Letters in Mathematical Physics 13 (1987) 135–136. © 1987 by D. Reidel Publishing Company.

Bell's Inequality for C^* -Algebras

J. BAEZ

Department of Mathematics, Yale University, New Haven, CT 06520, U.S.A.

(Received: 20 October 1986)

Abstract. Bell's inequality dealing with 'local hidden variables' is given two formulations in terms of C^* -algebras. In particular, Bell's inequality holds for all states on $A \otimes B$ whenever A and B are unital C^* -algebras at least one of which is Abelian, i.e., at least one corresponds to a classical physical system.

In this Letter I prove two versions of Bell's Inequality [1] applicable to C*-algebras. For convenience all C*-algebras discussed will be assumed to be unital. Let $A \otimes B$ denote the projective tensor product of C*-algebras A and B. A state ω on $A \otimes B$ is a 'product state' if it is of the form $\omega_1 \otimes \omega_2$ for states ω_1 on A, ω_2 on B. A state ω on $A \otimes B$ is 'decomposable' if it is in the weak-* closure of the convex hull of the product states on $A \otimes B$. Bell's inequality can be viewed as a theorem about decomposable states:

THEOREM 1. Let A and B be C*-algebras and let ω be a decomposable state on $A \otimes B$. If $a, a' \in A$ and $b, b' \in B$ are self-adjoint and of norm ≤ 1 then

 $|\omega(a\otimes (b-b'))|+|\omega(a'\otimes (b+b'))|\leq 2.$

Proof. The proof follows [1]. Suppose $\omega = \omega_1 \otimes \omega_2$. Then

$$\omega(a \otimes (b - b'))$$

$$= \omega_1(a)\omega_2(b) - \omega_1(a)\omega_2(b')$$

$$= \omega_1(a)\omega_2(b) (1 \pm \omega_1(a')\omega_2(b')) - \omega_1(a)\omega_2(b') (1 \pm \omega_1(a')\omega_2(b))$$

so

$$\begin{split} \omega(a \otimes (b - b'))| \\ \leqslant |1 \pm \omega_1(a')\omega_2(b')| + |1 \pm \omega_1(a')\omega_2(b)| \\ \leqslant 1 \pm \omega_1(a')\omega_2(b') + 1 \pm \omega_1(a')\omega_2(b) \\ \leqslant 2 \pm \omega(a' \otimes (b + b')) \end{split}$$

hence,

$$|\omega(a\otimes (b-b'))|+|\omega(a'\otimes (b+b'))|\leq 2.$$

If ω is a convex combination of product states, $\omega = \sum c_i \omega_i$, the above implies

$$\begin{split} |\omega(a\otimes (b-b'))| + |\omega(a'\otimes (b+b'))| \\ \leq \sum c_i \{ |\omega_i(a\otimes (b-b'))| + |\omega_i(a'\otimes (b+b'))| \} \leq 2 \,. \end{split}$$

If ω is a weak-* limit of such convex combinations the inequality holds by continuity. \Box

If A and B are the C*-algebras corresponding to two physical systems, the product system has C*-algebra $A \otimes B$, and admits 'local hidden variables' in Bell's sense when all its states are decomposable. This happens if *at least one* of the two systems is classical:

PROPOSITION. If either A or B is Abelian, all states on $A \otimes B$ are decomposable.

Proof. As in Theorem IV 4.14 of [2], one can show that every pure state on $A \otimes B$ is a product of pure states. (The theorem deals with the injective tensor product but the proof carries over without modification.) Thus, every state on $A \otimes B$ is decomposable.

Using this one can obtain another formulation of Bell's inequality:

THEOREM 2. If A and B are C*-subalgebras of a C*-algebra C such that [A, B] = 0, and either A or B is Abelian, then

$$\omega(a(b-b'))| + |\omega(a'(b+b'))| \leq 2$$

for any state ω on C and self-adjoint $a, a' \in A, b, b' \in B$ with norm ≤ 1 .

Proof. By Proposition IV 4.7 of [2] there is a *-homomorphism $\rho: A \otimes B \to C$ such that $\rho(a \otimes b) = ab$ for all $a \in A$, $b \in B$. Thus, for all $a \in A$, $b \in B$, $\omega(ab) = \omega \circ \rho(a \otimes b)$, where $\omega \circ \rho$ is a state on $A \otimes B$. By the Proposition above, $\omega \circ \rho$ is decomposable, so by Theorem 1 the desired result follows.

If A and B are non-Abelian type I C*-algebras, the usual counter-example involving 2×2 matrices [1] shows that Bell's inequality (as formulated in Theorem 1) fails for certain indecomposable states. For applications to quantum field theory it would be interesting to see if the assumption that A and B be type I can be dropped.

References

- 1. Bell, J. S., in B. d'Espagnat (ed.), Proceedings of the International School of Physics, 'Enrico Fermi', Academic Press, New York, 1971, p. 171.
- 2. Takesaki, M., Theory of Operator Algebras I, Springer-Verlag, New York, 1979.

136