum principle; namely, that if $L u \leq 0$ then

$$
\max _{\bar{U}} u=\max _{\partial U} u .
$$

Printed Name:

\qquad Signature: \qquad

Applied Math Qualifying Exam 5 October 2013

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

(1) A fundamental solution to the autonomous linear system, $\dot{\mathbf{x}}=A \mathbf{x}$, is a nonsingular matrix-valued function, $\Phi: \mathbb{R} \rightarrow M^{d \times d}$, with $\Phi^{\prime}(t)=$ $A \Phi(t)$.
(a) Show that $\Psi(t)=e^{A t}$ is a fundamental solution satisfying $\Psi(0)=$ I, the identity matrix. (You may use standard facts about $e^{A t}$ without proof.)
(b) Show that $\mathbf{x}(t)=\Phi(t) \Phi(0)^{-1} \mathbf{x}_{0}$ is a solution to the IVP, $\dot{\mathbf{x}}=$ $A \mathrm{x}, \mathrm{x}(0)=\mathrm{x}_{0}$.
(c) Show that any fundamental solution is of the form, $\Phi(t)=$ $e^{A t} M$, for some non-singular matrix M.
(d) Consider the nonhomogeneous linear system,

$$
\dot{\mathbf{x}}=A \mathbf{x}+\mathbf{b}(t),
$$

where \mathbf{b} is continuous in time. (So \mathbf{b} can vary with time, but A cannot.) Show that

$$
\mathbf{x}(t)=\Phi(t) \Phi(0)^{-1} \mathbf{x}_{0}+\int_{0}^{t} \Phi(t) \Phi^{-1}(s) \mathbf{b}(s) d s
$$

is a solution to the IVP, $\dot{\mathbf{x}}=A \mathbf{x}+\mathbf{b}(t), \mathbf{x}(0)=\mathbf{x}_{0}$.
(2) (a) Consider the linear system of ODEs,

$$
\dot{y}_{1}=-y_{1}, \quad \dot{y}_{2}=2 y_{2},
$$

which has the origin as the only equilibrium point. Determine the explicit solution to this system given the initial condition, $\mathbf{y}(0)=\mathbf{a}=\left(a_{1}, a_{2}\right)$. What are the stable and unstable manifolds for this system? (One or both might be empty.)
(b) Now consider the perturbed, nonlinear system,

$$
\dot{x}_{1}=-x_{1}, \quad \dot{x}_{2}=2 x_{2}-5 \epsilon x_{1}^{3},
$$

which also has the origin as the only equilibrium point. Determine the explicit solution to this system given the initial condition, $\mathbf{x}(0)=\mathbf{a}=\left(a_{1}, a_{2}\right)$. (One method: let y_{1}, y_{2} be the solution to the linear system in (a) with initial condition, $\left(y_{1}, y_{2}\right)=(1,1)$, assume that $x_{2}=c_{1} y_{2}+c_{2} y_{1}^{3}$, and then determine c_{1} and c_{2}.)
(c) What is the stable manifold for the system in (b)?
(3) Consider the system of equations,

$$
\left\{\begin{array}{l}
\dot{x_{1}}=x_{2}-x_{1} f\left(x_{1}, x_{2}\right), \\
\dot{x_{2}}=-x_{1}-x_{2} f\left(x_{1}, x_{2}\right),
\end{array}\right.
$$

where f lies in $C^{1}\left(\mathbb{R}^{2}\right)$.
(a) Show that if f is positive in some neighborhood of the origin then the origin is an asymptotically stable equilibrium point.
(b) Show that if f is negative in some neighborhood of the origin then the origin is an unstable equilibrium point.

Hint for both parts: Construct a Lyapunov function.

PART 2
(1) Let g be a bounded, continuous function on \mathbb{R}^{n}. For $(x, t) \in \mathbb{R}^{n} \times$ $(0,+\infty)$ define

$$
u(x, t)=\int_{\mathbb{R}^{n}} \Phi(x-y, t) g(y) d y
$$

where Φ is the fundamental solution of the heat equation,

$$
\Phi(x, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|x|^{2}}{4 t}}
$$

Let $x_{0} \in \mathbb{R}^{n}$. Prove that

$$
\lim _{(x, t) \rightarrow\left(x_{0}, 0\right)} u(x, t)=g\left(x_{0}\right)
$$

Hint: You can use the fact that $\int_{\mathbb{R}^{n}} \Phi(x, t) d x=1$ for every $t>0$ without proving it. You can also use without proving it the fact that for every $r_{0}>0$,

$$
\lim _{(x, t) \rightarrow\left(x_{0}, 0\right)} \int_{\left|y-x_{0}\right|>r_{0}} \Phi(x-y, t) d y=0
$$

In other words, $\Phi(\cdot, t)$ has mass one and as $(x, t) \rightarrow\left(x_{0}, 0\right)$ all the mass concentrate around the the point x_{0}.
(2) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open domain with smooth boundary and define the energy

$$
E(w)=\frac{1}{2} \int_{\Omega}|\nabla w|^{2} d x-\int_{\partial \Omega} h w
$$

where h is a smooth functions defined on the boundary of Ω. Suppose $u \in C^{2}(\bar{\Omega})$ satisfies

$$
E(u) \leq E(w) \text { for all } w \in C^{2}(\bar{\Omega})
$$

What PDE is u satisfying? What are the boundary conditions? Prove it.

Hint: Start by considering perturbation $u+\epsilon v$ where $v \in C_{c}^{2}(\Omega)$. This will give you the PDE. Then consider perturbation $u+\epsilon v$ where $v \in C^{2}(\bar{\Omega})$ to get the boundary condition.
(3) Let u and v belong to $C_{1}^{2}\left(U_{T}\right) \cap C\left(\overline{U_{T}}\right)$ and satisfy

$$
\begin{aligned}
& u_{t}=\Delta u+f \\
& v_{t}=\Delta v+g
\end{aligned}
$$

Show that if $u \geq v$ on the parabolic boundary Γ_{T} and $f \geq g$ in U_{T} then $u \geq v$ in all of $\overline{U_{T}}$. This is called a comparison principle.

Part 3
(1) (a) Prove or disprove the following:

Let U be a bounded, open subset of \mathbb{R}^{2}. If $u \in W^{1,2}(U)$, then $u \in L^{\infty}(U)$ with the estimate

$$
\|u\|_{L^{\infty}(U)} \leq C\|u\|_{W^{1,2}(U)}
$$

where C does not depend on u.
(b) Let U be a bounded, open set in \mathbb{R}^{n} with smooth boundary. Show that

$$
\|D u\|_{L^{2}(U)}^{2} \leq C\|u\|_{L^{2}(U)}\left\|D^{2} u\right\|_{L^{2}(U)}
$$

for all $u \in H_{0}^{1}(U) \cap H^{2}(U)$ where C does not depend on u.
(2) Consider the following Dirichlet problem

$$
\begin{aligned}
-\Delta u+\mu u & =f \text { in } U \\
u & =0 \text { on } \partial U
\end{aligned}
$$

where μ is a given constant. U is a bounded, open subset of \mathbb{R}^{n}.
(a) Show the existence of a weak solution $u \in H_{0}^{1}(U)$ of the above problem for $\mu>0$.
(b) Show the existence of a weak solution $u \in H_{0}^{1}(U)$ of the above problem for $\mu=0$.
(c) Discuss the problem when $\mu<0$.
(3) Consider the Poisson equation with Dirichlet boundary condition:

$$
\left\{\begin{aligned}
-\Delta u=f & \text { in } U \\
u=0 & \text { on } \partial U
\end{aligned}\right.
$$

where U is a bounded, open subset of \mathbb{R}^{n} and $f \in L^{2}(U)$. We know there exists a weak solution $u \in H_{0}^{1}(U)$. Prove that $u \in H_{l o c}^{2}(U)$.

