MATH 162 Mathematical Models and Computational Science

Course Description

Introduction to mathematical and computational modeling using high-level computer programming languages such as C++. Implementation of parallel algorithms for solving linear systems, systems of differential equations and running stochastic simulations on high performance CPU and GPU computer clusters.

Prerequisites

MATH 031 with a grade of C- or better, MATH 135A with a grade of C- or better; or equivalent; or consent of instructor.

Textbooks

Mathematics for Modeling and Scientific Computing (2016) by Goudon

Introduction to Mathematical Biology (Modeling, Analysis, and Simulations) (2016) by Ching-Shan Chou and Avner Friedman eBook ISBN: 978-3-319-29638-8 Hardcover ISBN: 978-3-319-29636-4

Introduction to Parallel Computing by A. Grama, A. Gupta, G. Karypis, V. Kumar ISBN-0-201-64865-2

Professional CUDA C Programming by J. Cheng, M. Grossman, T. McKercher ISBN-978-1-118-73932-7

References

Iterative Methods for Linear and Nonlinear Equations (1995) by C.T. Kelley

Introduction to High Performance Scientific Computing (2019) by David L. Chopp

Numerical Recipes in C: The Art of Scientific Computing (2nd edition) by W. Press, S. Teukolsky, W. Vetterling, B. Flannery

Suggested Lecture Schedule

Week #	Topic(s)
	Intro to C/C++ programming: pointer, dynamic theory allocation, class, template,
	etc.
1	
	Discussion/Lab – Practice how to define scalar/vector variables, mathematical
	functions in C/C++, implement basic calculations
	Parallel computing, MPI basics
2.2	
2, 5	Discussion/Lab – Practice parallel algorithms such as matrix multiplication, fast
	Fourier transform

	Parallel algorithms for implementing direct and iterative methods for solving
4.5	system of linear equations
,, 0	
	Discussion/Lab – Solve linear systems using iterative or non-iterative methods
	Computing on GPUs
67	
0, 7	Discussion/Lab – Solve ordinary differential equation systems using Euler method
	or Runge Kutta methods
	OpenMP basics
0	
8	Discussion/Lab – Solve partial differential equations e.g. reaction-diffusion
	equations in CPU with information obtained from GPU
	Monte Carlo and stochastic simulations (simple examples)
0	
9	Discussion/Lab – Implement cell deformation or cell division using subcellular
	element method
10	Final presentations