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Determination of the differentiably simple 
rings with a minimal ideal* 

By RICHARD E. BLOCK 

1. In.troduc tionl. 

A central result in ring theory is the Wedderburn-Artin theorem on sim- 
ple rings: a simple associative ring with DCC on left ideals is a total matrix 
ring A., over a division ring A\. In this paper we consider an analogue of this 
theorem in which ideals are replaced by differential ideals, these being ideals 
invariant under all derivations of the ring, and left ideals are replaced by 
ideals. The main result is a complete determination of the differentiably 
simple rings with a minimal ideal, in terms of the simple rings. This result 
(the precise statement will be given shortly) is new even for finite-dimensional 
associative algebras with a unit. However, the result holds also for com- 
pletely arbitrary rings, not necessarily associative and not necessarily having 
a unit element (just differentiably simple with a minimal ideal). In the case 
of Lie algebras the theorem proves a thirty-year-old conjecture of Zassenhaus. 
In fact the result leads to the solution of important problems on two very dif- 
ferent classes of finite-dimensional non-associative algebras, namely, semi- 
simple Lie algebras (of characteristic p) and simple flexible (but not anti- 
commutative) power-associative algebras. 

We now give some definitions and notation. If A is a ring and if D is a set 
of derivations of A (additive mappings d of A into A such that d(ab) = 
(da)b + a(db) for all a, b in A) then by a D-ideal of A is meant an ideal of A 
invariant under D. The ring is called D-simple (d-simple if D consists of a 
single derivation d) if A2 # 0 and if A has no proper D-ideals. Also A is 
called differentiably simple if it is D-simple for some set of derivations D of 
A, and hence for the set of all derivations of A. The same definitions are 
used for algebras over a ring K, the derivations then being assumed to be K- 
linear. Note that when we use the word ring or algebra we do not in general 
assume, unless stated, that the ring or algebra is associative or has a unit 
element; however, when we speak of an algebra over a ring, say over K, we 
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always assume that K is associative with a unit element acting unitally on 
the algebra. 

Jacobson noted (at least in a special case, see [16]) the following class of 
examples of differentiably simple rings A which are not simple: A is the 
group ring SG where S is a simple ring of prime characteristic p and G # 1 
is a finite elementary abelian p-group (so that G is a direct product of say n 
copies (n > 1) of the cyclic group of order p). If S is an algebra over K then 
SG is also an algebra over K. Since the ring or algebra SG depends (up to 
isomorphism) only on S and n, we introduce the notation S[,,] for it. We only 
use this notation when S is simple of prime characteristic. We also let 
S[,] denote S itself. If S is an algebra over K (so K= Z or ZP in the 
ring case) then S[n] may also be written as S($? Bf,p(K) where Bn,P(K) 
denotes the (commutative associative with unit) truncated polynomial algebra 

. *I, X]/(XP, *. *, XP) (p the characteristic of S). Often one is inter- 
ested in the case in which K is a field of characteristic p, when Bn,p(K) is 
usually just written B,(K). Note that S[n] is associative or Lie etc. accord- 
ing as S is. 

We now state the most important result of the paper. 

MAIN THEOREM. If A is a differentiably simple ring (or K-algebra) 
with a minimal ideal, then either A is simple or there is a simple ring (or 
K-algebra) S of prime characteristic and a positive integer n such that 
A = S[n]. 

Conversely it is easy to see (and is a special case of results given below) 
that each S[n] is differentiably simple and has a minimal ideal, in fact a unique 
minimal ideal. The assumption that A has a minimal ideal cannot be removed, 
as is shown for example by polynomial and power series rings over a field of 
characteristic 0. 

Posner [11] noted that any differentiably simple ring may be regarded as 
an algebra over a field (its differential centroid) and so has a characteristic. 
Three special cases of the theorem above were known. At characteristic 0, 
where the situation is comparatively uncomplicated, these were due to Posner 
[11] (the associative case) and Sagle and Winter [15] (the case of finite-di- 
mensional algebras). In the much more complicated characteristic p case, 
Harper [6] proved the result for finite-dimensional commutative associative 
algebras over an algebraically closed field F (the result then being A - RJF)), 
which proved a conjecture of Albert [3]. In the case of finite-dimensional 
Lie algebras of characteristic p the problem was also studied by Zassenhaus 
[17] and Seligman [16]. Zassenhaus [17, p. 80] conjectured the result in this 
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case in what we shall show in ?6 is an equivalent form. 
The above result on the non-simple differentiably simple rings is as men- 

tioned analogous to the Wedderburn-Artin theorem. One aspect of that 
analogy is that the role of the division rings in that theorem is played here 
by simple rings, and in the associative case division rings are precisely analo- 
gous to simple rings in that they may be characterized as the non-trivial 
rings with no left ideals. Most of the proof of the Main Theorem (all of it 
in the characteristic 0 or finite-dimensional associative cases) is valid for a D- 
simple ring A (with minimal ideal) when each operator d in D satisfies a re- 
quirement weaker than that of being a derivation, namely d is additive and 
[d, t] e T(A) for each t in T(A) where T(A) denotes the ring generated by all 
right and left multiplications by elements of A. We call such an operator d 
a quasi-derivation. 

The proof of the Main Theorem occupies ?2-?6. The following is an out- 
line of this proof. A key fact proved in ?2 is that A, as a module for its 
multiplication algebra, has a composition series with isomorphic factors. Also 
A has a unique maximal ideal N. In ?3 it is shown that the centroid C of A 
is also differentiably simple with a minimal ideal, and that if C contains a sub- 
field E such that A/N is central over E and if A (as an E algebra) contains a 
subalgebra S -A/N with S + N = A then A S 0 EC; moreover it is es- 
sentially shown that such an S exists if A is d-simple for some derivation d. 
A proof of the commutative associative case is given in ?4, thus determining 
C. In ?5 the d used to construct S is shown to exist by proving Theorem 
5.2: if a ring A with a minimal ideal is D-simple where D is a set of (quasi)- 
derivations closed under addition, commutation and left multiplication by 
all elements of the centroid then there is a d in D such that A is d-simple. 
(As a very special case, any differentiably simple ring A with minimal ideal 
is d-simple for some derivation d; when A = Bn(F) this gives a result of 
Albert [3]). In ?6 the required field E is constructed, to complete the proof. 

In ?7 we shall determine the derivation algebra der S[i] of S[o] in terms 
of der S, and give a condition on a set D of derivations of S[,f] for S[,,] to be 
D-simple. 

In ?8 we shall consider differentiably semisimple rings and give an ana- 
logue of the following Wedderburn-Artin theorem: a semisimple associative 
ring with DCC on left ideals is a direct sum of simple rings. If D is a set of 
(quasi)-derivations of a ring A and if I is an ideal of A let ID denote the 
(unique) largest D-ideal of A contained in I. We shall prove in Theorem 8.2 
that if A has DCC on ideals and if A/I is a direct sum of simple rings then 
A/IL) is a direct sum of rings which are D-simple (or more precisely simple 
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with respect to the set of (quasi)-derivations induced on them by D). If A 
is associative and R is the (Jacobson) radical of A, then we say that A is D- 
semisimple if RD = 0. As a corollary, if A is associative and D-semisimmple 
with DCC on ideals and if AIR has DCC on left ideals, then A is a direct 
sum of D-simple rings (and so is known, in terms of division rings). A simi- 
lar result holds for alternative rings and a large class of finite-dimensional 
power-associative rings. We shall also show that this gives a new proof and 
extension of the theorem of Oehmke [101 that semisimple flexible strictly 
power-associative algebras are direct sums of simple algebras with a unit. 
The author has announced elsewhere [41 the determination, by means of the 
Main Theorem, of the symmetrized algebra A+ for the simple flexible algebras 
in the finite-dimensional case. At the end of ?8 we shall state the generali- 
zation of this result to the case of simple flexible rings for which A+ has a 
minimal ideal. 

For (finite-dimensional) Lie algebras of prime characteristic it is not true 
that D-semisimple algebras are direct sums of D-simple algebras since it is 
not even true for semisimple algebras. However in a semisim-ple Lie algebra 
L every minimal ideal I is (adL)-simple. This is the basis for the application 
in ?9 of the Main Theorem to obtain a structure theorem for semisimple Lie 
algebras. The author hopes that ideas connected with the Main Theorem 
will also prove useful in the determination of the simple Lie algebras. 

2. Chains of ideals 

If A is an algebra over a ring K, we denote by T = T(A) the multipli- 
cation algebra of A, i.e., the (associative) subalgebra of HomK(A, A) (the 
algebra of all K-linear additive mappings of A into A) generated by 
{r,, lx i x e A} where rx and l1 are the right and left multiplications y v-i yx, 
y s-- xy, respectively, of A (we do not assume that 1A e T (1A the identity 
operator)). Also we let C = C(A) denote the centroid of A, i.e., the centralizer 
of T in HomK(A, A). If A2 = A then C is commutative (and associative with 
1). If D is a set of derivations of A, the D-centroid of A (differential 
centroid if D -der A (the derivation algebra)) is defined to be the centralizer 
of D in C. If A is D-simple then the D-centroid is a field; the proof is the 
same as the usual one for the centroid of a simple algebra. We also note that 
if D is a set of derivations of an algebra A over K then A is D-simple if and 
only if A is D-simple as a ring, again by the usual proof for the case of ordi- 
nary simplicity. However for a suitable K there exist K-algebras which are 
differentiably simple as a ring but not as a K-algebra, as we shall see in ?7 
(we require that derivations of a K-algebra be K-linear). In a D-simple K- 
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algebra A the set {x e A I T(A)x = 0} is a D-ideal and hence is 0. In particular 
a minimal ideal of A is an irreducible T(A)-module. It follows that a minimal 
ideal of A as a K-algebra is also a minimal ideal of A as a ring. Conversely 
if A is both a D-simple ring and a K-algebra then a minimal ideal of A as a 
ring is also a (minimal) ideal of A as a K-algebra. 

If d is a derivation of the algebra A then [d, rx] (= dr, - rxd) = rdx and 
[d, lxj = ldx and hence [d, T] c T. We call a quasi-derivation of A any ele- 
ment d of HomK(A, A) such that [d, T] c T. Thus the set qder A of quasi- 
derivations of A forms the Lie normalizer of T in HomK(A, A). A quasi- 
derivation for A as an algebra is also a quasi-derivation for A regarded as a 
ring since T is the same set for A regarded as an algebra or as a ring. The 
following are examples of quasi-derivations which are not in general deri- 
vations. 

( 1 ) If A is associative and I is an ideal, then (rx I I) e qder I for all x 
in A. 

( 2 ) If c e C(A) and d e der A, then d + c e qder A and dc e qder A (while 
cd e der A). The above definitions and facts (about the D-centroid etc.) go 
over for quasi-derivations as well. 

LEMMA 2.1. Let H be an associative algebra over a ring K, let M be an 
H-module with a minimal submodule M1, and let D be a subset of HomK(M, 
M) such that [D, HM] C H, If M2, * * *, Mq (for some q > 1) are submodules 
of Msuch that M1cM2c *** cMq and M,+1/M, -11M for i = 1, ..., q -1, 
and if d e D such that dMq L Mq, then there is a submodule Mq?,, with 
Mq c Mqi, and an index j, 1 < j < q, such that dMj_1 c Mq (MO = 0), 
dM1j c- Mq+i, and the mapping m + Mj_1 I- dm + Mq (m e Mj) is an isomor- 
phism a of Mj/Mj-1 onto Mq+l/Mq. In particular Mq+,/Mq Ml. 

PROOF. If N is a submodule of M then the mapping n v- dn + N of N 
into M/N is a homomorphism since dhn + N = hdn + [d, hM]n + N(h C H). 
Let j be the largest index (1 < j < q) such that dMyi c Mq, take N = Mq, 
and consider the restriction to Mj of the above homomorphism. Let the 
image be Mq+i/N; this defines Mq+i. The kernel is Mj_1 since M1 is minimal 
and Mj/Mj-1 _ Ml. This gives the required isomorphism of Mj/Mj-1 onto 
Mq+i/Mq, and the lemma's proof is complete. 

Our first applications of this lemma will be with M = A (an algebra over 
K), D a set of quasi-derivations of A, and H= T(A), so that submodules are 
the same as ideals. By a composition series of a ring or algebra, say of A, we 
shall mean (unless otherwise stated) a composition series for A as a T(A)- 
module, so that the terms of the series are ideals of A. 
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LEMMA 2.2. Suppose that A is a quasi-differentiably simple algebra 
with a minimal ideal M1. Then A has a composition series and a unique 
maximal ideal N. Moreover N is nilpotent, A/N is simple, A2 = A, and 
every composition factor is isomorphic to M1 as a T(A)-module. 

PROOF. Suppose that A does not have a composition series. Let d,. d... 

be a (possibly empty) sequence of not necessarily distinct quasi-derivations of 
A. Let i1 be the first index (if any) such that di1M, X M1 and use di1 to define 
an ideal M2 as in Lemma 2.1. If M2, * * *, Mr have already been constructed by 
Lemma 2.1 using di1, * * *, dir-1 where i1 : ... < ir-1 and dir-i . . . d2d1Mj c Mr 
let s = ir be the lowest index (if any) after it such that d8Mr .7 Mr. Then 
Lemma 2.1 gives Mr,,. If dMr X Mr,, continue using d, until Mr-, .. * , Mr+, 

have been obtained such that dsMr C Mr+fu Then ir+fuf_ = s and d. * d2d1M1 c 

Mr+u. Proceeding until the indices have been exhausted, we obtain M1, ... * *, 
with d. *. dM1 c M,. Then Mq # A since we are supposing that there is 
no composition series, and there is a quasi-derivation d such that dMq V Mq. 
Applying Lemma 2.1 once more we get an Mq+i. If m e M1 and x = do . * * d1m 
then x e Mq and hence xM1 = M1x = 0 since Mq+I/Mq and M1 are T-isomorphic. 
But the subspace of A spanned by all do . * * d1m(dn e qder A, m e M1, n ? O0 
is closed under T and hence is A itself. Therefore AM1 = M1A = 0. But 
{a e A aA = Aa = O} is a quasi-differential ideal and hence A2 = 0, a 
contradiction. Therefore A has a composition series, in fact has one 
0 ci M1 ci * * = A such that M-?1/M -M1 as T-modules for i = 
1,.*. *,lI- 1. 

Let N= M1_. Then N is maximal. Since A2 is a quasi-differential ideal 
(because we do not use 1A in generating T), A2 = A and A/N is simple. Also 
NM,+1 c Mi and M,+1N c M, for all i since NA C N and AN c N. There- 
fore every product of at least 21-1 elements of N, associated in any manner, 
is zero. If N1 # N is a maximal ideal then N + N1 = A and A/N1 N/N f N, 

is simple and nilpotent, a contradiction. Hence N is unique. This completes 
the proof of the lemma. 

3. The centroid and a tensor factorization 

If A is an algebra, d e qder A and c E C(A) then [d, c] e C(A) since if 
t e T(A) then [[d, c], t] = [[d, t], c] + [d, [c, tII = 0 by the Jacobi identity for 
commutators. It follows that if d e qder A then the mapping co-o [d, c](c e C(A)) 
is a derivation of C(A). We shall denote this derivation by d*. 

LEMMA 3.1. Let A be a quasi-differentiably simple algebra over K. If 
A has a minimal ideal M1 and if 0 = M ,CiM1C * CiMl1 = Nc( M = A 
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is a composition series of A constructed as in Lemma 2.1 then there are 
monomorphisms 1,, * * , a, of C(A/N) into C(A), as K-modules, such that the 
following holds for i = 1, * * *, 1. If 0 # v E C(A/N) then oi(y)A + Mi-1 = Mi, 
i()N (-- Mi-,, and if 8 is any T(A)-isomorphism of A/N onto Mi/Mi-1 then 

there exists a fi in C(A/N) such that the mapping of A/N into Mi/Mi-, 
induced by ai(RS) is 8. 

PROOF. By Lemma 2.1 there is a T-module isomorphism p of A/N onto 
M1. Write r= C(A/N) and define a, by v1(y) =eipwryw (y e f) where wi de- 
notes the natural projection of A onto A/Mi and pi is the injection of Mi into 
A. The factors of r1(y) are T-homomorphisms and 1(y): A > A, so that a, 
maps F into C(A). If 0 # Y E r then y is onto and o1(7)A = M1, and hence a, 
is one-one. If 0 is a T-isomorphism of A/N onto M1 then p-10 c F, (p-10) - 

p1Ozcl-,, and p-10 is the required A. 
In the construction of M2, * * *, Ml by Lemma 2.1, let di denote the quasi- 

derivation used to go from Mi to Mi+1, with ji the corresponding index and 6t 
the corresponding T-isomorphism of Mj,/Mj,_1 onto Mi+1/Mi. We define 
2, * ( a, recursively by setting oi,1() -[di, ri,(7)]. Thus ui, maps F into 

C(A). Suppose the conclusions hold for r < i (i < 1). If y # 0, then 
dijuj(y)A + Mi = Mi+, and ajo(7)diA c Mi. Hence oi+1(7)A + Mi = Mi, and 
ui+, is one-one (and clearly K-linear). Similarly ui+1(7)N C Mi. If 0 is a T- 
isomorphism of A/N onto Mi?l/Mi, then bi10 is a T-isomorphism of A/N onto 

Mj./Mj,-,. Hence there is a 8 in r such that ajc(,3) induces t`0, i.e., 
Vii-laii(IS) = i-10v,2 (where we regard aj as a mapping of A into Mj and ij- 
is the projection of Mj onto Mj/Mj-1). Then ui+,(,S) = [di, j,(r1)] induces 0 
since viujr(fl)di 0 0 and b6ij,-, = vidi on Mji. This completes the proof. 

LEMMA 3.2. Let A be a D-simple algebra over K with a minimal ideal 
M1, where D c qder A. Then C(A) is D*-simple, where D* denotes {d* I d E D} 
(and d*(c) = [d, c] (c e C(A))). Moreover C(A) has a composition series, with 
the same length I as that of A. 

PROOF. ( i ) If c e C = C(A) and cA c Mi (i > 0) (we use the notation 
of Lemma 3.1) then cN c Mi-1: Assuming that cA 4 Mi-1, 7ri-1c is a T-homo- 
morphism of A into A/Mi-1 with image Mi/Mi_1; the kernel is a maximal ideal 
of A, so by Lemma 2.2 is N. 

(ii) C = ai(r) (where 7 = C(A/N)): It suffices to show that if 
cA c Mi, cA 0 Mi-, then there exists a S in r such that (c - a(,8))A c Mi-1. 
Since cN c Mi-1, c induces a T-isomorphism 0 of A/N onto Mi/Mi-1. By 
Lemma 3.1 there is a 8 in r such that ai(S) also induces 0, and this 8 has 
the required property. 
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(iii) I = {c C C I cA c M1} is a minimal ideal of C: It is obviously an 
ideal. To show that it is minimal we show that if c, c' e I, c # 0 # c', then 
there exists c" C C such that c' = cc". Here c and c' induce T-isomorphisms 
8 and 8' of A/N onto M1, and the required c" is an element (which exists by 
Lemma 3.1) which induces the T-automorphism O-'O' of A/N. 

(iv) C is D*-simple: Suppose that H is a non-zero D*-ideal of C. Then 
HA = {I hjaj} is D-closed since d(ha) = h(da) + (d*h)a e HA for all d in D. 
Hence HA = A, and so there is an h in H such that hA + N = A. Then if 
o # v e F we have 0 # u1(y)h e H n I. Since H is D*-closed, (ii) and the con- 
struction of the cr in Lemma 3.1 show that C -E ui(F) c H, and H = C. 

(v) The ideals E.= >,(r) -{ e C I cA c Mj0, .*, ,form a com- 
position series of C: The equality follows from the proof of (ii). The ex- 
pression on the right side shows that they are ideals, C being commutative. 
The expression on the left side and the construction of the ai in the proof of 
Lemma 3.1 show that the ideals are obtained by the method of Lemma 2.1 
starting from the minimal ideal I, and thus form a composition series of C. 
This completes the proof of the lemma. 

LEMMA 3.3. Let A, D and Ml be as in Lemma 3.2, and let N be the 
unique maximal ideal of A. Suppose that E is a subfield of C(A) such that 
A/N as an E-algebra is central. If r is any mapping of A/N into A which 
splits the exact sequence 0 N- A A/N -0 regarded as a sequence of 
E-module homomorphisms, then the mapping sO c o-o c(rs) (s e S = A/N, 
c e C(A)) gives an isomorphism z', as C-modules, of S 0 EC onto A, and C 
has dimension 1 over E. If r can be chosen preserving products (that is, if 
the above sequence splits when regarded as consisting of algebra homomor- 
phisms) then a' is a (C, E and K)-algebra isomorphism. 

PROOF. Since C/(radical C) is a field, E acts unitally on A and A is an E- 
algebra. Since CN c N, S = A/N is also an E-algebra. Let ct = ag(1s), i = 
1, *., 1 (we continue using the notation of Lemma 3.1). Then co, *-- cl are 
linearly independent over E, since if c = c; + E<j ccej then cA + Mj-, = Mj 
(because cA + M-, = M,) and c # 0. If cA c M, and cA ? M,1 then c and 
ci both induce T-isomorphisms, E and F-, of A/N onto M,/Mj_,. Then (c)-'U 
is a T-automorphism of A/N, hence is in the centroid of S as a K-algebra. 
Therefore there is an e in E such that wi1(c - eci) = 0. It follows that 
c,, .., c, are a basis of C over E. 

For a given splitting E-homomorphism v, (s, c) v-> c(vs) is E-bilinear, 
hence v' is well-defined. Every element of S ( EC is uniquely represented as 
Ei== Si 80 co, si C S. If 0 # E. si 0 ci C ker v', let j be the largest index such 
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that z-sj # 0. Since z-sj X N and cj induces a T-isomorphism of A/N onto 
MJ/M>_1, cjrsj i Mj-1. But A <j cirsi C M>1,, a contradiction, and ker z' = 0. 
Obviously z' is a homomorphism of C-modules, where c'(s (0 c) = s (0 c'c. If 
T preserves products then cc'z(s1s2) = (czs1)(c'vs2), so that r' is an isomorphism 
of algebras (over C, hence also over E and K). This completes the proof of 
the lemma. 

LEMMA 3.4. Suppose that A is a d-simple algebra, where d is a deri- 
vation, with a minimal ideal M1. Then 0 No A m S,( A/N) 0 splits 
(as a sequence of algebra homomorphisms), and in fact S' ={a G A I da G M1} 
is a splitting subalgebra z-S. 

PROOF. Since d is a derivation S' is a subalgebra. The chain of ideals 
Mg ...9, Ml-1, N, Ml = A may be constructed with d always used to go 
from Mi to Mi,1 (so that ji = i). If 0 # a e S' f N, let i be the index such 
that a C Mi, a X Mi-1. Then da X Mi by Lemma 2.1, which contradicts dS' c M1. 
Therefore S' n N 0 O. Moreover dN + M1 = A since it contains with Mi 
also dMi +Mi = Mi-1. Hence if aGA then da =dn + a1 where nGN and 
a, e M1, d(a - n) = a1, a = (a - n) + n C S' + N. This completes the proof 
of the lemma. 

4. The commutative associative case 

Suppose that A is a differentiably simple commutative associative ring. 
At characteristic 0, results of Posner [11] show that A is an integral domain. 
In particular if A has a minimal ideal then A is a field. For the application 
to the proof of the Main Theorem it would suffice to prove this assuming that 
the radical N of A is nilpotent, A/N is a field, and A has a unit element; the 
proof in this case is trivial: If y C N, yi # 0, yi+s l 0 and dy X N for some 
derivation d, then dy is a unit but yi(dy) = d(y`+1)/(i + 1) = 0, a contradiction. 
Now suppose that A has prime characteristic. Harper [6] proved that if A is 
a finite-dimensional algebra over a field E and if A has the form A = El + N 
(N the radical), then A B-(E) for some n > 0. The following result gener- 
alizes Harper's theorem in several ways. A portion of the proof is partly 
based on Harper's proof, but yields a shorter proof even of his special case. 
For the rings considered, the differential constants (i.e. elements annihilated 
by all derivations) form a subfield which may be identified with the differential 
centroid under a restriction of the mapping x +- lx which identifies the ring 
with its centroid. 

THEOREM 4.1. Let A be a differentiably simple commutative associative 
ring of prime characteristic p, and let R ={x C A I xP = O}. If Rx = 0 for 
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some x # 0 in A (this will hold, e.g., if A has a minimal ideal), then there 
is a subfield E of A and an n > 0 such that A BJ(E) (- EJ), in fact iso- 
morphic as algebras over E. Here E may be taken to be any maximal sub- 
field of A containing the subfield F of differential constants.' 

PROOF. By two theorems of Posner [11J, A has a unit element and the 
ideal R is nilpotent (for the application to the proof of the Main Theorem it 
would have been enough just to assume these properties). By Zorn's lemma 
there exists a maximal subfield of A containing F; let E be any such maximal 
subfield. We now give the proof of the theorem in five parts. 

( i ) E + R = A: If a C A then al e F, say aP = a, and the minimalI 
polynomial of a over E divides XP - a. If E contains no pth root of a, then 
xp- a is irreducible over E and E(a) is a field, which contradicts the maxi- 
mality of E. Therefore E contains a pth root 8 of a, a - S e R, and 
aGEE- R. 

Now regard A as an algebra over E, choose a subset {yj I j C J} of R such 
that {ly + R'f I C J} is a basis of R/R2, let X = {X I i C J} be a corresponding 
set of commuting indeterminates over E, and let z be the (unique) homomor- 
phism of E[X] to A such that z-Xj = yj(j C J) and zi -1. Then 

(ii) z is onto: It suffices (since R is nilpotent) to show for all k > 0 
that 

{ ii . * m + Rkl--r| jrliX J, iI > 0, i+ *+ i jf k} 

spans Rk/Rk-l-. This is true for k 1 by the choice of {yj}, and its truth for 
k + 1 follows from that for k because 

RkR A5 (EyJi ... myj + Rk~l)(Eyi + f) C Rd (Ey;~ ... Y* Yi + Rk). 

Now regard A again as a ring. 
(iii) Given d in der A, there exists an F-linear derivation d' of E[XI 

such that zd' = dz: Let {wi} be a basis of A over E composed of monomials 
in the yi's. If we write de = A, (die)wi(e e E, die e E) then each d, is a 
derivation of E and for each e in E, die = 0 except for a finite set of indices 
i. For each wi let zi be the element of E[XJ obtained by replacing the y/'s 
by Xi's. Also for each j in J pick an Xj' in E[X] such that tX;. dy,. Then 
there is a (unique) F-linear derivation d' of E[X] such that d'X, = X( j E J) 
and d'(el) (die)zi(e e E), as a straightforward verification shows, and 
this is the required d'. 

'Added April 25, 1969. The writer has just learned of the paper by Shuen Yuan, Dif- 
ferentiably simple rings of prime characteristic, Duke Math. J. 31 (1964). 623-630, in which 
essentially the result of Theorem 4.1 is proved (under the hypothesis that the radical is 
nilpotent). The proof given here is different and simpler than Yuan's, and also makes 
the proof of the Main Theorem self-contained. 
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(iv) Let D' ={d'ederFE[XI }id ederA zd' = dz}; then ker z is a 
Amaximal D'-ideal and a derFE[X]-ideal of E[X]: ker z is obviously a D'-ideal 
and is maximal by (iii) since A is differentiably simple. Let I be the additive 
subgroup of E[X] generated by ker z + A(ker z) where A = der FE[XI. Then 
I is an ideal because b(6k) = 3(bk)- (b)k (b e E[XI, 3 e A, k e ker Z), and I is 
D'-closed because d'(3k) = 3(d'k) + [d', 3Jk and [d', 61] E A. By maximality, 
either I = ker n and hence A(ker z) c ker I, or else I = E[XI, in which case 
ker z would contain an element with a non-zero (monomial) term of degree < 1. 
But this latter contradicts the fact that {1, yj I j e J} is linearly independent 
modulo R' and z maps monomials of degree > 1 into Ri. 

( v ) ker z = (XP), where (XP) denotes the ideal generated by {XP I j E J1 
and the index set J is finite: (XP) c ker T. But (XI) is a maximal A-ideal of 
E[X] (just apply enough derivations a/Dxj to an element not in (XP) to get a 
unit modulo (XP)). Hence ker z = (XP), and the nilpotency of R implies that 
J is finite. This completes the proof of the theorem. 

COROLLARY 4.2. If a differentiably simple commutative associative ring 
A of prime characteristic has ACC on nilpotent ideals, then A Bn(E) for 
some field E and some (finite) n > 0. 

PROOF. With {yj j e J} as in the proof of the theorem, if J' c J is finite 
then the ideal generated by {yj j e J'} is nilpotent. Hence J is finite, say 
J n. Then, as in (ii), RP' - RP"t, and RP= (R=)2 is a differential ideal. 

Hence R is nilpotent, and the result follows from the theorem. 

5. Proof of d-simplicity 

If A is any algebra over a ring K, the quasi-derivations form a Lie algebra 
over K under commutation (the Lie normalizer of T(A)), as do the derivations. 
If c e C(A) and d e qder A then cd e qder A, since [cd, t] -[c, t]d + c[d, t] and 
c7T(A) c T(A) (cl = laC., crx - rz. If d e derA then it is easy to see that 
ed C der A (and dc is a quasi-derivation but not necessarily a derivation). Thus 
qder A is a left C(A)-module and der A is a submodule. 

LEMMA 5.1. Let A, D, and D* be as in Lemma 3.2. If C(A) is d*-simple 
for a given d in D then A is d-simple. If D is closed under commutation 
and left multiplication by elements of C(A) then D* is also. 

PROOF. Suppose that C = C(A) is d*-simple and that M + 0 is a d-ideal 
of A. Since A has a T(A)-composition series, M contains a minimal ideal A1 
of A. Starting with M, construct the chain of ideals M, by always using the 
given d in Lemma 2.1 until an ideal Mq is obtained with dMQ cI M,. If Mq + A 
then H = {c e C I cA c Mq} is a proper ideal of C, but if h e H and a e A then 
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(d*h)a = dha - hda C Mq, so that H is d*-closed, a contradiction. Therefore 
Mq = A, M = A and A is d-simple. The last statement holds because 
[ad d1, ad d2] = ad[d,, d2] in Hom (A, A), and c(d*c,) = cdc - ccd = (cd)*c,. 

If A is a ring or algebra and if D is a Lie subring or subalgebra of qder A, 
we say that D is regular if it is also a left C(A)-submodule of qder A. This 
conforms with the terminology used by Ree [12] in his investigation of the 
regular Lie subalgebras of der BJ(F). If A is an algebra and if A2 = A then 
the centroid of A is the same set whether A is regarded as an algebra or as a 
ring. Hence a regular Lie subring of qder ,A is also a regular Lie subring of 
qder A when A is regarded as a ring. 

THEOREM 5.2. If A is a D-simple algebra over K with a minimal ideal 
where D is a regular Lie subring of qder A then A is d-simple for some d 
in D. 

PROOF. Since A is D-simple (d-simple) as an algebra if and only if it is 
D-simple (d-simple) as a ring (d E D c qder KA), we may ignore K and regard 
A as a ring (the minimal ideal remains minimal). Also we may assume that A 
is not simple. By Lemmas 5.1 and 3.2 we may assume that A is commutative 
associative and that D c der A. Then by Lemma 2.2 and Theorem 4.1, A has 
prime characteristic p and A- B(E) for some field E and some n > 0. We 
claim that 

( i ) there is a regular Lie subring Do of D and a derivation d, in D 
such that A is not DA-simple, A is (Do U {d1})-simple, and [di, Do] c Do: Since 
the radical R of A is not a D-ideal, there is an r in R and a d, in D such that 
dlr e R and hence dir is a unit of A. Replacing d1 by (dlr)-'d, we may assume 
that dlr 1 I. Let Do- {d - (dr)dl 1 d E D}. Then Do {d E D I dr = O} and 
hence Do is a regular Lie subring of D, and [d1, DO] c Do since if dor = 0 
then (dldo - dod,)r = - dt 1 0. Also A is not DO-simple since rA is a proper 
DO-ideal. Any (Do U {d1})-ideal of A is invariant under d - (dr)dl and (dr)dl for 
all d in D, and hence A is (Do U {d1})-simple. 

Now let H be the (associative) subring of Hom (A, A) generated by T(A) 
and Do. Then [d1 H] c H and A has no proper H-submodule invariant under 
di. Since H-submodules are in particular ideals of A, A has an H-composition 
series. Starting with a minimal H-submodule M1 of A and applying Lemma 
2.1 using d, at each step, we get an H-composition series 0 = Mo C * * * c Ml = 
A and H-isomorphisms ti: Mi - Mi, where we write AMj = Mj/Mj-, (with 
Ml = A). Since M, is a DO-ideal of A, any d in Do induces a derivation on A 
(regarded as a ring) which we denote by d. We also write D, = {d I d C Do}* 
Then Do is a regular Lie ring of derivations of A, and A is DO-simple. By in- 
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duction on the (T(A)) composition length (M, # 0 since A is not DO-simple) 
there is a do in Do such that A is do-simple. We have 

(ii) if A is not d1-simple then A Bq(E) for some positive q: By Theo- 
rem 4.1, A Bq(E) for some q > 0 with the same field E as above (this lat- 
ter fact is not actually needed) since A/N A/N. Since d1 gives all the 
mappings Q,, if 0 # a e A then for some i, dia X M11. But if q 0 0 then dia is 
a unit since A is a field and M,1 is nil, and hence any non-zero d1-ideal would 
contain a unit. 

Now suppose q > 0, let x1, *--, xq be a set of nilpotent generators of A 
(i.e., A = E[x1, * Xi = O. i _ 1, *--, q; E a copy of E), and for i= 
1, ..., I1 let Mi, M,' denote the ideals of A such that M, D M' D M _' D 

'/AM,_ = (elk 6 * *,)'l(x1, * * *, Xq), and M1'/M1,._ - (61o1 ... * )-'E(x, ... xq)p 
i.e., M'/Mi-, and MI'/Mi, correspond under the H-isomorphism to the unique 
maximal and minimal ideals of A. Also pick yi in A such that yi + M1, = xi 
(i= 1, *.,q) and set w = (Y1 * yq)p1. Then 

(iii) wM' c M$'1 (where Mt- 0) and wMi + Mi 1 = M,'(i = 1, * , 1): 
We have 

d1w + Ml-, = (p - 1)(d1y, ? Ml . * 

so that each term in d1w + Ml-1 is of total degree at least (p -_ )q - 1. 
Hence (d1w + Ml1-)(M' + Ml1-) c Ml + M,1, (dlw)M' c M', and, by the 
H-isomorphisms, (d1w)M' 5 M''(i 1, ..., I1). Also wMi + Mi1 = M"' for 
all i since this holds for i 1. By the definition of M' and M'', d1M' + Mi = 
M'.1 and d1M'' + M- M!'1 (i = 1, *--, I-1). Also wM' 0 since 
wM' c Ml-,. Suppose wM' c M'1 for some i (1 < i < 1; this is true for i = 
1). Then (since [d1, I<] = ldjw) 

wM'_ 5 wd1M' + wM, c d1(wM') + (d1w)M' + M'' c d1Mll 1 + M"' c Ml' . 

(iv) Let d = do + wd1; then A is d-simple: In proving this, for any 
ideal I of A we write AI and AOI for the ideal dI + I and doI + I, respectively, 
and similarly for a0 on ideals of A. Since A is do-simple and has the same 
composition length as its dimension over E, it follows that 

(AO) 2-2(R(xl ... 
Xq)V-() X1, * . , Xq) 

and hence 
(A)Pq-2M1l' = M(=1,.**,I). 

Therefore, since d1M' 5 M'.1, (iii) gives AiM'' = AMm, ApqM'' = AM= 
M, (j = 1, , pq-1; i = 1, ,I). But for i < I, AM=-wd1M + M,= 
wM,1 + Mll Ml' 1. Therefore the ideals jM7, j - 1, ..., (pq-1)1, to- 
gether with the 0 ideal, form a composition series of A. Hence A is d-simple 
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since M"' is the unique minimal ideal of A (or by the argument of (ii)). This 
completes the proof of the theorem. 

6. Completion of proof of the main theorem 
Let A be a differentiably simple algebra over K with a minimal ideal 

M, # A. Since der A is a regular Lie ring, by Theorem 5.2 there is a deriva- 
tion d such that A is d-simple. By Lemma 3.2, C = C(A) is d*-simple and 
I = {c c C I cA C M1} is a minimal ideal of C. By Lemma 2.2, the radical R of 
C is nilpotent, and by Lemma 3.4, E ={c E C I d*c e I} is a subfield of C with 
E + R -C. The differential constants of C are in E and in particular K4 c E. 
By ?4, C (and hence also A) has prime characteristic and C BJ(E), as an 
algebra over E, for some n > 0 (R # 0 since otherwise C E -I and A = 
M1). Hence I is 1-dimensional over E. 

The ring A is also an algebra over E. In the notation of Lemma 3.1, if 
0 y v P -C(A/N) then a1(Y)A M1, hence CM1 (- M1, and M, is an E-ideal. 
Since [d, E]A = (d*E) c MJ, in the construction of the chain of ideals Mi 
using d in Lemma 2.1, all the isomorphisms a are E-linear; in particular A/N 
and P may be considered as algebras over E. Therefore the mapping p used 
in defining ul in Lemma 3.1 (U,(r) = pepawrl) is E-linear, and q, is an isomor- 
phism of P onto I as E-modules. Therefore A/N as an E-algebra is central. 
The subalgebra S' ( la e A I da C M1} of Lemma 3.4 is closed under E, so we 
have the situation of Lemma 3.3, and A S' 0 EBfl(E) S't1] as an algebra 
over E, hence also over K, where S' A/N is a simple algebra over E and 
hence also over K. This completes the proof of the Main Theorem.2 

One of the main tools used in the proof of the Main Theorem was the 
passage from quasi-derivations of A to derivations of C(A). The proof of 
Lemma 3.4 was the only place where we required, for the D-simple algebra 
A itself, that D consist of derivations rather than merely quasi-derivations. 
The following gives several cases where this hypothesis may be weakened. 

COROLLARY 6.1. Let A be a D-simple algebra with a minimal ideal, 
where D c qder A. Then the conclusion of the Main Theorem holds in each 
of the following cases 

( i ) A has characteristic 0; 
(ii) A is commutative associative with a unit element; 
(iii) A is finite-dimensional over a field and is either alternative (in- 

cluding associative), or standard [1], [14] (including Jordan) of character- 

2Added April 25, 1969. The proof of the Main Theorem remains valid for Lie triple 
systems, and more generally for Q-algebras A where A is a K-module and each weQ is 
n-ary multilinear for some n _ 2 (with the appropriate definitions of derivation, etc.). 
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istic # 2; 
(iv) D = {d} and for each x, y in A there is a t = t(x, y) in T(A) such 

that d(xy) - (dx)y + t(dy). 

PROOF. Case (i) follows from Lemma 3.2 and the (easy) characteristic 0 
case of ? 4. Case (ii) follows from Lemma 3.2 and the Main Theorem since 
here A- C(A). Case (iii) follows from the Wedderburn principal theorem 
for alternative algebras [13] and for standard algebras [14] of character- 
istic # 2, since this provides the splitting subalgebra needed in Theorem 3.3, 
thus bypassing Lemma 3.4 (and ? 5). In Case (iv) the set S' of the proof of 
Lemma 3.4 is a subalgebra, and so as noted above the conclusion holds in this 
case also. This concludes the proof. 

The Main Theorem probably remains true for any quasi-differentiably 
simple algebra with a minimal ideal. At any rate, Lemma 3.3 and Theorem 
4.1, together with Theorem 5.2 and the argument of ?6, provide a great deal 
of information about such an algebra. It can also be seen that in the use we 
have made so far of the concept, the definition of quasi-derivation could be 
further weakened. 

Given one of the non-simple algebras A of the Main Theorem, the algebra 
S is uniquely determined up to isomorphism, since it is the unique simple dif- 
ference algebra of A, and n is uniquely determined since pf is the composition 
length of A(p the characteristic of S and of A). One of the principal difficul- 
ties in proving the Main Theorem was finding a subalgebra of A corresponding 
to S. It is easy to see that for any two such subalgebras there will be an 
automorphism of A sending one to the other. However the subalgebra is not 
in general unique. To show this we need only give an automorphism of A = 
S (0 ZPB(Zp) which moves S 0 1. Thus suppose that S has a derivation 
d' 0 0 and that x e Bn(Zp) with x # x2 -0, and let d be the linear mapping 
of A determined by d(s 0 b) = d'(s) 0 xb (s e S, b e B,(Zp)). Then d is a deri- 
vation of A, d # d2 = 0, exp d = 1A + d is an automorphism of A, and 
(exp d)(S ? 1) # S Q 1. 

We now discuss the conjecture of Zassenhaus mentioned in ? 1. For any 
Lie algebra S over a field F of characteristic p and any integer m > 0 he con- 
structed [17, pp. 64, 67] a Lie algebra S(m', which he called a power ring of S. 
This consists of the vector space over F of all mn-tuples a = (a, , , a.-,) of 
elements of S, with products given by [a, b] = c where 

Gt = .j0(')[ajj bi-j] (i = 0,1, *--. m-1) 

Based on his characterization of the d-simple Lie algebras over F with a chief 
(= T(A)-composition) series [17, pp. 61-79], Zassenhaus conjectured [17, p. 80] 
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that if L is a differentiably simple Lie algebra over F (presumably with a 
chief series) then L -Slv" for some simple Lie algebra S over F and some 
n > 0. It turns out that we can show rather easily (we omit the details) that 
S(P%) and S[f,] = S X FBfl(F) are isomorphic, under the following mapping 

(SS , *s p) - > ' pT-i!-si ? x{l ... an 

where i = i, + i2p + + ip"-', 0 < ij < p (i = 0, *.,p -1), denotes 
the residue class modulo p of l/pordPl, and Bn(F) = F[x1, *--, xJ, xn = 0 
(j = 1, *- , n). Zassenhaus' conjecture then follows immediately from the 
Main Theorem. It seems clear that the tensor product form of Sn] used in 
the present paper is a much more convenient construction than that of the 
power rings. 

7. The derivations of S[ff] and a condition for D-simplicity 

In view of the Main Theorem, it is desirable to determine the derivations 
of the algebra S[n] of that theorem. This we shall now do, of course in terms 
of the derivations of S. We begin by determining the derivations of a large 
class of tensor products. 

THEOREM 7.1. Let A = S ( FB, regarded as an algebra over F, where 
F is a field, S and B are algebras over F, and B is commutative associative 
with a unit element. If S or B is finite-dimensional and if S2 = S or 
{sGSIsS = Ss =O} 0 O then 

der A = (der S) ( FB + 1 0 F(der B) 

(the sum being a direct sum as vector spaces) where r denotes the centroid 
of S and 

(d' ( b1)(s 0 b) = (d's) (0 (bob), (- (0 d")(s (0 b) = (-ys) 0 (d"b) 
(d' C der S, d" C der B) 

PROOF. A straightforward verification shows that each d' 0 b and X0 d" 
is a derivation of A. Now let d be a given derivation of A. We give the 
proof in three parts. 

( i ) Proof of the theorem when S is associative with a unit element. We 
identify the center of S with P. Choose a basis {bi I i C I} of B and a basis 
{Isj j C J} of F, and extend the latter to a basis {is I j C J'} of S where the 
index set J' = J U J" with J fl J" 0. Define linear transformations d' on 
S (i G I) and do' on B (j G J') by writing 

d(s 0 1) = (d's) (0 b , d(1 (0 b) = Hje J, sj 
s0 (df'b) 

(seS, beB) 
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Then each d' is a derivation of S since 

I d'(s8s2) 0 bi = (d(s, 0 1))(S2 0 1) + (s, 0 1)d(S2 0 1) 
= S1{(dXs1)s2 + s,(d's2)} 0 bi 

and similarly each do' is a derivation of S. Applying d to both sides of 
(s 1)(1 0 b) = (10b)(s ( 1) gives (s 0 1)d(l X b) = d(l X b)(s 1) since 
1 0 b commutes with d(s 0 1), and hence 0 -Ej, [s, sj] (d;'b)= 

LjeJ. [8, sj] 0 (d!b) for all s in S and b in B. For a given b in B and each j 
in J" write dCb = Lie aijbi (ay e F). Then 

0 = je [s, sj] 0 (dCb) = Ael [s, Eject aijsj3] 0& bi 

for all s. Hence ei J,' ajsj G F for all i, aj = 0 for all i and all j in J", and 
d;! = 0 for all j in J". Then 

d(s (0 b) d((s (0 1)(1 0 b)) = Ad (d's) 0 bib + , 
S 0 d;'b 

=.(ds) bib + Ejs sj d;'b (seS, beB) s 

and d has the form A. d' 0 bi + Ej, sj 0& d7. By the definition of the d', 
for each s in S, dXs = 0 except for finitely many of the indices i. Therefore if 
S is finite-dimensional, then d' 0 0 except for finitely many i, so that 
E d, (0 bi e (der S) 0 B, while of course the same is true if I is finite. Simi- 
larly Eie sj A) d;! e F 0 (der B). Finally, the sum is direct since if 

E, d 0 bi e FN 0derB then E, (d' 0 bi)(s 0 1) 0 0 for all s, and d- 0 for 
all i. This completes the proof when S is associative with 1. 

(ii ) If U = P + T(S) then there is an algebra isomorphism z of U0(& B 
onto C(A) + T(A) with z(u 0& b) _U 0 lb (regarded as a mapping of A, where 
lb is the multiplication by b on B), and F and C(A) are commutative. U is 
an (associative) algebra of linear transformations on S since 71, =- 1, and yr8 
rrs. There is a unique linear mapping z of U0 B onto a space of linear trans- 
formations of A with z(u 0& b) = 0 lb (U e U, b e B). Then z is one-one since 
if (L. ui 0 b4)(s 0 1) = 0 for all s then ui = 0 for all i. Clearly z preserves 
multiplication. Therefore z(T(S) ( B)= T(A) since T(ls 0 b) = 1b and 
7(r. 0 b) = r,8?&b. If yr, I' e r then [y, 7y]S2 =([/1 7']S)S = S(7, 7']S) = 0 and 
hence the hypothesis on S implies that P is commutative. Also either A2 A 
or {a e A I aA = Aa =} = 0, so that C(A) is commutative. We claim that 
(J(r (0 B) = C(A). Indeed if c e C(A) and we write c(s 0& 1) = Ad y(s) (0 bi 

(ieS), we see that each yi eF. But if beB then 11S0lbe C(A) and so 
c(s & b) = (15 0 lb)C(S 0 1) = go -$(S) & bib, and c = Ad 7i bi. Here 7i - O 
except for finitely many i, as in (i). Therefore z7(F 0 B) = C(A) and 
T(UO(& B) = C(A) + T(A). 
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(iii) Proof of the theorem when S is not associative or does not have a 
unit element. Since [d, T(A)] c T(A) and [d, C(A)] C(A), commutation by 
d gives a derivation of C(A) + T(A), and hence by (ii) also a derivation d of 
U 0) B. The center of U is F since F is commutative. Since U is associative 
with a unit element, if {ya I j C J} is a basis of F and {bi I i C I} of B then by 
(i) there are derivations d' of U and d;' of B such that 

ld(s(@b) [d, ls b] =Zd(l8 (& b) 
=zT A. G I d~ti(l8)0@ bib + z jl0 9 d;!b (seS, beB) 

Then with b = 1 and with d'(i e I) defined by setting d(s 01) = d'(s) 0 
b- 

(so that as in (i) each d$ is a derivation of S) we have 

T ldi Lir 1 s) 9 l = 7 
L) i (s C S) 

Hence Odo~s) = d 
'(l,) 

for all i, and (since 7jl=, 1 

l0d(s(3b)-,?Eidi(s)(@bib-A jgjrjs(@djbI 
- ? (s e S, b C B) 

and the same equality holds with l replaced by r. Then do d - d 0 bi -- 
jC <y5j ?) dig is a derivation of A, 0 = (doS)S = S(doS) doS2, and do 0. 
The desired conclusion follows as in (i). This completes the proof of the 
theorem. 

In the course of the proof we have also established the following result 
for the infinite-dimensional case. 

COROLLARY 7.2. Let the hypotheses of the first sentence of Theorem 7.1 
hold. If S has a unit element, then every derivation d of A has the form 

,d' ( bi + Ej 7i (9 do' where d' E der S, d.' CderB, and for each s in S 
(resp. b in B), d'(s) = 0 (resp. d;(b) = 0) except for finitely many i (resp. j) 
(and every mapping of this form is a derivation). 

In order to drop the hypothesis that S2 -- S or {s e S I sS = Ss =O} 0= 
we would have to take into account summands d"' where d"'S2 0 0 and 
d"'S {sS I sS = Ss = 0}. 

We now apply Theorem 7.1 to the determination of der Sr,,] when S is a 
simple algebra over a ring K and n > 0. Let E be the centroid of S, so that 
E is a field containing K5, and identify A = S[r] with S 0) EBf(E), with S 
identified with S 0& 1. If b e BR(E) then the E-linear mapping Zb of S 0& EBf(E) 
determined by Zb(S 0) b') = s 0 bb' (s e S, b' e BR(E)) is in C(A). It is easy to 
show (see [4]) that every element of C(A) has this form. If [d, Zb] = 0 for all 
derivations of the form d = 0s (9 d" (d" e der EBfl(E)) then d"b = 0 for all d", 
and b e El. Hence the differential centroid F of A is a subfield of E, the 
latter being regarded here as acting on A (and of course K4 c: F). In particu- 
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lar S is also an F-algebra, and we may now identify A with S ?FBfl(F) and 
der A with der,(S 0FBfl(F)). If d' e der S then d'( 01 e der (S 0&PB.(Z,)) 
and hence d' is F-linear. Thus der S -derFS. Also derFB"(F) is the well 
known npn-dimensional Jacobson-Witt algebra We, over F. We have now 
proved the following result. 

COROLLARY 7.3. If S is a simple algebra (of prime characteristic) over 
a ring K and if n > 0 then der S[},] = (der S) (&FBfl(F) + F OF Wn (regarded 
as acting on S OFBfl(F)), where F is the differential centroid of Sr,], r is 
the centroid of S, and W,. is the Jacobson- Witt algebra over F. 

We now give a condition on a set D of derivations of SEn,] for S[,] to be 
D-simple. If A = S 0&EB, where S is simple with centroid E and B = B(E) 
and if d = d' 0 bi + Ji (0 d" e der A, we shall say that d" is the component 
of d in der B, and denote it by dB. A straightforward computation shows 
that ZdBb - [d, Zb1 for all b in B. 

PROPOSITION 7.4. Let A = S[q,], identified with S 0) EBJ(E), where S is 
a simple algebra over a ring K and E = C(S), and let D be a set of E-linear 
derivations of A. Then A is D-simple if and only if B = Bn(E) is DB- 

simple, where DB -{dB I d e D}. In particular, S[%1 is differentiably simple, 
and in fact d-simple for some E-linear derivation d. 

PROOF. In proving the first conclusion we may ignore K and regard S 
and A as algebras over E. We first show that every ideal of A has the form 
S 0) H where H is an ideal of B. Thus let M be an ideal of A. If 

Li sj f0 bj C M where the sj are linearly independent over E, then, by the 
density theorem applied to T(S), for each j there is an s' in S such that 
s' bj cM. If s &bcMthen S b C M. Itfollowsthat{bcB13scSwith 
s b e M} is an ideal H of B, and M = S 0& H. If H is any DB-ideal of B 
then S 0& H is a D-ideal of A. Conversely if S C) H is a D-ideal we see that 
dBH C H for all d in D. It is easy to see that an ideal H of B is a DB-ideal 
if and only if S 0& H is a D-ideal of A. This gives the first conclusion. Now 
let d = is 0 d" where d" is the derivation of B given by 

d"r = (D/Dx1) + xP j(Da/x2) + ... + (xi ... X.-.. -lax"') 

(where B = E[x1, . 1 j, x? = 0, (y(a/xi)xj = 6jy(i, j = 1, ..., n)). Then B 
is d"-simple [3], d is K-and E-linear, and A is d-simple (just to show that A 
is differentiably simple, it suffices to use {is 0& D/Dx I i = 1, * n , n}). This 
completes the proof. 

In discussing the converse of the Main Theorem it remains to show that 
SE,,,] (S simple) has a minimal ideal. Identify Sn] with S PBn(ZP), where 
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B.(Z)= ZAx1, *.*, I x.], X4 0 (i **., n). Then it is easy to see that 
S ?9 (x1 xX)-1 is a minimal ideal of S[,, and in fact is contained in every 
non-zero ideal of S[.]. 

The following is an example of an algebra A over a ring K such that A 
is differentiably simple as a ring but not as an algebra over K. Let S be a 
central simple algebra over Z,, A = S (0ZB(Z ) for some n > 0, K 
Bn(Zp), and regard A as a K-algebra in the obvious way. Then a derivation 
of A, as a ring, is K-linear if and only if it has the form E, d' 0 bi and A, as 
a K-algebra, has S 0 (xl, *.*, x) as a proper differential ideal. 

8. D-semisimple rings 

In this section we obtain a D-structure theorem which gives an analogue 
of the part of the Wedderburn-Artin theorem which says that a semisimple 
artinian ring is a direct sum of simple rings. We state the results for rings; 
they can be extended to the case of algebras without difficulty. 

Let A be a ring and D a set of quasi-derivations of A. If I is an ideal of 
A then the sum of all D-ideals of A contained in I is a D-ideal of A which we 
denote by ID. If I is any D-ideal of A then D induces a set DA/1 of quasi- 
derivations of A/I, and by a slight imprecision in language we shall speak of 
D-ideals of A/I rather than DA/[-ideals. Similarly if D consists of derivations 
of A then D induces a set of derivations on I, and if D consists of quasi- 
derivations and I is a direct summand of A then D induces a set of quasi- 
derivations on I; in either case, if I is (D I I)-simple we shall also say that I 
is D-simple. 

If the ideal I is an intersection f M, of ideals of A then it is easy to see 
that ID f n(Mk)D If A is associative and R is the (Jacobson) radical of A 
then we call RD the D-radical of A. For alternative rings (which of course 
include all associative rings) the radical R is again taken to be the intersection 
of the regular maximal left ideals, and RD is taken to be the D-radical. Then 
again R equals the intersection of the primitive ideals [7] and also is the 
largest ideal I which is radical in the sense that for every x in I the left ideal 
generated by {yx - y y e A} contains x (and so in the associative case every 
x has a quasi-inverse). Thus for alternative rings as well as for associative 
rings we have two characterizations of the D-radical: RD is the (unique) 
largest radical D-ideal, and RD fl PD where the intersection is over all 
primitive ideals P of A. If A is a finite-dimensional Lie algebra then the 
radical R is taken to be the (unique) largest solvable ideal, and in a context 
in which finite-dimensional power-associative algebras are being discussed the 
radical R is taken to be the (unique) largest nil ideal (this agrees with the 
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previous definition in the alternative case). In all these cases we call RD the 
D-radical of A and we say that A is D-semisimple if RD 0 O. It is easy to see 
that A/RD is D-semisimple. 

We shall use the following dual to Lemma 2.1. 

LEMMA 8.1. Let H be an associative ring, let M be an H-module with 
a maximal submodule M1, and let D be a subset of Hom(M, M) such that 
[D, HM] J Hm. If M2, ***, Mq (for some q > 1) are submodules of M such 
that M1D M2z ... D Mq and M1/Mj+1 M/M1 for i =1, 1 ., q -1, and if 
d e D such that dXJIq t Mq, then there is a submodule Mq,+, with Mq D Mq+j, 
and an index j, 1 _ j _ q, such that dMq c Mj_1 (Mo = M), dMq+l c Mj, and 
the mapping m + Mq,+ H-> dm + Mj (m e Mq) is an isomorphism of Mq/Mq+ 
onto Mj..Mj. In particular Mq/Mq+ MIM,. 

PROOF. Let j be the largest index (1 < j < q) such that dMq c Mj-, 
and let Mq+= {m e Mq Idm e Mj}. As in the proof of Lemma 2.1, the re- 
striction to Mq of the mapping m E-+ dm + Mj is a homomorphism with image 
Mj-1/Mj and kernel Mq,+, and thus gives the required isomorphism. 

THEOREM 8.2. Let I be an ideal of a ring A, let D be a set of quasi-deri- 
vations of A, and suppose that A/ID has DCC on ideals. If A/I is a direct 
sum of simple rings then A/ID is a direct sum of D-simple rings. In fact 
if A/I = Si e *.* e Sk (Si simple) then A/ID S1G1 ( * ... & SkGk where, 
for each i, Gi = 1 or Si has prime characteristic pi and Gi is a finite ele- 
mentary abelian pi-group. 

PROOF. Without loss of generality we may assume that ID = 0. We first 
suppose that A/I is simple, and apply Lemma 8.1 with H = T(A), M = A and 
M1 = I. By DCC the chain of ideals constructed by Lemma 8.1 cannot be ex- 
tended past some ideal Ml. Then Ml is a D-ideal and hence Ml = 0. Since 
(A/I)2 = A/I, T(A)(M1/Mj+1) = Mj1Mj+1 for i = 0, 1, ..., 1 - 1, T(A)A = A, 
and A2 = A. Also I is nilpotent, as in Lemma 2.2. Since A has a T(A)-com- 
position series, any D-ideal L # A is contained in a maximal ideal I'. If 
I' zL I then I + I' = A and A/I'-I/I = n I' is nilpotent, contradicting A2= A. 
Therefore I' = I D L, L = 0, and A is D-simple. 

Next suppose that A/I = (L1/I) E ... e* (Lk/I) where the Lj are ideals of 
A containing I such that Lj/I = Sj is simple (k is necessarily finite by DCc). 
For j = 1, ... * k, let P3 = Eioj Li. Then A/Pj (A/j)/(Pj/I) _ Sj is sim- 
ple, and A/PjD is D-simple with unique maximal ideal Pj. Moreover 
PlDfn fnPkD= (P1 n fl nPk)D = ID. We may choose an index l < k and 
a reordering of the Pj such that PiD n ... n PID = ID and such that if 
1 < i < 1 then Mj = n i=1, ,l;ioj PiD # ID. Consider the homomorphism z of 
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A into (A!PD) (D ... * (AIPJ) given by zx = (x + PlD,* X + PlD)(x E A). 
This has kernel ID. Since M3 ! PjD, PjD + M A. Hence for any x + PjD, 
there is a y such that yA = (0, .., x + PjD, .., 0). Then z is onto and 
A/ID- (A/PD) GD ... & (AlP1)). Counting the number of maximal ideals on 
both sides we get 1 > k, and so l = k. This and the Main Theorem complete 
the proof. 

We remark that the theorem would be false without the assumption of 
DCC on ideals, as is shown by the following example. A = F[xJ (F a field of 
characteristic 0), I= (1 + x), D ={x(a/lx)}, where ID 0 but (x) is a D-ideal. 

COROLLARY 8.3. Let A be an (associative or) alternative ring with DCC 
on ideals and with radical R, and let D be a set of quasi-derivations on A. 
If A is D-semisimple and AIR has DCC on left ideals then A is a direct sum 
of D-simple rings. 

PROOF. A/R is a subdirect sum of primitive rings which are either as- 
sociative or Cayley rings [7]. Since AIR is artinian it is a finite direct sum of 
simple rings by the same argument as in the associative case. Hence Theorem 
8.2 gives the result. 

We now discuss a similar result for an important class of power-associ- 
ative rings, the flexible rings. A ring A is called flexible if (xy)x = x(yx) for 
all x, y in A. Oehmke [10] proved that a finite-dimensional semisimple flexible 
strictly power-associative algebra over a field of characteristic # 2, 3 is a 
direct sum of simple algebras with a unit element. Using Theorem 8.2 we 
now give a new proof of this result, extending it to include the characteristic 
3 case as well as generalizing it to a result on D-semisimple algebras. In giv- 
ing this result we make use of the following definitions and facts. Let A be 
an algebra over a field of characteristic # 2. Then A+ denotes the algebra 
with the same underlying vector space as A and with new multiplication x * y = 
(1/2)(xy + yx). For each x in A let dx be the mapping of A into A defined by 
dxy = [x, y] (y e A). A direct verification shows that each dx is a derivation 
of A+ if (and only if) A is flexible. Obviously a subspace of A is an ideal of 
A if and only if it is a {dx I x E A}-ideal of A+. 

COROLLARY 8.4. Let A be a finite-dimensional power-associative algebra 
over a field of characteristic # 2, with nilradical R and with a given (pos- 
sibly empty) set D of quasi-derivations, and suppose that A is D-semisimple. 
If A/R is flexible and strictly power-associative then A is direct sum of D- 
simple algebras (and is flexible, strictly power-associative and has a unit 
element). If A has a trace form then again A is a direct sum of D-simple 
algebras (and at characteristic # 5 is a non-commutative Jordan algebra). 
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PROOF. The trace form case follows immediatly from Theorem 8.2 and 
Albert's theorem on trace forms [13, p. 136]. Also when AIR is commutative 
the result holds by Theorem 8.2 and the fact [2, 8] that semisimple com- 
mutative strictly power-associative algebras are direct sums of simple alge- 
bras with a unit element (if S has unit element then so does SG) (the strict- 
ness of the power-associativity is relevant only at characteristics 3 and 5). 
Now suppose that A/R is flexible and strictly power-associative. Then (A/R)+ 
is commutative and strictly power-associative. Also (A/R)+ has no non-zero 
nil {d Ix E A/R}-ideal. By the just proved commutative case, (A/R)+ is a 
direct sum of {dx I x e A/R}-simple ideals which have a unit element. These 
ideals of (A/R)+ are also simple ideals of AIR, and the unit element of (A/R)+ 
is also the unit element of AIR; this latter fact follows quickly from the 
flexible law, as in [4], or, using power-associativity, from an idempotent de- 
composition. We may now apply Theorem 8.2 to get the desired result. This 
completes the proof. 

The decomposition of a D-semisimple ring into D-simple ideals can also 
be proved easily in the finite-dimensional associative case by using the mini- 
mal D-ideals. Before discovering the present version of Theorem 8.2 the 
author had used the minimal rather than maximal ideals to give a proof of 
Theorem 8.2 in the case when A is a finite-dimensional power-associative 
algebra and the Si have a unit element. This also gave Corollaries 8.3 and 
8.4. This was announced briefly in [5]. After [5] was submitted, the author 
received from T. S. Ravisankar, of Madras, India, a copy of a recent manu- 
script which gives a proof, different from the author's, that if a finite-di- 
mensional flexible strictly power-associative algebra of characteristic # 2, 3 
is D-semisimple (D a set of derivations) then it satisfies the conclusion of the 
first part of Corollary 8.4. He also establishes in another proof the trace 
form case (again excluding characteristic 3). 

While discussing semisimple flexible algebras we also mention the deeper 
question of determining the structure of A+ for a simple flexible algebra A 
(of characteristic # 2). This was answered by the author [4] in the finite- 
dimensional case as an application of the Main Theorem of the present paper. 
Aside from giving a uniform proof of the various special cases proved by a 
number of authors (see [4]), this solved the previously unsettled degree 2 
characteristic p case, included as well consideration of nil simple algebras, 
and showed that the result does not depend on power-associativity. Since the 
Main Theorem has now been proved in a more general form than when [41 
was written, we now have the following form of the result on simple flexible 
rings. 
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THEOREM 8.5. Let A be a simple flexible ring of characteristic # 2. If 
A is not anti-commutative and if A+ has a minimal ideal, then either A+ is 
simple or the characteristic is prime and A+-B- (E) for some n > 0 and 
some field E containing the centroid of A. 

The proof is essentially the same as for the finite-dimensional case in [4]. 
Since A+ is differentiably simple, the Main Theorem implies that if A+ is not 
simple then the characteristic is prime and there is a commutative simple ring 
S such that A+ - S[Ef] for some n > 0. The problem then is to show that S 
must be associative, and this may be done by showing that S = El where 
E = C(S); for the details of the proof of this, see [41. 

9. Semisimple Lie algebras 

In this final section we apply the Main Theorem to the study of the 
structure of finite dimensional semisimple Lie algebras of characteristic p. 
The reason that this can be done is that in a Lie algebra L a non-abelian 
ideal M is minimal if and only if M is (adL)-simple. We begin with a pre- 
liminary result on the relation between L and its minimal ideals. All the 
Lie algebras considered are assumed to be finite-dimensional over a field. For 
any Lie algebra L we write inder L for the Lie algebra of inner derivations 
of L, i.e., inder L = {ad x I x E L}. 

LEMMA 9.1. Let D be a set of derivations of a finite-dimensional Lie 
algebra L and suppose that L is D-semisimple. Then L has only finitely 
many minimal D-ideals, say L1, * * *, Li, their sum M is direct, each Li is 
(D U inder L)-simple, the mapping x v-- adMx(x E L) is an isomorphism of L 
onto a subalgebra of der M containing inder M, and the mapping d v-- d I M 
(d e D) of D into der M is one-one. 

PROOF. Without loss of generality we may assume that D is a sub- 
algebra of der L containing inder L. Since L is centerless we may identify 
L with inder L and thus since [d, adLx] adL(dx) we may assume that L is 
an ideal of D with 0 centralizer in D. Then it follows that the D-ideals of L 
are exactly the ideals of D contained in L, and D is semisimple. Therefore 
by replacing L by D it will suffice to prove the result when L is semi-simple 
and D = inder L. With these assumptions, let M = L, + * - - + Lr be a maxi- 
mal direct sum of minimal ideals of L. Then M contains every minimal ideal 
of L, the annihilator in L of M contains no minimal ideal of L (since any 
such would be abelian) and so is 0, and hence x e-> ad~x is an isomorphism of 
L into der M. The remaining conclusions follow easily. This completes the 
proof. 
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In the case in which D - der L, the results of Lemma 9.1, except for the 
final statement, are due to Seligman [16], but the proof given here is shorter. 

COROLLARY 9.2. Let L be a finite-dimensional semisimple Lie algebra 
with a set D of derivations. Then any minimal D-ideal of L is a minimal 
ideal of L. 

PROOF. A minimal D-ideal is differentiably simple and so any ideal of L 
properly contained in it is nilpotent and hence 0. 

We call the sum of the minimal ideals of a Lie algebra L the socle of L, 
and if D is a set of derivations of L we call the sum of the minimal D-ideals 
of L the D-socle of L. Thus if L is semisimple the D-socle equals the socle. 

The determination of the differentiably simple algebras and their deri- 
vation algebras leads quickly via Lemm 9.1 to the following description of all 
the semisimple Lie algebras (and their derivations) in terms of the socle. 

Let S1, *--, S. be simple Lie algebras over a field F of characteristic p, 
and let n1, *--, nr be non-negative integers (not necessarily distinct). Write 
S = > Si 0 Bi where Bi denotes Bn.(F) and Bi = F if ni = 0 (all algebras 
and tensor products considered here are over F), and identify S with inder S, 
so that 

S = inder S = (inder Si) (0 Bi 
c der S er1 ((der Si) 0 Bi + Pi 0 der Bi) 

where Fi denotes the centroid of Si. Now let L be any subalgebra of der S 
containing S (hence L is uniquely determined by a subalgebra of 
e3r=1 ((outder Si) 0 Bi + Fi 0 der Bj)). For i 1, ** , r let Li denote the set 
of components in der (Si 0 Bi) of elements of L, and if S is central, so that 
der (Si 0 Bi) = (der Si) 0 Bi + 1,. 0 der Bi, let LB. denote the set of com- 
ponents in der Bi of elements of Li (in the terminology of ?7). 

THEOREM 9.3. Every finite-dimensional semisimple Lie algebra of 
prime characteristic is isomorphic to one of the algebras L just constructed, 
and the semisimple algebra uniquely determines r and the pairs (Si, ni), 
i 1, . *, r, up to isomorphism and reordering. The algebra L constructed 
is semisimple if and only if Si 0& Bi is Li-simple (which when Si is central 
is equivalent to Bi being LBi-simple) for i = 1, * - -, r. The mapping 
x e-> ad1lx (x e N,,, L) is an isomorphism of the normalizer of L in der S onto 
der L. The same results hold with differentiably semisimple in place of 
semisimple provided the condition on Li (or LB.) is replaced by the same 
condition on (Ndr sL)i(or(Nder sL)Bi)- 

PROOF. By Lemma 9.1 any semisimple algebra with socle Mis isomorphic 
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to a subalgebra of der M containing inder M, and by the Main Theorem M is 
isomorphic to some S of the above form for suitable pairs (Si, ni), these being 
essentially uniquely determined by M. This gives the first sentence. The 
ideal Si 0D Bi of L is minimal if and only if it is L-simple, or equivalently L,- 
simple, and when Si is central this is equivalent to B. being LB-simple. 
Since the centralizer of S in L is 0, every minimal ideal of L is contained in 
S. Hence if each Si ?g Bi is minimal then L is semisimple. Conversely if L 
is semisimple then each Si 0& Bi is minimal because any ideal of L properly 
contained in Si 0& B. would also be a proper ideal of Si ?& Bi and hence nil- 
potent. This proves the second sentence. The mapping z defined by z-x 
adLx(xe N. LL) is a homomorphism into der L. If adLx 0 then ad~x = 0 
and x = 0. Hence z is one-one. Suppose d E der L and let x be the unique 
element of der S such that x(s) = [x, s] = d(s) (s E S). If y C L and s e S 
then 

(dy)(s) - [dy, s] = -[y, ds] + d[y, s] = -ly, [x, s]J + [x, [y, s]j = Ix, y](s) . 
Hence d = ad LX, x E Nler, 8L and z is onto. The final statement may be proved 
the same as the first two by replacing semisimple, socle, ideal by differenti- 
ably semisimple, etc., and L-simple by (der L)-simple, using the characteri- 
zation of der L just obtained. This completes the proof. 

COROLLARY 9.4. Let F be a field of characteristic p. If every simple 
Lie algebra over F of dimension < m has all its derivations inner then 
every semnisimple Lie algebra over F of dimension < min {m + 1, 3p} is a 
direct sum of simple algebras. 

This is an immediate consequence of Theorem 9.3, and gives a generali- 
zation of Kostrikin's result [9] that a semisimple Lie algebra of dimension < p 
over an algebraically closed field of characteristic p > 5 is a direct sum of 
simple algebras (of classical type). On the other hand, Theorem 9.3 shows 
that starting from a 3-dimensional central simple Lie algebra over F, we can 
construct a semisimple Lie algebra of dimension 3p + 1 and a perfect semi- 
simple Lie algebra of dimension 4p, neither of which is a direct sum of simple 
algebras. 

UNIVERSITY OF CALIFORNIA, RIVERSIDE 

REFERENCES 

[ 1 I A. A. ALBERT, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593. 
[2] , A theory of power-associative commutative algebras, Trans. Amer. Math. Soc. 

69 (1950), 503-527. 
[3] , On commutative power-associative algebras of degree two, Trans. Amer. Math. 

Soc. 74 (1953), 323-343. 



DIFFERENTIABLY SIMPLE RINGS 459 

4] R. E. BLOCK, Determination of A+ for the simple flexible algebras, Proc. Nat. Acad. 
Sci. U.S.A. 61 (1968), 394-397. 

[5] , Differentiably simple algebras, Bull. Amer. Math. Soc. 74 (1968), 1086-1090. 
[6] L. R. HARPER, JR., On differentiably simple algebras, Trans. Amer. Math. Soc. 100 

(1961), 63-72. 
t 7 ] E. KLEINFELD, Primitive alternative rings and semisimplicity, Amer. J. Math. 77 (1955), 

725-730. 
[8] L. A. KOKORIS, New results on power-associative algebras, Trans. Amer. Math. Soc. 77 

(1954), 363-373. 
[9] A. I. KOSTRIKIN, Squares of adjoint endomorphisms in simple Lie p-algebras, Izv. Ak. 

Nauk SSSR Ser. Mat. 31 (1967), 445-487 (in Russian). 
[10] R. H. OEHMKE, On flexible algebras, Ann. of Math. (2) 68 (1958), 221-230. 
[11] E. C. POSNER, Differentiably simple rings, Proc. Amer. Math. Soc. 11 (1960), 337-343. 
[12] R. REE, On generalized Witt algebras, Trans. Amer. Math. Soc. 83 (1956), 510-546. 
[13] R. D. SCHAFER, An Introduction to Nonassociative Algebras, New York, Academic 

Press, 1966. 
[14] , Standard Algebras, Pac. J. Math. 29 (1969), 203-223. 
[15] A. SAGLE and D. J. WINTER, On homogeneous spaces and reductive subalgebras. of simple 

Lie algebras, Trans. Amer. Math. Soc. 128 (1967), 142-147. 
[16] G. B. SELIGMAN, Characteristic ideals and the structure of Lie algebras, Proc. Amer. 

Math. Soc. 8 (1957), 159-164. 
[17] H. ZASSENHAUS, Uber Lie'sche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. 

Hamburg 13 (1939), 1-100. 

(Received September 17, 1968.) 


	Article Contents
	p. [433]
	p. 434
	p. 435
	p. 436
	p. 437
	p. 438
	p. 439
	p. 440
	p. 441
	p. 442
	p. 443
	p. 444
	p. 445
	p. 446
	p. 447
	p. 448
	p. 449
	p. 450
	p. 451
	p. 452
	p. 453
	p. 454
	p. 455
	p. 456
	p. 457
	p. 458
	p. 459

	Issue Table of Contents
	The Annals of Mathematics, Second Series, Vol. 90, No. 3 (Nov., 1969), pp. 379-590
	Hilbert Manifolds [pp. 379-417]
	Weakly Complex Involutions and Cobordism of Projective Spaces [pp. 418-432]
	Determination of the Differentiably Simple Rings with a Minimal Ideal [pp. 433-459]
	On the Periods of Certain Rational Integrals: I [pp. 460-495]
	On the Periods of Certain Rational Integrals: II [pp. 496-541]
	Hurwitz Schemes and Irreducibility of Moduli of Algebraic Curves [pp. 542-575]
	On Cohomology of Kleinian Groups: II [pp. 576-590]



