Geometry of the Hopf Fibration

Priyanka Rajan Franciscus Rebro Adam Yassine

UC Riverside

Math 232a Winter 2014
Outline.

1 History

2 Problem Set: $S^3 \to S^2$
 - h maps S^3 into S^2.
 - Fibers and orbits of S^1 acting on S^3.
 - Upstairs and Downstairs.
 - Characteristics of h.

3 Problem Set: $S^7 \to S^4$
Consider continuous, surjective maps of the form $S^n \to S^{n-1}$.

For $n = 1$, we have $S^0 = \{-1, 1\} \subset \mathbb{R}$, a disconnected space. Since S^1 is connected, there is no surjective map $S^1 \to S^0$.

For $n = 2$, S^2 is simply connected, while S^1 is not. No non-nullhomotopic continuous, surjective map exists.

However, for $n = 3$, such a map $h : S^3 \to S^2$ does exist. This is the Hopf map, one of the most basic (but nontrivial) examples of a fibration, or fiber bundle. This shows that S^3 is locally like the product $S^1 \times D^2$, though globally it is different.

The discovery presented here follows in the order of Dr. Wilhelm’s first homework assignment.
Nonnullhomotopic Continuous, Surjective Maps Between Spheres.

- Consider continuous, surjective maps of the form $S^n \rightarrow S^{n-1}$.
- For $n = 1$, we have $S^0 = \{-1, 1\} \in \mathbb{R}$, a disconnected space. Since S^1 is connected, there is no surjective map $S^1 \rightarrow S^0$.
- For $n = 2$, S^2 is simply connected, while S^1 is not. No non-nullhomotopic continuous, surjective map exists.
- However, for $n = 3$, such a map $h : S^3 \rightarrow S^2$ does exist. This is the Hopf map, one of the most basic (but nontrivial) examples of a fibration, or fiber bundle. This shows that S^3 is locally like the product $S^1 \times D^2$, though globally it is different.
- The discovery presented here follows in the order of Dr. Wilhelm’s first homework assignment.
Nonnullhomotopic Continuous, Surjective Maps Between Spheres.

- Consider continuous, surjective maps of the form $S^n \to S^{n-1}$.
- For $n = 1$, we have $S^0 = \{-1, 1\} \in \mathbb{R}$, a disconnected space. Since S^1 is connected, there is no surjective map $S^1 \to S^0$.
- For $n = 2$, S^2 is simply connected, while S^1 is not. No non-nullhomotopic continuous, surjective map exists.
 - However, for $n = 3$, such a map $h : S^3 \to S^2$ does exist. This is the Hopf map, one of the most basic (but nontrivial) examples of a fibration, or fiber bundle. This shows that S^3 is locally like the product $S^1 \times D^2$, though globally it is different.
- The discovery presented here follows in the order of Dr. Wilhelm’s first homework assignment.
Consider continuous, surjective maps of the form $S^n \to S^{n-1}$.

For $n = 1$, we have $S^0 = \{-1, 1\} \in \mathbb{R}$, a disconnected space. Since S^1 is connected, there is no surjective map $S^1 \to S^0$.

For $n = 2$, S^2 is simply connected, while S^1 is not. No non-nullhomotopic continuous, surjective map exists.

However, for $n = 3$, such a map $h : S^3 \to S^2$ does exist. This is the Hopf map, one of the most basic (but nontrivial) examples of a fibration, or fiber bundle. This shows that S^3 is locally like the product $S^1 \times D^2$, though globally it is different.

The discovery presented here follows in the order of Dr. Wilhelm’s first homework assignment.
Nonnullhomotopic Continuous, Surjective Maps Between Spheres.

- Consider continuous, surjective maps of the form $S^n \to S^{n-1}$.
- For $n = 1$, we have $S^0 = \{-1, 1\} \in \mathbb{R}$, a disconnected space. Since S^1 is connected, there is no surjective map $S^1 \to S^0$.
- For $n = 2$, S^2 is simply connected, while S^1 is not. No non-nullhomotopic continuous, surjective map exists.
- However, for $n = 3$, such a map $h : S^3 \to S^2$ does exist. This is the Hopf map, one of the most basic (but nontrivial) examples of a fibration, or fiber bundle. This shows that S^3 is locally like the product $S^1 \times D^2$, though globally it is different.
- The discovery presented here follows in the order of Dr. Wilhelm’s first homework assignment.
Problem 1: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \).

- Consider \(S^3 \) as the unit sphere in \(\mathbb{C} \oplus \mathbb{C} \), and \(S^2 \left(\frac{1}{2} \right) \) as the sphere of radius \(\frac{1}{2} \) in \(\mathbb{C} \oplus \mathbb{R} \).
- Define the Hopf Fibration \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) via
 \[
h : (a, c) \mapsto \left(a\overline{c}, \frac{1}{2} (|a|^2 - |c|^2) \right).
\]
- We will first show that \(\text{Im}(h) \subseteq S^2 \left(\frac{1}{2} \right) \).
Problem 1:

$h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right)$.

- Consider S^3 as the unit sphere in $\mathbb{C} \oplus \mathbb{C}$, and $S^2 \left(\frac{1}{2} \right)$ as the sphere of radius $\frac{1}{2}$ in $\mathbb{C} \oplus \mathbb{R}$.
- Define the Hopf Fibration $h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right)$ via

 \[h : (a, c) \mapsto \left(a\overline{c}, \frac{1}{2} (|a|^2 - |c|^2) \right). \]

- We will first show that $\text{Im}(h) \subseteq S^2 \left(\frac{1}{2} \right)$.

Problem 1: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \).

- Consider \(S^3 \) as the unit sphere in \(\mathbb{C} \oplus \mathbb{C} \), and \(S^2 \left(\frac{1}{2} \right) \) as the sphere of radius \(\frac{1}{2} \) in \(\mathbb{C} \oplus \mathbb{R} \).
- Define the Hopf Fibration \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) via
 \[
 h : (a, c) \rightarrow \left(a \overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right).
 \]
- We will first show that \(\text{Im}(h) \subseteq S^2 \left(\frac{1}{2} \right) \).
Problem 1:

\[h : S^3 \to S^2 \left(\frac{1}{2} \right) \].

- Consider \(S^3 \) as the unit sphere in \(\mathbb{C} \oplus \mathbb{C} \), and \(S^2 \left(\frac{1}{2} \right) \) as the sphere of radius \(\frac{1}{2} \) in \(\mathbb{C} \oplus \mathbb{R} \).
- Define the Hopf Fibration \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) via

\[
h : (a, c) \mapsto \left(a \overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right).
\]

- We will first show that \(\text{Im}(h) \subseteq S^2 \left(\frac{1}{2} \right) \).
Problem 1:

\[h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right). \]

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C}\). Then

\[
|h(a, c)|^2 = |a|^2|c|^2 + \frac{1}{4} \left(|a|^2 - |c|^2 \right)^2
\]

\[
= |a|^2|c|^2 + \frac{1}{4} \left(|a|^4 - 2|a|^2|c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^4 + 2|a|^2|c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^2 + |c|^2 \right)^2
\]

\[
= \frac{1}{4},
\]

as \((a, c) \in S^3\). Thus \(|h(a, c)| = \frac{1}{2}\), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right)\).
Problem 1: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \).

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C}\). Then

\[
|h(a, c)|^2 = |a|^2|c|^2 + \frac{1}{4} \left(|a|^2 - |c|^2 \right)^2
\]

\[
= |a|^2|c|^2 + \frac{1}{4} \left(|a|^4 - 2|a|^2|c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^4 + 2|a|^2|c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^2 + |c|^2 \right)^2
\]

\[
= \frac{1}{4}
\]

as \((a, c) \in S^3\). Thus \(|h(a, c)| = \frac{1}{2}\), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right) \).
Problem 1: \[h : S^3 \to S^2 \left(\frac{1}{2} \right) \].

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C}\). Then

\[|h(a, c)|^2 = |a|^2|c|^2 + \frac{1}{4} (|a|^2 - |c|^2)^2 \]

\[= |a|^2|c|^2 + \frac{1}{4} (|a|^4 - 2|a|^2|c|^2 + |c|^4) \]

\[= \frac{1}{4} (|a|^4 + 2|a|^2|c|^2 + |c|^4) \]

\[= \frac{1}{4} (|a|^2 + |c|^2)^2 \]

\[= \frac{1}{4} \]

as \((a, c) \in S^3\). Thus \(|h(a, c)| = \frac{1}{2}\), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right)\).
Problem 1:

\[h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right). \]

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C}\). Then

\[
|h(a, c)|^2 = |a|^2 |c|^2 + \frac{1}{4} \left(|a|^2 - |c|^2 \right)^2
\]

\[
= |a|^2 |c|^2 + \frac{1}{4} \left(|a|^4 - 2|a|^2 |c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^4 + 2|a|^2 |c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^2 + |c|^2 \right)^2
\]

\[
= \frac{1}{4},
\]

as \((a, c) \in S^3\). Thus \(|h(a, c)| = \frac{1}{2}\), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right)\).
Problem 1: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \).

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C} \). Then

\[
|h(a, c)|^2 = |a|^2|c|^2 + \frac{1}{4} (|a|^2 - |c|^2)^2
\]

\[
= |a|^2|c|^2 + \frac{1}{4} (|a|^4 - 2|a|^2|c|^2 + |c|^4)
\]

\[
= \frac{1}{4} (|a|^4 + 2|a|^2|c|^2 + |c|^4)
\]

\[
= \frac{1}{4} (|a|^2 + |c|^2)^2
\]

\[
= \frac{1}{4},
\]

as \((a, c) \in S^3 \). Thus \(|h(a, c)| = \frac{1}{2} \), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right) \).
Problem 1: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \).

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C}\). Then

\[
|h(a, c)|^2 = |a|^2 |c|^2 + \frac{1}{4} (|a|^2 - |c|^2)^2
\]

\[
= |a|^2 |c|^2 + \frac{1}{4} \left(|a|^4 - 2|a|^2 |c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} \left(|a|^4 + 2|a|^2 |c|^2 + |c|^4 \right)
\]

\[
= \frac{1}{4} (|a|^2 + |c|^2)^2
\]

\[
= \frac{1}{4},
\]

as \((a, c) \in S^3\). Thus \(|h(a, c)| = \frac{1}{2} \), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right) \).
Problem 1: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \).

Utilizing the provided construction of \(h \), let \((a, c) \in \mathbb{C} \oplus \mathbb{C}\). Then

\[
|h(a, c)|^2 = |a|^2|c|^2 + \frac{1}{4} (|a|^2 - |c|^2)^2
\]

\[
= |a|^2|c|^2 + \frac{1}{4} (|a|^4 - 2|a|^2|c|^2 + |c|^4)
\]

\[
= \frac{1}{4} (|a|^4 + 2|a|^2|c|^2 + |c|^4)
\]

\[
= \frac{1}{4} (|a|^2 + |c|^2)^2
\]

\[
= \frac{1}{4},
\]

as \((a, c) \in S^3\). Thus \(|h(a, c)| = \frac{1}{2} \), and \(\text{Im}(h) \in S \left(\frac{1}{2} \right) \).
Problem 1: $h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right)$.

Utilizing the provided construction of h, let $(a, c) \in \mathbb{C} \oplus \mathbb{C}$. Then

$$|h(a, c)|^2 = |a|^2 |c|^2 + \frac{1}{4} (|a|^2 - |c|^2)^2$$

$$= |a|^2 |c|^2 + \frac{1}{4} (|a|^4 - 2|a|^2 |c|^2 + |c|^4)$$

$$= \frac{1}{4} (|a|^4 + 2|a|^2 |c|^2 + |c|^4)$$

$$= \frac{1}{4} (|a|^2 + |c|^2)^2$$

$$= \frac{1}{4},$$

as $(a, c) \in S^3$. Thus $|h(a, c)| = \frac{1}{2}$, and $\text{Im}(h) \in S \left(\frac{1}{2} \right)$.

P. Rajan, F. Rebro, A. Yassine
Geometry of the Hopf Fibration
Problem 2:

\[H : S^1 \times S^3 \to S^3. \]

Identify \(S^1 \) with the unit circle in \(\mathbb{C} \).

Consider the \(S^1 \)-action on \(S^3 \),

\[H : S^1 \times S^3 \to S^3 \]

via

\[H : (\omega, (a, c)) \mapsto (\omega a, \omega c), \]

where the multiplication takes place in \(\mathbb{C} \).

Then the orbits of the action coincide with the fibers of \(h \).
Problem 2:

\[H : S^1 \times S^3 \rightarrow S^3. \]

Identify \(S^1 \) with the unit circle in \(\mathbb{C} \).

Consider the \(S^1 \)-action on \(S^3 \),

\[H : S^1 \times S^3 \rightarrow S^3 \]

via

\[H : (\omega, (a, c)) \mapsto (\omega a, \omega c), \]

where the multiplication takes place in \(\mathbb{C} \).

Then the orbits of the action coincide with the fibers of \(h \).
Problem 2:

\[H : S^1 \times S^3 \rightarrow S^3. \]

Identify \(S^1 \) with the unit circle in \(\mathbb{C} \).

Consider the \(S^1 \)-action on \(S^3 \),

\[H : S^1 \times S^3 \rightarrow S^3 \]

via

\[H : (\omega, (a, c)) \mapsto (\omega a, \omega c), \]

where the multiplication takes place in \(\mathbb{C} \).

Then the orbits of the action coincide with the fibers of \(h \).
Problem 2:

Let $O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \}$ be the orbits generated by the action of the circle on a point $(a, c) \in S^3$.

We first show that $O_{(a,c)} \in h^{-1}(p)$ where $p = h(a, c)$.
Let $\omega \in S^1$. Then

$$
\begin{align*}
 h(\omega(a, c)) &= \left(\omega a \bar{\omega} c, \frac{1}{2} (|\omega a|^2 - |\omega c|^2) \right) \\
 &= \left(\omega a \cdot \frac{1}{\omega} \bar{c}, \frac{|\omega|^2}{2} \cdot (|a|^2 - |c|^2) \right) \\
 &= \left(a \bar{c}, \frac{1}{2} (|a|^2 - |c|^2) \right) \\
 &= h(a, c),
\end{align*}
$$

and $\omega(a, c) \in h^{-1}(p)$.

\[\text{P. Rajan, F. Rebro, A. Yassine} \quad \text{Geometry of the Hopf Fibration}\]
Problem 2:

Let $O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \}$ be the orbits generated by the action of the circle on a point $(a, c) \in S^3$.

We first show that $O_{(a,c)} \in h^{-1}(p)$ where $p = h(a, c)$.

Let $\omega \in S^1$. Then

$$h(\omega(a, c)) = \left(\omega a \overline{\omega c}, \frac{1}{2} \left(|\omega a|^2 - |\omega c|^2 \right) \right)$$

$$= \left(\omega a \cdot \frac{1}{\omega} \overline{c}, \frac{|\omega|^2}{2} \cdot (|a|^2 - |c|^2) \right)$$

$$= \left(\overline{a c}, \frac{1}{2} (|a|^2 - |c|^2) \right)$$

$$= h(a, c),$$

and $\omega(a, c) \in h^{-1}(p)$.
Let \(O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \} \) be the orbits generated by the action of the circle on a point \((a, c) \in S^3\).

We first show that \(O_{(a,c)} \in h^{-1}(p) \) where \(p = h(a, c) \).

Let \(\omega \in S^1 \). Then

\[
h(\omega(a, c)) = \left(\overline{\omega a \omega c}, \frac{1}{2} (|\omega a|^2 - |\omega c|^2) \right)
\]

\[
= \left(\omega a \cdot \frac{1}{\omega} \overline{c}, \frac{|\omega|^2}{2} (|a|^2 - |c|^2) \right)
\]

\[
= \left(\overline{a c}, \frac{1}{2} (|a|^2 - |c|^2) \right)
\]

\[
= h(a, c),
\]

and \(\omega(a, c) \in h^{-1}(p) \).
Problem 2:

\[H : S^1 \times S^3 \to S^3. \]

Let \(O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \} \) be the orbits generated by the action of the circle on a point \((a, c) \in S^3\).

We first show that \(O_{(a,c)} \in h^{-1}(p) \) where \(p = h(a, c) \).

Let \(\omega \in S^1 \). Then

\[
\begin{align*}
 h(\omega(a, c)) &= \left(\omega a \bar{\omega c}, \frac{1}{2} (|\omega a|^2 - |\omega c|^2) \right) \\
 &= \left(\omega a \cdot \frac{1}{\omega} \bar{c}, \frac{|\omega|^2}{2} \cdot (|a|^2 - |c|^2) \right) \\
 &= \left(a \bar{c}, \frac{1}{2} (|a|^2 - |c|^2) \right) \\
 &= h(a, c),
\end{align*}
\]

and \(\omega(a, c) \in h^{-1}(p) \).
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

Let \(O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \} \) be the orbits generated by the action of the circle on a point \((a, c) \in S^3\).

We first show that \(O_{(a,c)} \in h^{-1}(p) \) where \(p = h(a, c) \).

Let \(\omega \in S^1 \). Then

\[
h(\omega(a, c)) = \left(\omega a \bar{\omega} c, \frac{1}{2} (|\omega a|^2 - |\omega c|^2) \right)
\]

\[
= \left(\omega a \cdot \frac{1}{\omega} \bar{a}, \frac{|\omega|^2}{2} \cdot (|a|^2 - |c|^2) \right)
\]

\[
= \left(a \bar{c}, \frac{1}{2} (|a|^2 - |c|^2) \right)
\]

\[
= h(a, c),
\]

and \(\omega(a, c) \in h^{-1}(p) \).
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Let \(O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \} \) be the orbits generated by the action of the circle on a point \((a, c) \in S^3\).

We first show that \(O_{(a,c)} \in h^{-1}(p) \) where \(p = h(a, c) \).

Let \(\omega \in S^1 \). Then

\[
h(\omega(a, c)) = \left(\omega a \omega c, \frac{1}{2} (|\omega a|^2 - |\omega c|^2) \right)
= \left(\omega a \cdot \frac{1}{\omega} \overline{c}, \frac{|\omega|^2}{2} \cdot (|a|^2 - |c|^2) \right)
= \left(a\overline{c}, \frac{1}{2} (|a|^2 - |c|^2) \right)
= h(a, c),
\]

and \(\omega(a, c) \in h^{-1}(p) \).
Problem 2: \(H : S^1 \times S^3 \rightarrow S^3 \).

Let \(O_{(a,c)} = \{ \omega(a, c) \mid \omega \in S^1 \} \) be the orbits generated by the action of the circle on a point \((a, c) \in S^3\).

We first show that \(O_{(a,c)} \in h^{-1}(p) \) where \(p = h(a, c) \).

Let \(\omega \in S^1 \). Then

\[
\begin{align*}
h(\omega(a, c)) &= \left(\omega \overline{a} \omega c, \frac{1}{2} \left(|\omega a|^2 - |\omega c|^2 \right) \right) \\
&= \left(\omega a \cdot \frac{1}{\omega} \overline{c}, \frac{|\omega|^2}{2} \cdot (|a|^2 - |c|^2) \right) \\
&= \left(a \overline{c}, \frac{1}{2} (|a|^2 - |c|^2) \right) \\
&= h(a, c),
\end{align*}
\]

and \(\omega(a, c) \in h^{-1}(p) \).
H : S^1 × S^3 → S^3.

Let O_{(a,c)} = \{ ω(a, c) | ω ∈ S^1 \} be the orbits generated by the action of the circle on a point (a, c) ∈ S^3.
We first show that O_{(a,c)} ∈ h^{-1}(p) where p = h(a, c).
Let ω ∈ S^1. Then

\[h(ω(a, c)) = \left(ωa\overline{ωc}, \frac{1}{2} (|ωa|^2 - |ωc|^2) \right) \]
\[= \left(ωa \cdot \frac{1}{ω} \overline{c}, \frac{|ω|^2}{2} \cdot (|a|^2 - |c|^2) \right) \]
\[= \left(a\overline{c}, \frac{1}{2} (|a|^2 - |c|^2) \right) \]
\[= h(a, c), \]

and ω(a, c) ∈ h^{-1}(p).
Problem 2: \(H : S^1 \times S^3 \to S^3 \).

Let \(O(a,c) = \{ \omega(a, c) \mid \omega \in S^1 \} \) be the orbits generated by the action of the circle on a point \((a, c) \in S^3\). We first show that \(O(a,c) \in h^{-1}(p) \) where \(p = h(a, c) \).

Let \(\omega \in S^1 \). Then

\[
\begin{align*}
h(\omega(a, c)) &= \left(\omega a \overline{\omega c}, \frac{1}{2} \left(|\omega a|^2 - |\omega c|^2 \right) \right) \\
&= \left(\omega a \cdot \frac{1}{\omega} \overline{c}, \frac{|\omega|^2}{2} \left(|a|^2 - |c|^2 \right) \right) \\
&= \left(a \overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right) \\
&= h(a, c),
\end{align*}
\]

and \(\omega(a, c) \in h^{-1}(p) \).
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

On the other hand, consider \((\alpha, \delta) \in h^{-1}(p)\) for some \(h(a, c) = p \in S^2 (\frac{1}{2})\). First, consider nonzero values for \(\alpha\) and \(\delta\). By construction of \(h\),

\[|\alpha|^2 - |\delta|^2 = |a|^2 - |c|^2. \]

Since \((\alpha, \delta), (a, c) \in S^3\), we also have

\[|\alpha|^2 + |\delta|^2 = |a|^2 + |c|^2 = 1. \]

Summing (or subtracting) accordingly, we find

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2. \]
Problem 2: \(H : S^1 \times S^3 \to S^3 \).

On the other hand, consider \((\alpha, \delta) \in h^{-1}(p)\) for some \(h(a, c) = p \in S^2(\frac{1}{2})\). First, consider nonzero values for \(\alpha\) and \(\delta\).

By construction of \(h\),
\[
|\alpha|^2 - |\delta|^2 = |a|^2 - |c|^2.
\]

Since \((\alpha, \delta), (a, c) \in S^3\), we also have
\[
|\alpha|^2 + |\delta|^2 = |a|^2 + |c|^2 = 1.
\]

Summing (or subtracting) accordingly, we find
\[
|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2.
\]
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

On the other hand, consider \((\alpha, \delta) \in h^{-1}(p)\) for some \(h(a, c) = p \in S^2\left(\frac{1}{2}\right)\). First, consider nonzero values for \(\alpha\) and \(\delta\).

By construction of \(h\),

\[|\alpha|^2 - |\delta|^2 = |a|^2 - |c|^2. \]

Since \((\alpha, \delta), (a, c) \in S^3\), we also have

\[|\alpha|^2 + |\delta|^2 = |a|^2 + |c|^2 = 1. \]

Summing (or subtracting) accordingly, we find

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2. \]
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

On the other hand, consider \((\alpha, \delta) \in h^{-1}(p)\) for some \(h(a, c) = p \in S^2\left(\frac{1}{2}\right)\). First, consider nonzero values for \(\alpha\) and \(\delta\). By construction of \(h\),

\[|\alpha|^2 - |\delta|^2 = |a|^2 - |c|^2. \]

Since \((\alpha, \delta), (a, c) \in S^3\), we also have

\[|\alpha|^2 + |\delta|^2 = |a|^2 + |c|^2 = 1. \]

Summing (or subtracting) accordingly, we find

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2. \]
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

On the other hand, consider \((\alpha, \delta) \in h^{-1}(p)\) for some \(h(a, c) = p \in S^2 \left(\frac{1}{2} \right)\). First, consider nonzero values for \(\alpha\) and \(\delta\). By construction of \(h\),

\[|\alpha|^2 - |\delta|^2 = |a|^2 - |c|^2. \]

Since \((\alpha, \delta), (a, c) \in S^3\), we also have

\[|\alpha|^2 + |\delta|^2 = |a|^2 + |c|^2 = 1. \]

Summing (or subtracting) accordingly, we find

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2. \]
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c. \]

Since \(h(\alpha, \delta) = h(a, c) \),

\[a\bar{c} = \alpha \bar{\delta} \]

\[= \omega_0 a \omega_1 c. \]

Dividing by \(a\bar{c} \),

\[1 = \frac{\omega_0 \bar{\omega}_1}{\omega_0} = \frac{\omega_0}{\omega_1}, \]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \(H : S^1 \times S^3 \rightarrow S^3 \).

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[
\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c.
\]

Since \(h(\alpha, \delta) = h(a, c) \),

\[
a\bar{c} = \alpha \delta = \omega_0 a \bar{\omega_1 c}.
\]

Dividing by \(a\bar{c} \),

\[
1 = \frac{\omega_0}{\omega_1} \quad \Rightarrow \quad \frac{\omega_0}{\omega_1} = \omega = \omega_0 = \omega_1 \in S^1
\]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c. \]

Since \(h(\alpha, \delta) = h(a, c) \),

\[a\bar{c} = \alpha\bar{\delta} \]
\[= \omega_0 a\omega_1 c. \]

Dividing by \(a\bar{c} \),

\[1 = \frac{\omega_0}{\omega_1}, \]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c. \]

Since \(h(\alpha, \delta) = h(a, c) \),

\[a\overline{c} = \alpha \overline{\delta} = \omega_0 a \omega_1 c. \]

Dividing by \(a\overline{c} \),

\[1 = \frac{\omega_0 \omega_1}{\omega_0} = \frac{\omega_1}{\omega_0}, \]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c. \]

Since \(h(\alpha, \delta) = h(a, c) \),

\[a\overline{c} = \alpha \overline{\delta} = \omega_0 a \overline{\omega_1 c}. \]

Dividing by \(a\overline{c} \),

\[1 = \frac{\omega_0}{\omega_1}, \]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c. \]

Since \(h(\alpha, \delta) = h(a, c) \),

\[a\overline{c} = \alpha \overline{\delta} \]
\[= \omega_0 a \overline{\omega_1 c}. \]

Dividing by \(a\overline{c} \),

\[1 = \omega_0 \overline{\omega_1} \]
\[= \frac{\omega_0}{\omega_1}, \]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \(H : S^1 \times S^3 \rightarrow S^3. \)

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[
\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c.
\]

Since \(h(\alpha, \delta) = h(a, c) \),

\[
a\bar{c} = \alpha \bar{\delta}
= \omega_0 a \bar{\omega_1} c.
\]

Dividing by \(a\bar{c} \),

\[
1 = \omega_0 \bar{\omega_1}
= \frac{\omega_0}{\omega_1},
\]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that

\[\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c. \]

Since \(h(\alpha, \delta) = h(a, c) \),

\[a\bar{c} = \alpha \bar{\delta} \]
\[= \omega_0 a \bar{\omega_1 c}. \]

Dividing by \(a\bar{c} \),

\[1 = \frac{\omega_0 \bar{\omega_1}}{\omega_0} \]
\[= \frac{\omega_0}{\omega_1}, \]

and there exists a \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Thus, there exist \(\omega_0, \omega_1 \in S^1 \) such that
\[
\alpha = \omega_0 a \quad \text{and} \quad \delta = \omega_1 c.
\]

Since \(h(\alpha, \delta) = h(a, c) \),
\[
\alpha \delta = \bar{\alpha} \bar{\delta} = \omega_0 a \omega_1 c.
\]

Dividing by \(\alpha \delta \),
\[
1 = \bar{\omega_0} \bar{\omega_1} = \frac{\omega_0}{\omega_1},
\]
and there exists an \(\omega = \omega_0 = \omega_1 \in S^1 \) such that \(\omega(a, c) = (\alpha, \delta) \).
Problem 2:

\[H : S^1 \times S^3 \rightarrow S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2, \]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[\omega_1 a = \omega_1 \cdot 0 \]
\[= \alpha, \]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2, \]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[\omega_1 a = \omega_1 \cdot 0 \]
\[= \alpha, \]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0,0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2, \]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[\omega_1 a = \omega_1 \cdot 0 = \alpha, \]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \rightarrow S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0,0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2, \]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[
\omega_1 a = \omega_1 \cdot 0 \\
= \alpha,
\]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[
|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2,
\]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[
\omega_1 a = \omega_1 \cdot 0 = \alpha,
\]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2, \]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[\omega_1 a = \omega_1 \cdot 0 \]
\[= \alpha, \]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2:

\[H : S^1 \times S^3 \rightarrow S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2, \]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[\omega_1 a = \omega_1 \cdot 0 \]
\[= \alpha, \]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that

\[
|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2,
\]

and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,

\[
\omega_1 a = \omega_1 \cdot 0 = \alpha,
\]

and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 2: \[H : S^1 \times S^3 \to S^3. \]

Note that \((\alpha, \delta), (a, c) \neq (0, 0)\), as the origin is not in \(S^3\). Suppose one coordinate, say \(a\), is zero. Then we still find that
\[
|\alpha|^2 = |a|^2 \quad \text{and} \quad |\delta|^2 = |c|^2,
\]
and that there exists a \(\omega_1 \in S^1\) such that \(\delta = \omega_1 c\). However,
\[
\omega_1 a = \omega_1 \cdot 0 = \alpha,
\]
and we can simply consider \(\omega = \omega_1\). The group action of \(S^1\) on \(S^3\) is called the Hopf Action.
Problem 3(a): \(U(2) \) Acting on \(\mathbb{C}^2 \).

- \(U(2) \) is the group of \(2 \times 2 \) matrices over \(\mathbb{C} \) such that
 \[
 AA^* = A^*A = id,
 \]
 where \(A^* \) denotes the conjugate transpose of \(A \).

- \(U(2) \) acts naturally on \(S^3 \) by matrix multiplication:
 \[
 U(2) \times \mathbb{C}^2 \rightarrow \mathbb{C}^2
 \]
 via
 \[
 \begin{pmatrix}
 \alpha & \beta \\
 \delta & \gamma
 \end{pmatrix}
 \begin{pmatrix}
 a \\
 c
 \end{pmatrix}
 \mapsto
 \begin{pmatrix}
 \alpha & \beta \\
 \delta & \gamma
 \end{pmatrix}
 \begin{pmatrix}
 a \\
 c
 \end{pmatrix}.
 \]
Problem 3(a): \(U(2) \) Acting on \(\mathbb{C}^2 \).

- \(U(2) \) is the group of \(2 \times 2 \) matrices over \(\mathbb{C} \) such that
 \[
 AA^* = A^* A = id,
 \]
 where \(A^* \) denotes the conjugate transpose of \(A \).

- \(U(2) \) acts naturally on \(S^3 \) by matrix multiplication:
 \[
 U(2) \times \mathbb{C}^2 \rightarrow \mathbb{C}^2
 \]
 via
 \[
 \left(\begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix}, \begin{bmatrix} a \\ c \end{bmatrix} \right) \rightarrow \begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix}.
 \]
Problem 3(a): \(U(2) \) Acting on \(\mathbb{C}^2 \).

- \(U(2) \) is the group of \(2 \times 2 \) matrices over \(\mathbb{C} \) such that
 \[
 AA^* = A^* A = id,
 \]
 where \(A^* \) denotes the conjugate transpose of \(A \).

- \(U(2) \) acts naturally on \(S^3 \) by matrix multiplication:

\[
U(2) \times \mathbb{C}^2 \rightarrow \mathbb{C}^2
\]

via

\[
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta \\
\end{pmatrix}
\begin{pmatrix}
a \\
c \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\alpha & \beta \\
\delta & \gamma \\
\end{pmatrix}
\begin{pmatrix}
a \\
c \\
\end{pmatrix}.
\]
Problem 3(a): **$U(2)$ Acting on \mathbb{C}^2.**

- $U(2)$ is the group of 2×2 matrices over \mathbb{C} such that

 $$AA^* = A^*A = id,$$

 where A^* denotes the conjugate transpose of A.

- $U(2)$ acts naturally on S^3 by matrix multiplication:

 $$U(2) \times \mathbb{C}^2 \rightarrow \mathbb{C}^2$$

 via

 $$
 \left(\begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix}, \begin{bmatrix} a \\ c \end{bmatrix} \right) \mapsto \begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix}.
 $$
Problem 3(a): A Linear Map.

- $U(2)$ acts isometrically on \mathbb{C}^2, and preserves the unit 3-sphere S^3.
- Note that $A \in U(2)$ is a linear map, and thus

\[
A \begin{bmatrix} \omega a \\ \omega c \end{bmatrix} = A \cdot \omega \begin{bmatrix} a \\ c \end{bmatrix} = \omega A \begin{bmatrix} a \\ c \end{bmatrix}.
\]

- Thus any element of $U(2)$ commutes with the Hopf action.
Problem 3(a): A Linear Map.

- $U(2)$ acts isometrically on \mathbb{C}^2, and preserves the unit 3-sphere S^3.
- Note that $A \in U(2)$ is a linear map, and thus

$$A \begin{bmatrix} \omega a \\ \omega c \end{bmatrix} = A \cdot \omega \begin{bmatrix} a \\ c \end{bmatrix} = \omega A \begin{bmatrix} a \\ c \end{bmatrix}.$$

- Thus any element of $U(2)$ commutes with the Hopf action.
Problem 3(a): A Linear Map.

- $U(2)$ acts isometrically on \mathbb{C}^2, and preserves the unit 3-sphere S^3.
- Note that $A \in U(2)$ is a linear map, and thus

$$A \begin{bmatrix} \omega a \\ \omega c \end{bmatrix} = A \cdot \omega \begin{bmatrix} a \\ c \end{bmatrix} = \omega A \begin{bmatrix} a \\ c \end{bmatrix}.$$

- Thus any element of $U(2)$ commutes with the Hopf action.
Problem 3(a): Induced Maps on $h(S^3)$.

For any $p \in S^2 \left(\frac{1}{2}\right)$, any two $\begin{bmatrix} a \\ c \end{bmatrix}, \begin{bmatrix} \hat{a} \\ \hat{c} \end{bmatrix} \in h^{-1}(p)$ are related by the Hopf action. Thus, any $A \in U(2)$ induces a smooth map on \hat{A} on $h(S^3) \subseteq S^2 \left(\frac{1}{2}\right)$ such that the diagram:

\[\begin{array}{ccc}
S^3 & \xrightarrow{A} & S^3 \\
\downarrow h & & \downarrow h \\
h(S^3) & \xrightarrow{\hat{A}} & h(S^3)
\end{array}\]

commutes. We will return to this after part (b) and (c).
Consider the subgroup of $U(2)$ of matrices of the form

$$A_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad \text{where } \theta \in [0, 2\pi).$$

For $(a, c) \in S^3$, we find

$$A_\theta \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} a \cos \theta - c \sin \theta \\ a \sin \theta + c \cos \theta \end{bmatrix},$$

so

$$h\left(A_\theta \begin{bmatrix} a \\ c \end{bmatrix} \right) = h\left(\begin{bmatrix} a \cos \theta - c \sin \theta \\ a \sin \theta + c \cos \theta \end{bmatrix} \right) = \left(a \cos \theta - c \sin \theta \right)\left(a \sin \theta + c \cos \theta \right), \quad \frac{1}{2} |a \cos \theta - c \sin \theta|^2 - \frac{1}{2} |a \sin \theta + c \cos \theta|^2.$$

1st slot 2nd slot
Problem 3(b): Real Rotation - The First Slot.

For the first slot, we find

\[
(a \cos \theta - c \sin \theta)(a \sin \theta + c \cos \theta) = a\bar{a} \cos \theta \sin \theta - c\bar{c} \cos \theta \sin \theta + a\bar{c} \cos^2 \theta - c\bar{a} \sin^2 \theta \\
= \cos \theta \sin \theta (a\bar{a} - c\bar{c}) + \text{Re} a\bar{c} \cos^2 \theta - i \text{Im} a\bar{c} \cos^2 \theta \\
- (\text{Re} a\bar{c} - i \text{Im} a\bar{c}) \sin^2 \theta \\
= \sin 2\theta \cdot \frac{1}{2} (|a|^2 - |c|^2) + \text{Re} a\bar{c} (\cos^2 \theta - \sin^2 \theta) \\
+ i \text{Im} a\bar{c} (\cos^2 \theta + \sin^2 \theta) \\
= \sin 2\theta \cdot \frac{1}{2} (|a|^2 - |c|^2) + \text{Re} a\bar{c} (\cos 2\theta) + i \text{Im} a\bar{c}.
\]
Problem 3(b): Real Rotation - The Second Slot.

For the second slot, we have
\[\frac{1}{2} |a \cos \theta - c \sin \theta|^2 - \frac{1}{2} |a \sin \theta + c \cos \theta|^2 \]

\[= \frac{1}{2} (a \cos \theta - c \sin \theta)(\bar{a} \cos \theta - \bar{c} \sin \theta) - \frac{1}{2} (a \sin \theta + c \cos \theta)(\bar{a} \sin \theta + \bar{c} \cos \theta) \]

\[= \frac{1}{2} \left[a\bar{a} \cos^2 \theta + c\bar{c} \sin^2 \theta - (a\bar{c} + c\bar{a}) \cos \theta \sin \theta - a\bar{a} \sin^2 \theta - c\bar{c} \cos^2 \theta - (a\bar{c} + c\bar{a}) \cos \theta \sin \theta \right] \]

\[= \frac{1}{2} \left[\cos^2 \theta - \sin^2 \theta \right] \left(|a|^2 - |c|^2 \right) - 2 \cos \theta \sin \theta (a\bar{c} + c\bar{a}) \]

\[= \cos 2\theta \cdot \frac{1}{2} (|a|^2 - |c|^2) - \sin 2\theta \cdot \text{Re} a\bar{c}. \]
Recalling that we consider $S^2\left(\frac{1}{2}\right) \subseteq \mathbb{C} \times \mathbb{R}$, we can let

$$(x + iy, t) = \left(a\overline{c}, \frac{1}{2}(|a|^2 - |c|^2)\right),$$

then we find

$$\hat{A}_\theta \left(a\overline{c}, \frac{1}{2}(|a|^2 - |c|^2)\right) = \hat{A}_\theta(x + iy, t)$$

$$= (\sin 2\theta \cdot t + \cos 2\theta \cdot x + iy, \cos 2\theta \cdot 2 - \sin 2\theta \cdot x).$$

Thus, \hat{A}_θ fixes the imaginary y, and produces a rotation of angle 2θ around the imaginary y-axis.
Problem 3(b): Complex Rotation.

We can also consider the subgroup of $U(2)$ of the form

$$A_\omega = \begin{bmatrix} \omega_1 & 0 \\ 0 & \omega_2 \end{bmatrix},$$

where $|\omega_1| = |\omega_2| = 1$ and $\omega_1 \overline{\omega}_2 = \omega$. Then

$$A_\omega \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} \omega_1 a \\ \omega_2 c \end{bmatrix},$$

so

$$h(A_\omega \begin{bmatrix} a \\ c \end{bmatrix}) = \left(a\overline{c}\omega_1 \overline{\omega}_2, \frac{1}{2}|a|^2 - \frac{1}{2}|c|^2 \right).$$

Since h commutes with any $A \subseteq U(2)$, utilizing coordinates on $S^2 \left(\frac{1}{2} \right) \subseteq \mathbb{C} \times \mathbb{R}$,

$$\hat{A}_\omega (x + iy, t) = (\omega_1 \overline{\omega}_2 (x + iy), t).$$

This shows that \hat{A}_ω produces a rotation of angle $\text{Arg}(\omega)$ in the complex plane (i.e., rotation around the t-axis).
Problem 3(a): Generating $U(2)$.

- The group $U(2)$ can be generated by the linear maps of the form A_θ and A_ω.
- Hence, any induced map \hat{A} downstairs can be written as some composition of maps of the form \hat{A}_θ and \hat{A}_ω.
- As all \hat{A}_θ and \hat{A}_ω and linear (and thus smooth), any $A \in U(2)$ induces a smooth map \hat{A} downstairs.
Problem 3(a): Generating $U(2)$.

- The group $U(2)$ can be generated by the linear maps of the form A_θ and A_ω.

- Hence, any induced map \hat{A} downstairs can be written as some composition of maps of the form \hat{A}_θ and \hat{A}_ω.

- As all \hat{A}_θ and \hat{A}_ω and linear (and thus smooth), any $A \in U(2)$ induces a smooth map \hat{A} downstairs.
Problem 3(a): Generating $U(2)$.

- The group $U(2)$ can be generated by the linear maps of the form A_θ and A_ω.

- Hence, any induced map \hat{A} downstairs can be written as some composition of maps of the form \hat{A}_θ and \hat{A}_ω.

- As all \hat{A}_θ and \hat{A}_ω and linear (and thus smooth), any $A \in U(2)$ induces a smooth map \hat{A} downstairs.
Example: Rotation to North Pole.
Problem 3(b): \(h \) is Onto.

- As shown graphically, any point \(p \in S^2 \left(\frac{1}{2} \right) \) can be transferred to the north pole \(n = (0, 1) \in \mathbb{C} \oplus \mathbb{R} \) by composing isometries

 \[
 \hat{A}_\theta \circ \hat{A}_\omega
 \]

 for some \(\theta \in [0, 2\pi) \) and some \(\omega = e^{i\phi} \).

- Since the maps commute, letting \(N \) be the North pole of \(S^3 \),

 every point in \(S^2 \left(\frac{1}{2} \right) \) can be realized as \(h(P) \) for some \(P \in S^3 \).
Problem 3(b): h is Onto.

- As shown graphically, any point $p \in S^2\left(\frac{1}{2}\right)$ can be transferred to the north pole $n = (0,1) \in \mathbb{C} \oplus \mathbb{R}$ by composing isometries

$$\hat{A}_{\theta} \circ \hat{A}_{\omega}$$

for some $\theta \in [0, 2\pi)$ and some $\omega = e^{i\phi}$.

- Since the maps commute, letting N be the North pole of S^3,

\[
\begin{array}{c}
N \quad \xrightarrow{(A_{\theta} \circ A_{\omega})^{-1}} \quad P \\
\downarrow h \quad \downarrow h \\
(\hat{A}_{\theta} \circ \hat{A}_{\omega})^{-1} \quad \downarrow (\hat{A}_{\theta} \circ \hat{A}_{\omega})^{-1} \\
n \quad \xrightarrow{p}
\end{array}
\]

every point in $S^2\left(\frac{1}{2}\right)$ can be realized as $h(P)$ for some $P \in S^3$.

P. Rajan, F. Rebro, A. Yassine

Geometry of the Hopf Fibration
Problem 3(b): h is Onto.

- As shown graphically, any point $p \in S^2\left(\frac{1}{2}\right)$ can be transferred to the north pole $n = (0, 1) \in \mathbb{C} \oplus \mathbb{R}$ by composing isometries

$$\hat{A}_\theta \circ \hat{A}_\omega$$

for some $\theta \in [0, 2\pi)$ and some $\omega = e^{i\phi}$.

- Since the maps commute, letting N be the North pole of S^3,

$$\begin{align*}
N &\xrightarrow{(A_\theta \circ A_\omega)^{-1}} P \\
\downarrow h &\hspace{1cm} \downarrow h \\
n &\xrightarrow{(\hat{A}_\theta \circ \hat{A}_\omega)^{-1}} P
\end{align*}$$

every point in $S^2\left(\frac{1}{2}\right)$ can be realized as $h(P)$ for some $P \in S^3$.
Problem 3(c): Orientation-Preserving Isometries.

- Any orientation preserving isometry of $S^2 \left(\frac{1}{2} \right)$ is an element of $SO(3)$, which can be thought of as orientation around some axis.
- Let the vector $v \in S^2 \left(\frac{1}{2} \right)$ be the axis of rotation, and let ϕ be the angle of rotation.
- Let $U \in SO(3)$ is the matrix of the rotation.
 - It can be realised by first transferring v to n via some
 $$\hat{A}_\theta \circ \hat{A}_\omega;$$
 - then rotating around the t-axis via
 $$\hat{A}_{e^{i\phi}};$$
 - then returning v through
 $$\left(\hat{A}_\theta \circ \hat{A}_\omega \right)^{-1}.$$
Problem 3(c): Orientation-Preserving Isometries.

- Any orientation preserving isometry of $S^2 \left(\frac{1}{2} \right)$ is an element of $SO(3)$, which can be thought of as orientation around some axis.
- Let the vector $v \in S^2 \left(\frac{1}{2} \right)$ be the axis of rotation, and let ϕ be the angle of rotation.
- Let $U \in SO(3)$ is the matrix of the rotation.

 - It can be realised by first transferring v to n via some
 \[
 \hat{A}_\theta \circ \hat{A}_\omega;
 \]
 - then rotating around the t-axis via
 \[
 \hat{A}_{e^{i\phi}};
 \]
 - then returning v through
 \[
 \left(\hat{A}_\theta \circ \hat{A}_\omega \right)^{-1}.
 \]
Problem 3(c): Orientation-Preserving Isometries.

- Any orientation preserving isometry of $S^2\left(\frac{1}{2}\right)$ is an element of $SO(3)$, which can be thought of as orientation around some axis.
- Let the vector $v \in S^2\left(\frac{1}{2}\right)$ be the axis of rotation, and let ϕ be the angle of rotation.
- Let $U \in SO(3)$ is the matrix of the rotation.

 \[
 \hat{A}_{\theta} \circ \hat{A}_{\omega};
 \]

 then rotating around the t-axis via
 \[
 \hat{A}_{e^{i\phi}};
 \]

 then returning v through
 \[
 \left(\hat{A}_{\theta} \circ \hat{A}_{\omega}\right)^{-1}.
 \]
Problem 3(c): Orientation-Preserving Isometries.

- Any orientation preserving isometry of $S^2\left(\frac{1}{2}\right)$ is an element of $SO(3)$, which can be thought of as orientation around some axis.
- Let the vector $v \in S^2\left(\frac{1}{2}\right)$ be the axis of rotation, and let ϕ be the angle of rotation.
- Let $U \in SO(3)$ is the matrix of the rotation.

 - It can be realised by first transferring v to n via some
 \[\hat{A}_\theta \circ \hat{A}_\omega; \]
 - then rotating around the t-axis via
 \[\hat{A}_{e^{i\phi}}; \]
 - then returning v through
 \[(\hat{A}_\theta \circ \hat{A}_\omega)^{-1}. \]
Problem 3(c): Orientation-Preserving Isometries.

- Any orientation preserving isometry of $S^2\left(\frac{1}{2}\right)$ is an element of $SO(3)$, which can be thought of as orientation around some axis.
- Let the vector $\nu \in S^2\left(\frac{1}{2}\right)$ be the axis of rotation, and let ϕ be the angle of rotation.
- Let $U \in SO(3)$ is the matrix of the rotation.
 - It can be realised by first transferring ν to n via some
 \[\hat{A}_\theta \circ \hat{A}_\omega; \]
 - then rotating around the t-axis via
 \[\hat{A}_{e^{i\phi}}; \]
 - then returning ν through
 \[\left(\hat{A}_\theta \circ \hat{A}_\omega \right)^{-1}. \]
Problem 3(c): Orientation-Preserving Isometries.

Together, we find

\[U = \left(\hat{A}_\theta \circ \hat{A}_\omega \right)^{-1} \circ \hat{A}_{e^{i\phi}} \circ \hat{A}_\theta \circ \hat{A}_\omega \]

\[= \hat{A}_{-\omega} \circ \hat{A}_{-\theta} \circ \hat{A}_{e^{i\phi}} \circ \hat{A}_\theta \circ \hat{A}_\omega. \]

Each transformation on the right side has a nice lift upstairs to symmetries of the Hopf fibration, mapping \(S^3 \to S^3 \).
Problem 3(c): Orientation-Preserving Isometries.

- Together, we find

\[U = \left(\hat{A}_\theta \circ \hat{A}_\omega \right)^{-1} \circ \hat{A}_{e^{i\phi}} \circ \hat{A}_\theta \circ \hat{A}_\omega \]

\[= \hat{A}_{-\omega} \circ \hat{A}_{-\theta} \circ \hat{A}_{e^{i\phi}} \circ \hat{A}_\theta \circ \hat{A}_\omega. \]

- Each transformation on the right side has a nice lift upstairs to symmetries of the Hopf fibration, mapping \(S^3 \to S^3 \).
Problem 3(c): Orientation-Preserving Isometries.

Together, we find

\[U = \left(\hat{A}_\theta \circ \hat{A}_\omega \right)^{-1} \circ \hat{A}_{e^{i\phi}} \circ \hat{A}_\theta \circ \hat{A}_\omega \]

\[= \hat{A}_{-\omega} \circ \hat{A}_{-\theta} \circ \hat{A}_{e^{i\phi}} \circ \hat{A}_\theta \circ \hat{A}_\omega. \]

Each transformation on the right side has a nice lift upstairs to symmetries of the Hopf fibration, mapping \(S^3 \to S^3 \).
Problem 3(d): \(h \) is a Quotient Map.

- Recall: “For a surjective map \(f : X \rightarrow Y \) to be a quotient map, it is a sufficient condition for \(f \) to be either closed or open.”

- We have already shown \(h \) is a surjective map.

- Let \(F \in S^3 \) be closed. Since our domain \(S^3 \) is compact, \(F \) is compact.

- Since \(h \) is continuous, \(h(F) \) is compact.

- Since \(S^2 \left(\frac{1}{2} \right) \) is Hausdorff, \(h(F) \) is closed, and \(h \) is a closed map.

- Thus, \(h \) is indeed a quotient map.
Problem 3(d): \(h \) is a Quotient Map.

- Recall: “For a surjective map \(f : X \rightarrow Y \) to be a quotient map, it is a sufficient condition for \(f \) to be either closed or open.”

- We have already shown \(h \) is a surjective map.

- Let \(F \in S^3 \) be closed. Since our domain \(S^3 \) is compact, \(F \) is compact.

- Since \(h \) is continuous, \(h(F) \) is compact.

- Since \(S^2 \left(\frac{1}{2} \right) \) is Hausdorff, \(h(F) \) is closed, and \(h \) is a closed map.

- Thus, \(h \) is indeed a quotient map.
Problem 3(d): h is a Quotient Map.

- Recall: “For a surjective map $f : X \to Y$ to be a quotient map, it is a sufficient condition for f to be either closed or open.”

- We have already shown h is a surjective map.

- Let $F \in S^3$ be closed. Since our domain S^3 is compact, F is compact.

 - Since h is continuous, $h(F)$ is compact.

 - Since $S^2(\frac{1}{2})$ is Hausdorff, $h(F)$ is closed, and h is a closed map.

 - Thus, h is indeed a quotient map.
Problem 3(d): \(h \) is a Quotient Map.

- Recall: “For a surjective map \(f : X \to Y \) to be a quotient map, it is a sufficient condition for \(f \) to be either closed or open.”

- We have already shown \(h \) is a surjective map.

- Let \(F \in S^3 \) be closed. Since our domain \(S^3 \) is compact, \(F \) is compact.

- Since \(h \) is continuous, \(h(F) \) is compact.

- Since \(S^2 \left(\frac{1}{2} \right) \) is Hausdorff, \(h(F) \) is closed, and \(h \) is a closed map.

- Thus, \(h \) is indeed a quotient map.
Problem 3(d): h is a Quotient Map.

- Recall: “For a surjective map $f : X \rightarrow Y$ to be a quotient map, it is a sufficient condition for f to be either closed or open.”

- We have already shown h is a surjective map.

- Let $F \in S^3$ be closed. Since our domain S^3 is compact, F is compact.

- Since h is continuous, $h(F)$ is compact.

- Since $S^2 \left(\frac{1}{2} \right)$ is Hausdorff, $h(F)$ is closed, and h is a closed map.

- Thus, h is indeed a quotient map.
Problem 3(d): h is a Quotient Map.

- Recall: “For a surjective map $f : X \to Y$ to be a quotient map, it is a sufficient condition for f to be either closed or open.”

- We have already shown h is a surjective map.

- Let $F \in S^3$ be closed. Since our domain S^3 is compact, F is compact.

- Since h is continuous, $h(F)$ is compact.

- Since $S^2 \left(\frac{1}{2} \right)$ is Hausdorff, $h(F)$ is closed, and h is a closed map.

- Thus, h is indeed a quotient map.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

Consider the commutative diagram:

\[
\begin{array}{ccc}
S^3 & \xrightarrow{A} & S^3 \\
| & \downarrow{h} & | \\
S^2 & \xrightarrow{\hat{A}} & S^2 \\
| & \downarrow{h} & | \\
S^2 & \xrightarrow{A^{-1}} & S^2
\end{array}
\]

$A^{-1} \circ A = I$

$A^{-1} \circ \hat{A} = I$
Problem 3(e): The Map \(\hat{A} \) is a Diffeomorphism.

Consider the commutative diagram:

\[
\begin{array}{ccc}
S^3 & \xleftarrow{A} & S^3 \\
| & & | \\
\downarrow{h} & \hat{A} & \downarrow{h} \\
S^2 & \xrightarrow{\hat{A}} & S^2 \\
| & & | \\
\downarrow{A^{-1}} & \hat{A}^{-1} & \downarrow{A^{-1}} \\
S^3 & \xrightarrow{\hat{A}^{-1}} & S^3
\end{array}
\]

\(A^{-1} \circ A = I \)

\(\hat{A}^{-1} \circ \hat{A} = I \)
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.

- Since the diagram commutes,

 $$\hat{A} \circ h = h \circ A,$$

 so \hat{A} is necessarily onto.

- By construction, \hat{A} is a smooth map (in fact, linear).

- Since $\hat{A} : S^2 \left(\frac{1}{2} \right) \to S^2 \left(\frac{1}{2} \right)$ is surjective, it is also injective.

- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.

- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.
- Since the diagram commutes,
 $$\hat{A} \circ h = h \circ A,$$
 so \hat{A} is necessarily onto.
- By construction, \hat{A} is a smooth map (in fact, linear).
- Since $\hat{A} : S^2 \left(\frac{1}{2} \right) \to S^2 \left(\frac{1}{2} \right)$ is surjective, it is also injective.
- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.
- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.
- Since the diagram commutes, \[\hat{A} \circ h = h \circ A, \]
 so \hat{A} is necessarily onto.
- By construction, \hat{A} is a smooth map (in fact, linear).
- Since $\hat{A}: S^2 \left(\frac{1}{2} \right) \rightarrow S^2 \left(\frac{1}{2} \right)$ is surjective, it is also injective.
- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.
- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.

- Since the diagram commutes,

$$\hat{A} \circ h = h \circ A,$$

so \hat{A} is necessarily onto.

- By construction, \hat{A} is a smooth map (in fact, linear).

- Since $\hat{A} : S^2 \left(\frac{1}{2} \right) \to S^2 \left(\frac{1}{2} \right)$ is surjective, it is also injective.

- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.

- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.
- Since the diagram commutes,

 $$\hat{A} \circ h = h \circ A,$$

 so \hat{A} is necessarily onto.
- By construction, \hat{A} is a smooth map (in fact, linear).
- Since $\hat{A}: S^2 \left(\frac{1}{2} \right) \to S^2 \left(\frac{1}{2} \right)$ is surjective, it is also injective.
- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.
- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.
- Since the diagram commutes,
 $$\hat{A} \circ h = h \circ A,$$
 so \hat{A} is necessarily onto.
- By construction, \hat{A} is a smooth map (in fact, linear).
- Since $\hat{A} : S^2 (\frac{1}{2}) \rightarrow S^2 (\frac{1}{2})$ is surjective, it is also injective.
- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.
- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.
- Since the diagram commutes,

$$\hat{A} \circ h = h \circ A,$$

so \hat{A} is necessarily onto.
- By construction, \hat{A} is a smooth map (in fact, linear).
- Since $\hat{A}: S^2 \left(\frac{1}{2}\right) \rightarrow S^2 \left(\frac{1}{2}\right)$ is surjective, it is also injective.
- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.
- Hence, \hat{A} is a diffeomorphism.
Problem 3(e): The Map \hat{A} is a Diffeomorphism.

- We have shown that h is onto and A is an isometry, so $h \circ A$ is onto.
- Since the diagram commutes,

 $$\hat{A} \circ h = h \circ A,$$

 so \hat{A} is necessarily onto.
- By construction, \hat{A} is a smooth map (in fact, linear).
- Since $\hat{A} : S^2 \left(\frac{1}{2} \right) \to S^2 \left(\frac{1}{2} \right)$ is surjective, it is also injective.
- From our diagram, \hat{A} has an inverse, \hat{A}^{-1}, which is also smooth.
- Hence, \hat{A} is a diffeomorphism.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- As with the previous approaches, we consider the North pole

\[N = (1, 0) \in S^3 \subseteq \mathbb{C} \oplus \mathbb{C}, \]

and the north pole,

\[n = \left(0, \frac{1}{2} \right) \in S^2 \left(\frac{1}{2} \right) \subseteq \mathbb{C} \oplus \mathbb{R}. \]

- Then

\[h : N \rightarrow n. \]

- Moreover,

\[h^{-1}(n) = (e^{i\theta}, 0), \]

a circle in the first complex plane.
Problem 4: \(h: S^3 \rightarrow S^2(\frac{1}{2}) \) is a Riemannian Submersion.
Problem 4: $h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right)$ is a Riemannian Submersion.

$h^{-1} \left(0, \frac{1}{2} \right) = \left(e^{i\theta}, 0 \right)$
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

\[
h^{-1} \left(0, \frac{1}{2} \right) = (e^{i\theta}, 0)
\]
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is

 \[T_N S^3 = \text{span} \{ [N, (i, 0)], [N, (0, 1)], [N, (0, i)] \}, \]

or ignoring footpoints,

 \[T_N S^3 = \text{span} \{ (i, 0), (0, 1), (0, i) \}. \]

- Since \((i, 0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map

 \[h_* : T_N S^3 \to T_n S^2 \left(\frac{1}{2} \right). \]

- Thus, we can consider the action of \(h_* \) on \((0, 1)\) and \((0, i)\).

- The span \{\((0, 1), (0, i)\)\} is called the horizontal space.
Problem 4: \(h : S^3 \rightarrow S^2\left(\frac{1}{2}\right) \) is a Riemannian Submersion.

- The tangent space at the North pole is
 \[
 T_N S^3 = \text{span} \{[N,(i,0)],[N,(0,1)],[N,(0,i)]\},
 \]
 or ignoring footpoints,
 \[
 T_N S^3 = \text{span} \{(i,0),(0,1),(0,i)\}.
 \]

- Since \((i,0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map
 \[
 h_* : T_N S^3 \rightarrow T_n S^2\left(\frac{1}{2}\right).
 \]

- Thus, we can consider the action of \(h_* \) on \((0,1)\) and \((0,i)\).

- The span \{(0,1),(0,i)\} is called the horizontal space.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is

\[
T_NS^3 = \text{span} \{ [N, (i, 0)], [N, (0, 1)], [N, (0, i)] \},
\]

or ignoring footpoints,

\[
T_NS^3 = \text{span} \{ (i, 0), (0, 1), (0, i) \}.
\]

- Since \((i, 0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map

\[
h_* : T_NS^3 \to T_nS^2 \left(\frac{1}{2} \right).
\]

- Thus, we can consider the action of \(h_* \) on \((0, 1)\) and \((0, i)\).

- The span \{(0, 1), (0, i)\} is called the horizontal space.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is

\[
T_N S^3 = \text{span} \{ [N, (i, 0)], [N, (0, 1)], [N, (0, i)] \},
\]

or ignoring footpoints,

\[
T_N S^3 = \text{span} \{ (i, 0), (0, 1), (0, i) \}.
\]

- Since \((i, 0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map

\[
h_* : T_N S^3 \to T_n S^2 \left(\frac{1}{2} \right).
\]

- Thus, we can consider the action of \(h_* \) on \((0, 1)\) and \((0, i)\).

- The span \{\((0, 1), (0, i)\)\} is called the horizontal space.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is
 \[
 T_N S^3 = \text{span} \{ [N, (i, 0)], [N, (0, 1)], [N, (0, i)] \},
 \]
 or ignoring footpoints,
 \[
 T_N S^3 = \text{span} \{ (i, 0), (0, 1), (0, i) \}.
 \]

- Since \((i, 0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map
 \[
 h_* : T_N S^3 \to T_n S^2 \left(\frac{1}{2} \right).
 \]

- Thus, we can consider the action of \(h_* \) on \((0, 1)\) and \((0, i)\).

- The span \{\((0, 1), (0, i)\)\} is called the horizontal space.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is
 \[
 T_N S^3 = \text{span} \{ [N, (i, 0)], [N, (0, 1)], [N, (0, i)] \},
 \]
or ignoring footpoints,
 \[
 T_N S^3 = \text{span} \{ (i, 0), (0, 1), (0, i) \}.
 \]

- Since \((i, 0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map
 \[
 h_* : T_N S^3 \rightarrow T_n S^2 \left(\frac{1}{2} \right).
 \]

- Thus, we can consider the action of \(h_* \) on \((0, 1)\) and \((0, i)\).

- The span \{\((0, 1), (0, i)\)\} is called the horizontal space.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is
 \[
 T_N S^3 = \text{span} \{ [N, (i,0)], [N, (0,1)], [N, (0,i)] \},
 \]
 or ignoring footpoints,
 \[
 T_N S^3 = \text{span} \{ (i,0), (0,1), (0,i) \}.
 \]
- Since \((i,0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map
 \[
 h_* : T_N S^3 \rightarrow T_n S^2 \left(\frac{1}{2} \right).
 \]
- Thus, we can consider the action of \(h_* \) on \((0,1)\) and \((0,i)\).
- The span \{\((0,1),(0,i)\)\} is called the horizontal space.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The tangent space at the North pole is
 \[
 T_N S^3 = \text{span} \{ [N, (i, 0)], [N, (0, 1)], [N, (0, i)] \},
 \]
 or ignoring footpoints,
 \[
 T_N S^3 = \text{span} \{ (i, 0), (0, 1), (0, i) \}.
 \]
- Since \((i, 0)\) is tangent to the Hopf fiber it gets killed when we apply the differential map
 \[
 h_* : T_N S^3 \to T_n S^2 \left(\frac{1}{2} \right).
 \]
- Thus, we can consider the action of \(h_* \) on \((0, 1)\) and \((0, i)\).
- The span \{\((0, 1), (0, i)\)\} is called the horizontal space.
Problem 4: \(h: S^3 \to S^2(\frac{1}{2}) \) is a Riemannian Submersion.

- The basis vector \((0,1)\) can be realized as the derivative of a geodesic \(\gamma(t)\) passing through the footpoint, \(N\), where \(\gamma(0) = N\).

- This can be represented as

\[
\gamma(t) = (1,0) \cdot \cos t + (0,1) \cdot \sin t.
\]

- This is true, for if we take its derivative, we find

\[
\gamma'(t)\bigg|_{t=0} = (1,0) \cdot (-\sin(0)) + (0,1) \cdot \cos(0) = (0,1),
\]

and we have \(\gamma(0) = N\), while \(\gamma'(0) = (0,1)\), as needed.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The basis vector \((0,1)\) can be realized as the derivative of a geodesic \(\gamma(t) \) passing through the footpoint, \(N \), where \(\gamma(0) = N \).

- This can be represented as

\[
\gamma(t) = (1,0) \cdot \cos t + (0,1) \cdot \sin t.
\]

- This is true, for if we take its derivative, we find

\[
\gamma'(t) \bigg|_{t=0} = (1,0) \cdot (-\sin(0)) + (0,1) \cdot \cos(0)
\]

\[
= (0,1),
\]

and we have \(\gamma(0) = N \), while \(\gamma'(0) = (0,1) \), as needed.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

1. The basis vector \((0, 1)\) can be realized as the derivative of a geodesic \(\gamma(t)\) passing through the footpoint, \(N\), where \(\gamma(0) = N\).

2. This can be represented as

\[
\gamma(t) = (1, 0) \cdot \cos t + (0, 1) \cdot \sin t.
\]

3. This is true, for if we take its derivative, we find

\[
\gamma'(t)\bigg|_{t=0} = (1, 0) \cdot (-\sin(0)) + (0, 1) \cdot \cos(0)
\]

\[
= (0, 1),
\]

and we have \(\gamma(0) = N\), while \(\gamma'(0) = (0, 1)\), as needed.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The basis vector \((0, 1)\) can be realized as the derivative of a geodesic \(\gamma(t)\) passing through the footpoint, \(N\), where \(\gamma(0) = N\).

- This can be represented as

\[
\gamma(t) = (1, 0) \cdot \cos t + (0, 1) \cdot \sin t.
\]

- This is true, for if we take its derivative, we find

\[
\gamma'(t) \bigg|_{t=0} = (1, 0) \cdot (-\sin(0)) + (0, 1) \cdot \cos(0)
= (0, 1),
\]

and we have \(\gamma(0) = N\), while \(\gamma'(0) = (0, 1)\), as needed.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The basis vector \((0, 1)\) can be realized as the derivative of a geodesic \(\gamma(t)\) passing through the footpoint, \(N\), where \(\gamma(0) = N\).

- This can be represented as

\[
\gamma(t) = (1, 0) \cdot \cos t + (0, 1) \cdot \sin t.
\]

- This is true, for if we take its derivative, we find

\[
\gamma'(t) \bigg|_{t=0} = (1, 0) \cdot (-\sin(0)) + (0, 1) \cdot \cos(0) \\
= (0, 1),
\]

and we have \(\gamma(0) = N\), while \(\gamma'(0) = (0, 1)\), as needed.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- The basis vector \((0,1)\) can be realized as the derivative of a geodesic \(\gamma(t)\) passing through the footpoint, \(N\), where \(\gamma(0) = N\).

- This can be represented as
 \[
 \gamma(t) = (1,0) \cdot \cos t + (0,1) \cdot \sin t.
 \]

- This is true, for if we take its derivative, we find
 \[
 \gamma'(t) \bigg|_{t=0} = (1,0) \cdot (-\sin(0)) + (0,1) \cdot \cos(0) = (0,1),
 \]
 and we have \(\gamma(0) = N\), while \(\gamma'(0) = (0,1)\), as needed.
Problem 4: \(h: S^3 \to S^2 (\frac{1}{2}) \) is a Riemannian Submersion.

Applying the differential map \(h_* \),

\[
\begin{align*}
 h_*((0,1)) &= \left. \frac{d}{dt} h(\gamma(t)) \right|_{t=0} \\
 &= \left. \frac{d}{dt} h(\cos t, \sin t) \right|_{t=0} \\
 &= \left. \frac{d}{dt} \left(\cos t \sin t, \frac{1}{2} (\cos^2 t - \sin^2 t) \right) \right|_{t=0} \\
 &= \left. \frac{d}{dt} \left(\frac{\sin 2t}{2}, \frac{\cos 2t}{2} \right) \right|_{t=0} \\
 &= (\cos 2t, -\sin 2t) \bigg|_{t=0} \\
 &= (1,0).
\end{align*}
\]

Note that the length of the basis vector \((0,1) \in \mathbb{C} \oplus \mathbb{C}\) is preserved under the map \(h_* \).
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

In a similar manner, we can construct a geodesic

\[
\alpha(t) = (1, 0) \cdot \cos t + (0, i) \sin t \\
= (\cos t, i \sin t),
\]

such that \(\alpha(0) = N \) and \(\alpha'(0) = (0, i) \).
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

In a similar manner, we can construct a geodesic

\[
\alpha(t) = (1,0) \cdot \cos t + (0, i) \sin t \\
= (\cos t, i \sin t),
\]

such that \(\alpha(0) = N \) and \(\alpha'(0) = (0, i) \).
Problem 4: \(h : S^3 \rightarrow S^2(\frac{1}{2}) \) is a Riemannian Submersion.

In a similar manner, we can construct a geodesic

\[
\alpha(t) = (1, 0) \cdot \cos t + (0, i) \sin t \\
= (\cos t, i \sin t),
\]

such that \(\alpha(0) = N \) and \(\alpha'(0) = (0, i) \).
Problem 4: $h : S^3 \to S^2 \left(\frac{1}{2} \right)$ is a Riemannian Submersion.

Applying the differential map h_* to this second basis vector $(0, i)$,

$$h_*((0, i)) = \left. \frac{d}{dt} h(\alpha(t)) \right|_{t=0}$$

$$= \left. \frac{d}{dt} h(\cos t, i \sin t) \right|_{t=0}$$

$$= \left. \frac{d}{dt} \left(\cos t \cdot i \sin t, \frac{1}{2} \left(\cos^2 t - |i^2 \sin^2 t| \right) \right) \right|_{t=0}$$

$$= \left. \frac{d}{dt} \left(-i \cdot \frac{\sin 2t}{2}, \frac{\cos 2t}{2} \right) \right|_{t=0}$$

$$= (-i \cos 2t, -\sin 2t) \bigg|_{t=0}$$

$$= (-i, 0).$$

Length is again preserved.
Problem 4: $h : S^3 \rightarrow S^2(\frac{1}{2})$ is a Riemannian Submersion.

Moreover, h_\ast preserves inner products.

Note that since we can carry any point in S^3 to N through the isometries A_ω and A_θ, it is enough to prove h is a Riemannian submersion relative to N.

Since h_\ast preserves both inner products and lengths on the basis vectors of the horizontal space, it is an isometry, and h is a Riemannian submersion.
Problem 4: \(h : S^3 \rightarrow S^2 \left(\frac{1}{2} \right) \) is a Riemannian Submersion.

- Moreover, \(h_* \) preserves inner products.

- Note that since we can carry any point in \(S^3 \) to \(N \) through the isometries \(A_\omega \) and \(A_\theta \), it is enough to prove \(h \) is a Riemannian submersion relative to \(N \).

- Since \(h_* \) preserves both inner products and lengths on the basis vectors of the horizontal space, it is an isometry, and \(h \) is a Riemannian submersion.
Problem 4: \(h : S^3 \to S^2 \left(\frac{1}{2}\right) \) is a Riemannian Submersion.

- Moreover, \(h_* \) preserves inner products.

- Note that since we can carry any point in \(S^3 \) to \(N \) through the isometries \(A_\omega \) and \(A_\theta \), it is enough to prove \(h \) is a Riemannian submersion relative to \(N \).

- Since \(h_* \) preserves both inner products and lengths on the basis vectors of the horizontal space, it is an isometry, and \(h \) is a Riemannian submersion.
Problem 5: $S^7 \rightarrow S^4$ is Analogous to $S^3 \rightarrow S^2$.

- We considered the map $h : S^3 \rightarrow S^2$ as one from $\mathbb{C} \oplus \mathbb{C}$ to $\mathbb{C} \oplus \mathbb{R}$.

- In a similar manner, we can construct $h : S^7 \rightarrow S^4 \left(\frac{1}{2} \right)$, and consider the ambient spaces in terms of quaternions. I.e.,

$$S^7 \subset \mathbb{H} \oplus \mathbb{H} \quad \text{and} \quad S^4 \left(\frac{1}{2} \right) \subset \mathbb{H} \oplus \mathbb{R}.$$

- By approaching the spaces from a quaternion point of view, we can use the map

$$h : (a, c) \mapsto \left(ac, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right).$$

- As the map is essentially an adaptation to the quaternions, the proof that h is onto is similar to the previous complex case.
Problem 5: $S^7 \rightarrow S^4$ is Analogous to $S^3 \rightarrow S^2$.

- We considered the map $h : S^3 \rightarrow S^2$ as one from $\mathbb{C} \oplus \mathbb{C}$ to $\mathbb{C} \oplus \mathbb{R}$.

- In a similar manner, we can construct $h : S^7 \rightarrow S^4 \left(\frac{1}{2} \right)$, and consider the ambient spaces in terms of quaternions. I.e.,

$$S^7 \subset H \oplus H \quad \text{and} \quad S^4 \left(\frac{1}{2} \right) \subset H \oplus \mathbb{R}.$$

- By approaching the spaces from a quaternion point of view, we can use the map

$$h : (a, c) \mapsto \left(a\overline{c}, \frac{1}{2} (|a|^2 - |c|^2) \right).$$

- As the map is essentially an adaptation to the quaternions, the proof that h is onto is similar to the previous complex case.
Problem 5: $S^7 \rightarrow S^4$ is Analogous to $S^3 \rightarrow S^2$.

- We considered the map $h : S^3 \rightarrow S^2$ as one from $\mathbb{C} \oplus \mathbb{C}$ to $\mathbb{C} \oplus \mathbb{R}$.

- In a similar manner, we can construct $h : S^7 \rightarrow S^4 \left(\frac{1}{2} \right)$, and consider the ambient spaces in terms of quaternions. I.e.,

 \[S^7 \subset \mathbb{H} \oplus \mathbb{H} \quad \text{and} \quad S^4 \left(\frac{1}{2} \right) \subset \mathbb{H} \oplus \mathbb{R}. \]

- By approaching the spaces from a quaternion point of view, we can use the map

 \[h : (a, c) \mapsto \left(a \overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right). \]

- As the map is essentially an adaptation to the quaternions, the proof that h is onto is similar to the previous complex case.
Problem 5: $S^7 \rightarrow S^4$ is Analogous to $S^3 \rightarrow S^2$.

- We considered the map $h : S^3 \rightarrow S^2$ as one from $\mathbb{C} \oplus \mathbb{C}$ to $\mathbb{C} \oplus \mathbb{R}$.

- In a similar manner, we can construct $h : S^7 \rightarrow S^4 \left(\frac{1}{2} \right)$, and consider the ambient spaces in terms of quaternions. I.e.,

$$S^7 \subset H \oplus H \quad \text{and} \quad S^4 \left(\frac{1}{2} \right) \subset H \oplus R.$$

- By approaching the spaces from a quaternion point of view, we can use the map

$$h : (a, c) \mapsto \left(a \overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right).$$

- As the map is essentially an adaptation to the quaternions, the proof that h is onto is similar to the previous complex case.
Problem 5: $S^7 \to S^4$ is Analogous to $S^3 \to S^2$.

- We considered the map $h : S^3 \to S^2$ as one from $\mathbb{C} \oplus \mathbb{C}$ to $\mathbb{C} \oplus \mathbb{R}$.

- In a similar manner, we can construct $h : S^7 \to S^4 \left(\frac{1}{2} \right)$, and consider the ambient spaces in terms of quaternions. I.e.,

$$S^7 \subset \mathbb{H} \oplus \mathbb{H} \quad \text{and} \quad S^4 \left(\frac{1}{2} \right) \subset \mathbb{H} \oplus \mathbb{R}.$$

- By approaching the spaces from a quaternion point of view, we can use the map

$$h : (a, c) \mapsto \left(a\overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right).$$

- As the map is essentially an adaptation to the quaternions, the proof that h is onto is similar to the previous complex case.
Problem 5: $S^7 \to S^4$ is Analogous to $S^3 \to S^2$.

- We considered the map $h : S^3 \to S^2$ as one from $\mathbb{C} \oplus \mathbb{C}$ to $\mathbb{C} \oplus \mathbb{R}$.

- In a similar manner, we can construct $h : S^7 \to S^4 \left(\frac{1}{2}\right)$, and consider the ambient spaces in terms of quaternions. I.e.,

$$S^7 \subset H \oplus H \quad \text{and} \quad S^4 \left(\frac{1}{2}\right) \subset H \oplus \mathbb{R}.$$

- By approaching the spaces from a quaternion point of view, we can use the map

$$h : (a, c) \mapsto \left(a\overline{c}, \frac{1}{2} \left(|a|^2 - |c|^2 \right) \right).$$

- As the map is essentially an adaptation to the quaternions, the proof that h is onto is similar to the previous complex case.
Problem 6: S^3 Acting on S^7.

- Again similar to the complex case, we can define an S^3-action on S^7, defined by

\[H : S^3 \times S^7 \to S^7 \]

via

\[H : (\omega; (a, c)) \mapsto (a\omega, c\omega). \]

- In a manner akin to the complex case, we can show that the orbits of this cycle coincide with the fibers of h. However, we will again forgo the calculations for brevity.

(a concept overlooked prior to problem 5).
Problem 6: S^3 Acting on S^7.

- Again similar to the complex case, we can define an S^3-action on S^7, defined by

$$H : S^3 \times S^7 \to S^7$$

via

$$H : (\omega; (a, c)) \mapsto (a\omega, c\omega).$$

- In a manner akin to the complex case, we can show that the orbits of this cycle coincide with the fibers of h. However, we will again forgo the calculations for brevity.

(a concept overlooked prior to problem 5).
Problem 6: S^3 Acting on S^7.

- Again similar to the complex case, we can define an S^3-action on S^7, defined by

$$H : S^3 \times S^7 \rightarrow S^7$$

via

$$H : (\omega; (a, c)) \mapsto (a\omega, c\omega).$$

- In a manner akin to the complex case, we can show that the orbits of this cycle coincide with the fibers of h. However, we will again forgo the calculations for brevity.

(a concept overlooked prior to problem 5).
Problem 6: S^3 Acting on S^7.

Again similar to the complex case, we can define an S^3-action on S^7, defined by

$$H : S^3 \times S^7 \to S^7$$

via

$$H : (\omega; (a, c)) \mapsto (a\omega, c\omega).$$

In a manner akin to the complex case, we can show that the orbits of this cycle coincide with the fibers of h. However, we will again forgo the calculations for brevity.

(a concept overlooked prior to problem 5).
Problem 6: S^3 Acting on S^7.

- Again similar to the complex case, we can define an S^3-action on S^7, defined by

$$H : S^3 \times S^7 \rightarrow S^7$$

via

$$H : (\omega; (a, c)) \mapsto (a\overline{\omega}, c\overline{\omega}).$$

- In a manner akin to the complex case, we can show that the orbits of this cycle coincide with the fibers of h. However, we will again forgo the calculations for brevity.

(a concept overlooked prior to problem 5).
Problem 6: S^3 Acting on S^7.

- Again similar to the complex case, we can define an S^3-action on S^7, defined by

$$H : S^3 \times S^7 \to S^7$$

via

$$H : (\omega; (a, c)) \mapsto (a\omega, c\omega).$$

- In a manner akin to the complex case, we can show that the orbits of this cycle coincide with the fibers of h. However, we will again forgo the calculations for brevity.

(a concept overlooked prior to problem 5).
Problem 7(a): Upstairs and Downstairs, Part Deux.

- Recall that $\text{Sp}(2)$ is the group of 2×2 symplectic matrices with quaternion entries. That is, it is the group of 2×2 matrices with quaternion entries where

$$AA^* = A^*A = id,$$

where A^* is the conjugate transpose of A.

- Here, we find there is a natural action of $\text{Sp}(2)$ on \mathbb{H}^2 by

$$\text{Sp}(2) \times \mathbb{H}^2 \to \mathbb{H}^2,$$

$$(\begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix}, \begin{bmatrix} a \\ c \end{bmatrix}) \mapsto \begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix}.$$
Problem 7(a): Upstairs and Downstairs, Part Deux.

- Recall that \(\text{Sp}(2) \) is the group of \(2 \times 2 \) simplectic matrices with quaternion entries. That is, it is the group of \(2 \times 2 \) matrices with quaternion entries where

\[
\begin{align*}
AA^* &= A^* A = id, \\
\end{align*}
\]

where \(A^* \) is the conjugate transpose of \(A \).

- Here, we find there is a natural action of \(\text{Sp}(2) \) on \(\mathbb{H}^2 \) by

\[
\text{Sp}(2) \times \mathbb{H}^2 \rightarrow \mathbb{H}^2,
\]

\[
\left(\begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix}, \begin{bmatrix} a \\ c \end{bmatrix} \right) \mapsto \begin{bmatrix} \alpha & \beta \\ \delta & \gamma \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix}.
\]
Problem 7(a): Upstairs and Downstairs, Part Deux.

For any $A \in \text{Sp}(2)$, we can also show that there is an induced map \hat{A} such that the diagram:

\[
\begin{array}{ccc}
S^7 & \xrightarrow{A} & S^7 \\
\downarrow{h} & & \downarrow{h} \\
h(S^7) & \xrightarrow{\hat{A}} & h(S^7)
\end{array}
\]

commutes.
Problem 7(b): Upstairs and Downstairs, Part Deux.

Moreover, the analogous rotation

\[A_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \quad \theta \in [0, 2\pi) \]

induces a map downstairs

\[\hat{A}_\theta : \mathbb{H} \oplus \mathbb{R} \to \mathbb{H} \oplus \mathbb{R} \]

which causes rotation in the plane formed by the first real coordinate of \(\mathbb{H} \) and the last \(\mathbb{R} \) by an angle of exactly \(2\theta \), fixing the complex entries in \(\mathbb{H} \).

Similarly a map

\[A_\omega = \begin{bmatrix} \omega & 0 \\ 0 & 1 \end{bmatrix}, \quad \omega \in \mathbb{H}, \ |\omega| = 1 \]

induces a map \(\hat{A}_\omega \) which produces rotation in \(\mathbb{H} \oplus \mathbb{R} \) that fixes the last \(\mathbb{R} \)-entry.
Problem 7(b): \(h : S^7 \to S^4 \left(\frac{1}{2} \right) \) is Onto.

- Since the rotations \(\hat{A}_\omega \) and \(\hat{A}_\theta \) in \(S^4 \left(\frac{1}{2} \right) \) can isometrically transfer any point in \(S^4 \left(\frac{1}{2} \right) \) to the point \((0, \frac{1}{2}) \), it suffices to show surjectivity at \((0, \frac{1}{2}) \).

- However, the image of the North pole in \(S^7 \), \((1,0)\), is the point \((0, \frac{1}{2}) \in S^4 \left(\frac{1}{2} \right) \subseteq \mathbb{H} \oplus \mathbb{R} \).

- Thus, \(h \) is surjective.
Problem 7(b): \(h : S^7 \to S^4 \left(\frac{1}{2} \right) \) is Onto.

- Since the rotations \(\hat{A}_\omega \) and \(\hat{A}_\theta \) in \(S^4 \left(\frac{1}{2} \right) \) can isometrically transfer any point in \(S^4 \left(\frac{1}{2} \right) \) to the point \((0, \frac{1}{2}) \), it suffices to show surjectivity at \((0, \frac{1}{2}) \).

- However, the image of the North pole in \(S^7 \), \((1,0) \), is the point \((0, \frac{1}{2}) \in S^4 \left(\frac{1}{2} \right) \subseteq \mathbb{H} \oplus \mathbb{R} \).

- Thus, \(h \) is surjective.
Problem 7(b): $h : S^7 \rightarrow S^4 \left(\frac{1}{2} \right)$ is Onto.

- Since the rotations \hat{A}_ω and \hat{A}_θ in $S^4 \left(\frac{1}{2} \right)$ can isometrically transfer any point in $S^4 \left(\frac{1}{2} \right)$ to the point $(0, \frac{1}{2})$, it suffices to show surjectivity at $(0, \frac{1}{2})$.

- However, the image of the North pole in S^7, $(1,0)$, is the point $(0, \frac{1}{2}) \in S^4 \left(\frac{1}{2} \right) \subseteq \mathbb{H} \oplus \mathbb{R}$.

- Thus, h is surjective.
Consider another group of maps G of the form

$$g_{\omega_1, \omega_2} : H \oplus H \to H \oplus H$$

via

$$(a, c) \mapsto (\omega_1 a, \omega_2 c).$$

This induces the map $\hat{g}_{\omega_1, \omega_2} : H \oplus \mathbb{R} \to H \oplus \mathbb{R}$ via

$$\hat{g}_{\omega_1, \omega_2}(a, c) = \left(\omega_1 \overline{ac\omega_2}, \frac{1}{2}|a|^2 - |c|^2 \right).$$

Note that this fixes the last coordinate, acting only on the quaternion coordinate of $S^4 \left(\frac{1}{2} \right)$.
Consider another group of maps G of the form

$$g_{\omega_1,\omega_2}: \mathbb{H} \oplus \mathbb{H} \to \mathbb{H} \oplus \mathbb{H}$$

via

$$(a, c) \mapsto (\omega_1 a, \omega_2 c).$$

This induces the map $\hat{g}_{\omega_1,\omega_2}: \mathbb{H} \oplus \mathbb{R} \to \mathbb{H} \oplus \mathbb{R}$ via

$$\hat{g}_{\omega_1,\omega_2}(a, c) = \left(\omega_1 \overline{c\omega_2}, \frac{1}{2} |a|^2 - |c|^2 \right).$$

Note that this fixes the last coordinate, acting only on the quaternion coordinate of $S^4 \left(\frac{1}{2} \right)$.

P. Rajan, F. Rebro, A. Yassine
Geometry of the Hopf Fibration
Problem 7(c): Orientation-Preserving Isometries.

- Consider another group of maps G of the form

$$g_{\omega_1,\omega_2} : \mathbb{H} \oplus \mathbb{H} \to \mathbb{H} \oplus \mathbb{H}$$

via

$$(a, c) \mapsto (\omega_1 a, \omega_2 c).$$

- This induces the map $\hat{g}_{\omega_1,\omega_2} : \mathbb{H} \oplus \mathbb{R} \to \mathbb{H} \oplus \mathbb{R}$ via

$$\hat{g}_{\omega_1,\omega_2}(a, c) = \left(\omega_1 a \overline{c} \omega_2, \frac{1}{2} |a|^2 - |c|^2 \right).$$

- Note that this fixes the last coordinate, acting only on the quaternion coordinate of $S^4 \left(\frac{1}{2} \right)$.
Problem 7(c): Orientation-Preserving Isometries.

Consider another group of maps G of the form

$$g_{\omega_1, \omega_2} : H \oplus H \to H \oplus H$$

via

$$(a, c) \mapsto (\omega_1 a, \omega_2 c).$$

This induces the map $\hat{g}_{\omega_1, \omega_2} : H \oplus \mathbb{R} \to H \oplus \mathbb{R}$ via

$$\hat{g}_{\omega_1, \omega_2}(a, c) = \left(\omega_1 a \overline{\omega_2}, \frac{1}{2} |a|^2 - |c|^2 \right).$$

Note that this fixes the last coordinate, acting only on the quaternion coordinate of $S^4 \left(\frac{1}{2} \right)$.
Consider another group of maps G of the form

$$g_{\omega_1,\omega_2} : \mathbb{H} \oplus \mathbb{H} \to \mathbb{H} \oplus \mathbb{H}$$

via

$$(a, c) \mapsto (\omega_1 a, \omega_2 c).$$

This induces the map $\hat{g}_{\omega_1,\omega_2} : \mathbb{H} \oplus \mathbb{R} \to \mathbb{H} \oplus \mathbb{R}$ via

$$\hat{g}_{\omega_1,\omega_2}(a, c) = \left(\omega_1 a\overline{\omega_2}, \frac{1}{2}|a|^2 - |c|^2\right).$$

Note that this fixes the last coordinate, acting only on the quaternion coordinate of $S^4 \left(\frac{1}{2}\right)$.
Problem 7(c): Orientation-Preserving Isometries.

- Any orientation-preserving isometry $T \in \text{SO}(5)$ will have one fixed line, since it will have 1 as an eigenvalue.

- Hence, we can view such a transformation as a rotation being realised by an element of $\text{SO}(4)$ rotating about a vector v.

- We can send v to $(0, \frac{1}{2}) \in S^4 \left(\frac{1}{2} \right)$ utilizing a composition U_p of some \hat{A}_ω and \hat{A}_θ from the circle subgroups.

- This allows us to express such a T as

$$T = U_v^{-1} \circ \hat{g}_{\omega_1, \omega_2} \circ U_v,$$

where each transformation on the right has a nice lift upstairs, so T has a corresponding lift.
Problem 7(c): Orientation-Preserving Isometries.

- Any orientation-preserving isometry $T \in \text{SO}(5)$ will have one fixed line, since it will have 1 as an eigenvalue.

- Hence, we can view such a transformation as a rotation being realised by an element of $\text{SO}(4)$ rotating about a vector ν.

- We can send ν to $(0, \frac{1}{2}) \in S^4 \left(\frac{1}{2} \right)$ utilizing a composition U_p of some \hat{A}_ω and \hat{A}_θ from the circle subgroups.

- This allows us to express such a T as

$$T = U_v^{-1} \circ \hat{g}_{\omega_1, \omega_2} \circ U_v,$$

where each transformation on the right has a nice lift upstairs, so T has a corresponding lift.
Problem 7(c): Orientation-Preserving Isometries.

- Any orientation-preserving isometry $T \in \text{SO}(5)$ will have one fixed line, since it will have 1 as an eigenvalue.

- Hence, we can view such a transformation as a rotation being realised by an element of $\text{SO}(4)$ rotating about a vector ν.

- We can send ν to $(0, \frac{1}{2}) \in S^4 \left(\frac{1}{2}\right)$ utilizing a composition U_p of some \hat{A}_ω and \hat{A}_θ from the circle subgroups.

- This allows us to express such a T as

$$T = U_v^{-1} \circ \hat{g}_{\omega_1, \omega_2} \circ U_v,$$

where each transformation on the right has a nice lift upstairs, so T has a corresponding lift.
Problem 7(c): Orientation-Preserving Isometries.

- Any orientation-preserving isometry $T \in \text{SO}(5)$ will have one fixed line, since it will have 1 as an eigenvalue.

- Hence, we can view such a transformation as a rotation being realised by an element of $\text{SO}(4)$ rotating about a vector v.

- We can send v to $(0, \frac{1}{2}) \in S^4 (\frac{1}{2})$ utilizing a composition U_p of some \hat{A}_ω and \hat{A}_θ from the circle subgroups.

- This allows us to express such a T as

$$T = U_v^{-1} \circ \hat{g}_{\omega_1, \omega_2} \circ U_v,$$

where each transformation on the right has a nice lift upstairs, so T has a corresponding lift.
Note: The Group of Symmetries Σ.

- Since $\text{Sp}(2) = \text{Gl}(2, \mathbb{H}) \cap \text{O}(8)$, every element of the subgroup $\text{Sp}(2) < \text{Gl}(2, \mathbb{H})$ is \mathbb{H}-linear.
- In the last proof, the group G of symmetries of the form g_{ω_1, ω_2} were not a subgroup of $\text{Sp}(2)$, as these maps are not \mathbb{H}-linear (the quaternionic multiplication is not commutative).
- For example, consider right multiplication defined as

$$R_v(u_1, u_2) = (u_1 v, u_2 v).$$

Then

$$R_v[(u_1, u_2)w] = (u_1 wv, u_2 wv)$$

but

$$[R_v(u_1, u_2)]w = (u_1 vw, u_2 vw).$$
Note: The Group of Symmetries Σ.

- Since $\text{Sp}(2) = \text{Gl}(2, \mathbb{H}) \cap \text{O}(8)$, every element of the subgroup $\text{Sp}(2) \leq \text{Gl}(2, \mathbb{H})$ is \mathbb{H}-linear.

- In the last proof, the group G of symmetries of the form g_{ω_1,ω_2} were not a subgroup of $\text{Sp}(2)$, as these maps are not \mathbb{H}-linear (the quaternionic multiplication is not commutative).

- For example, consider right multiplication defined as

$$R_v(u_1, u_2) = (u_1v, u_2v).$$

Then

$$R_v[(u_1, u_2)w] = (u_1vw, u_2vw)$$

but

$$[R_v(u_1, u_2)]w = (u_1vw, u_2vw).$$
Note: The Group of Symmetries Σ.

- Since $\text{Sp}(2) = \text{Gl}(2, \mathbb{H}) \cap \text{O}(8)$, every element of the subgroup $\text{Sp}(2) < \text{Gl}(2, \mathbb{H})$ is \mathbb{H}-linear.

- In the last proof, the group G of symmetries of the form g_{ω_1, ω_2} were not a subgroup of $\text{Sp}(2)$, as these maps are not \mathbb{H}-linear (the quaternionic multiplication is not commutative).

- For example, consider right multiplication defined as

$$R_v (u_1, u_2) = (u_1 v, u_2 v).$$

Then

$$R_v [(u_1, u_2) w] = (u_1 w v, u_2 w v)$$

but

$$[R_v (u_1, u_2)] w = (u_1 v w, u_2 v w).$$
Note: The Group of Symmetries Σ.

- Since $\text{Sp}(2) = \text{Gl}(2, \mathbb{H}) \cap \text{O}(8)$, every element of the subgroup $\text{Sp}(2) < \text{Gl}(2, \mathbb{H})$ is \mathbb{H}-linear.

- In the last proof, the group G of symmetries of the form g_{ω_1, ω_2} were not a subgroup of $\text{Sp}(2)$, as these maps are not \mathbb{H}-linear (the quaternionic multiplication is not commutative).

- For example, consider right multiplication defined as

$$R_v(u_1, u_2) = (u_1 v, u_2 v).$$

Then

$$R_v [(u_1, u_2) w] = (u_1 wv, u_2 wv)$$

but

$$[R_v (u_1, u_2)] w = (u_1 vw, u_2 vw).$$
Note: The Group of Symmetries Σ.

- Since $\text{Sp}(2) = \text{Gl}(2, \mathbb{H}) \cap \text{O}(8)$, every element of the subgroup $\text{Sp}(2) < \text{Gl}(2, \mathbb{H})$ is \mathbb{H}-linear.

- In the last proof, the group G of symmetries of the form g_{ω_1, ω_2} were not a subgroup of $\text{Sp}(2)$, as these maps are not \mathbb{H}-linear (the quaternionic multiplication is not commutative).

- For example, consider right multiplication defined as

\[R_v(u_1, u_2) = (u_1 v, u_2 v). \]

Then

\[R_v [(u_1, u_2) w] = (u_1 wv, u_2 wv) \]

but

\[[R_v (u_1, u_2)] w = (u_1 vw, u_2 vw). \]
Note: The Group of Symmetries Σ.

- Starting with a downstairs map, the group Σ should be more than only $\text{Sp}(2)$.

- Note that $\text{Sp}(2)$ acts on the left, while S^3 (the quaternionic multiplication) acts on the right.

- Moreover, these two actions commute.

- These actions also overlap, as they both contain multiplication by -1.

- Hence they combine to give an action of $\text{Sp}(2) \times S^3/\sim$ on S^7, where \sim is the two element subgroup consisting of the identity and the antipodal map.

- We can prove there are no further symmetries, but will not do so now.
Note: The Group of Symmetries Σ.

- Starting with a downstairs map, the group Σ should be more than only $\text{Sp}(2)$.

- Note that $\text{Sp}(2)$ acts on the left, while S^3 (the quaternionic multiplication) acts on the right.

- Moreover, these two actions commute.

- These actions also overlap, as they both contain multiplication by -1.

- Hence they combine to give an action of $\text{Sp}(2) \times S^3/\sim$ on S^7, where \sim is the two element subgroup consisting of the identity and the antipodal map.

- We can prove there are no further symmetries, but will not do so now.
Note: The Group of Symmetries Σ.

- Starting with a downstairs map, the group Σ should be more than only $\text{Sp}(2)$.
- Note that $\text{Sp}(2)$ acts on the left, while S^3 (the quaternionic multiplication) acts on the right.
- Moreover, these two actions commute.
- These actions also overlap, as they both contain multiplication by -1.
- Hence they combine to give an action of $\text{Sp}(2) \times S^3 / \sim$ on S^7, where \sim is the two element subgroup consisting of the identity and the antipodal map.
- We can prove there are no further symmetries, but will not do so now.
Note: The Group of Symmetries Σ.

- Starting with a downstairs map, the group Σ should be more than only $\text{Sp}(2)$.

- Note that $\text{Sp}(2)$ acts on the left, while S^3 (the quaternionic multiplication) acts on the right.

- Moreover, these two actions commute.

- These actions also overlap, as they both contain multiplication by -1.

- Hence they combine to give an action of $\text{Sp}(2) \times S^3 / \sim$ on S^7, where \sim is the two element subgroup consisting of the identity and the antipodal map.

- We can prove there are no further symmetries, but will not do so now.
Note: The Group of Symmetries Σ.

- Starting with a downstairs map, the group Σ should be more than only $\text{Sp}(2)$.
- Note that $\text{Sp}(2)$ acts on the left, while S^3 (the quaternionic multiplication) acts on the right.
- Moreover, these two actions commute.
- These actions also overlap, as they both contain multiplication by -1.
- Hence they combine to give an action of $\text{Sp}(2) \times S^3/\sim$ on S^7, where \sim is the two element subgroup consisting of the identity and the antipodal map.
- We can prove there are no further symmetries, but will not do so now.
Note: The Group of Symmetries Σ.

- Starting with a downstairs map, the group Σ should be more than only $\text{Sp}(2)$.

- Note that $\text{Sp}(2)$ acts on the left, while S^3 (the quaternionic multiplication) acts on the right.

- Moreover, these two actions commute.

- These actions also overlap, as they both contain multiplication by -1.

- Hence they combine to give an action of $\text{Sp}(2) \times S^3 / \sim$ on S^7, where \sim is the two element subgroup consisting of the identity and the antipodal map.

- We can prove there are no further symmetries, but will not do so now.