MATH 161 Mathematical Foundations of Machine Learning

Course Description

Introduction to mathematical concepts in machine learning methods with emphasis on the theoretical tools needed for developing new machine learning algorithms. Topics include linear algebra and vector calculus in application to supervised learning, regression, classification, unsupervised learning, clustering, dimensionality reduction, and the optimization and probability theory used in machine learning algorithms.

Prerequisites

MATH 010A with a grade of C- or better, MATH 031 with a grade of C- or better; or equivalent; or consent of instructor.

Textbook

Mathematics for Machine Learning (2020) by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong

Additional Resources

Convex Optimization: Algorithms and Complexity (Volume 8 No. 3-4, 2015) by Sébastien Bubeck

Matrix Methods in Data Mining and Pattern Recognition (2007) by Lars Elden

Week #	Textbook Chapter(s)	Topic(s)
1	1, 2, 8	Data as vectors, systems of linear equations, vector spaces, linear independence, basis and rank, linear mapping
2	2, 3	Linear regression, affine spaces, inner products, lengths and distances, angles and orthogonality, orthonormal basis, orthogonal complement and projections Discussion/Lab – Implement linear regression by solving a linear system
3	4, 5	Determinant and trace, Cholesky decomposition, eigendecomposition, diagonalization, singular value decomposition (SVD), principal component analysis (PCA) Discussion/Lab – Implement PCA and analyze Olivetti face dataset

Suggested Lecture Schedule

4		Convex optimization, optimization using gradient descent, constrained optimization, Lagrange multipliers
	5,7	
		Discussion/Lab – Implement gradient descent for linear
		regression
5		Construction of probability space, discrete and continuous
		probabilities, Gaussian distribution, Bayes theorem,
	6	independence, maximum likelihood approach
		Discussion /Lala Constants Constants and Language
		Discussion/Lab – Generate Gaussian samples and compute
		Polynomial regression, classification, logistic and prohit
		regression, nouvel networks and backgroups and proble
6	5.0	regression, neural networks and backpropagation
0	5,9	Discussion/Lab Compare classification using logistic
		regression, probit regression, and neural networks
		Ridge regression kernel ridge regression feature
		functions least absolute shrinkage and selection operator
		(LASSO) support vector machines (SVM) hinge loss
7	9	(LASSO), support vector machines (SVW), mige loss
		Discussion/Lab – Polynomial regression to discuss
		overfitting and regularization
8		Legendre-Fenchel transform, convex conjugate, gradient
	7 (Deisenroth	and subgradient, proximal point algorithms, stochastic
	Faisal, Ong), 3	gradient descent (SGD)
	(Bubeck), 6	
	(Bubeck)	Discussion/Lab – Simulate stochastic gradient descent and
	(=)	other variations
9		Maximum variance perspective and projection perspective
		PCA, non-negative matrix decomposition, low-rank
	10	approximation, latent variable, k-mean clustering
	10	
		Discussion/Lab – Analyze Olivetti face dataset using PCA
		and non-negative matrix decomposition
10	7 (Deisenroth,	Mini-batching, variance reduction
	Faisal, Ong), 3	_
	(Bubeck), 6	Discussion/Lab – Final exam review and helpdesk for final
	(Bubeck)	project