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1. Introduction. Mills and Seligman in [8] presented a unified technique for

the classification of those semisimple Lie algebras to which the methods of Killing

and Cartan are applicable. They classified the Lie algebras L (assumed to be

finite-dimensional, as will be also all algebras in the present paper), of character-

istic not 2, 3, 5 or 7, which satisfy the following conditions: L has a Cartan

subalgebra H such that L and H satisfy five axioms, which we may state as

(i)    LL = L.
(ii)   The center of L consists of 0 alone.

(iii) H acts diagonally on L.

(iv) If a is a nonzero root then LaL_a is one-dimensional.

(v) If a is a nonzero root and ß is a linear functional on H, then there is a

positive integer m such that ß + ma is not a root.

Here of course the roots are roots with respect to H, and (iii) means that if

h e H and aeLa, the root space for a nonzero root a, then ah = a(/t)a. By (ii)

and (iii) H is necessarily abelian.

Mills and Seligman showed that if L is over a field F of characteristic p > 7

and satisfies the above axioms with respect to some Cartan subalgebra, then L

is a direct sum of simple algebras of classical type, that is, each of the simple

direct summands is the analogue over £ of one of the simple Lie algebras (in-

cluding the five exceptional algebras) over the complex numbers. More explicitly,

the simple Lie algebras of classical type over £ are obtained as follows: start

with a complex simple Lie algebra, take a basis with integral structure constants

as in [4, p. 24], reduce the structure constants modulo p, then take the scalar

extension to an algebra over F, and divide by the center (which is nonzero only

if the initial algebra is of type Ar with p I r + 1). The result of Mills and Seligman

was extended by Mills [7] to include the case of characteristics 5 and 7.

Axiom (v) above, although essential for the use of root-string techniques, is

rather artificial in that it does not correspond (because of the finite-dimensionality)

to any step in the proof of the well-known results on complex semisimple Lie

algebras.
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Our purpose in the present paper is the determination of the Lie algebras

satisfying a set of axioms similar to those of Mills and Seligman, but without

an axiom like (v) above; we shall prove that such algebras are direct sums of

simple algebras which are either of classical type or of a certain explicitly deter-

mined class of algebras of rank one.

The axioms on L and H which we shall assume are

(i)    L2 = L.

(ii)   The center of L consists of 0 alone.

(A) For every nonzero root a, Lx is one-dimensional and aiLxL_x)=£0,

that is, Lx + L_x + LXL_X is a isplit) three-dimensional simple algebra.

Axiom (A) is formally stronger than (iii) and (iv) of Mills and Seligman, but

still corresponds to a natural stage in the classification proof at characteristic

0. Axiom (A) was also used by Jacobson [5], together with (i) and the assumption

that H is abelian (which is implied by (ii) and (A)), as a hypothesis in a prelim-

inary investigation of the representation theory of such algebras.

Our classification must take account of the Albert-Zassenhaus algebras. By

an Albert-Zassenhaus algebra is meant an algebra over a field £ with a basis

{ux\aeG}, where G is a finite additive subgroup of £, and with multiplication

(1.1) uxuß = {ahiß)-ßhia) + a-ß}ux+ß, a,ßeG,

where h is any additive mapping of G into £ (see [1, p. 138]). Each of these al-

gebras is a simple Lie algebra, for which u0 spans a one-dimensional Cartan

subalgebra with one-dimensional root spaces spanned by the ux. The algebras

satisfy axioms (i), (ii) and (A) above (with respect to (u0)) but not (v) — the roots

form an additive elementary p-group. These algebras are the only simple ones

known which satisfy (i)—(iv) but not (v), as well as the only known simple algebras

of rank one other than the three-dimensional algebra. Moreover the author has

proved in [2] that if L has a one-dimensional Cartan subalgebra such that

eaL-x =£ 0 for every nonzero root a and nonzero ex in Lx, then Lis either three-

dimensional or an Albert-Zassenhaus algebra, provided that the base field £

is algebraically closed of characteristic p > 3.

Our principal result, to whose proof almost all of this paper will be devoted,

is the following.

Main Theorem. Let L be a finite-dimensional Lie algebra of characteristic

p>5. Suppose that L has a Cartan subalgebra H such that (i), (ii) and (A)

are satisfied. Then L is a direct sum of simple algebras satisfying the same

hypotheses, and each such simple algebra is either of classical type or has

rank one. If the base field is perfect then the simple summands which are not

of classical type are Albert-Zassenhaus algebras.

If in addition L is restricted (that is, is a p-algebra) and if a simple direct sum-

mand is of rank one but not of classical type, then (as can be seen without using
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[2]) the summand is the p-dimensional Witt algebra, that is, has a basis

{u¡\ ieFp} ÍFp the prime field) with u-u¡ = (i —j)ui+J.

Information on representations of the Witt algebra constitutes the chief tool

in the proof of the main theorem. We begin our proof in the next section by

showing that if (v) fails then there is a root a such that Wx = Z¡#0 Lix generates

a Witt algebra. In the succeeding section we obtain explicit formulas for all ir-

reducible representations of the Witt algebra of degree not greater than p. The

remainder of the proof consists principally of the application of these formulas

to the representations of Wx on Z¡Lí+fa and Z¡L_^ + icI when, for some i,

Lß+ixL_ß_ix t¿ LxL_a; this is done to show that certain algebras of rank greater

than one cannot exist and that the Lß with LßL^ß = LXL_X generate a direct

summand of L of rank one.

The assumption that p ^ 5 is used only in the proofs of Lemmas 2.2 and 4.1.

The proof of Lemma 2.2 cannot be extended since when p = 5 there actually

does exist a representation of the type considered in that proof, in which v is

represented by a nonzero scalar. However it seems likely that our theorem re-

mains true when p = 5.

2. Proof that L contains the Witt algebra if not of classical type. Throughout

the proof of the main theorem we shall assume that L is a finite-dimensional

Lie algebra over a field £ of characteristic p > 5, with a Cartan subalgebra H,

and that L satisfies Axioms (i), (ii) and (A), with respect to H. Until close to the

end of the proof, in §5, we shall also assume that £ is algebraically closed. All

roots considered will be roots with respect to H. The letters i and j will always

denote integers.

Lemma 2.1. If L is not a direct sum of simple algebras of classical type,

then there is a nonzero root y such that 2y is also a root.

Proof. Under the hypotheses, Axiom (v) of [8] must fail, that is, there exist

roots a and ß (a ^ 0) such that ß 4- ia is a root for all f. If ß 4- ia = 0 for some

i then every ia is a root. Thus we may suppose that ß + ia # 0 (j = 0, •••,p— 1).

Suppose that none of 2a, 2ß + 2a, 2ß — 2a is a root. For each root ö choose

a nonzero element uß in Lp . By the Jacobi identity,

("/s"/f+J"-/! + iUß+uM-ß)Uß + iu-ßuß)uß+ix = 0.

But for i = + 2, the first two terms vanish, so that iß + ia)(ußu_ß) = 0. This

implies that a'LßL_ß) = ß'LßL_ß) = 0, which contradicts (A). Hence we may

take one of a, ß 4- a or ß — a as y, and the lemma is proved.

Now suppose that a is nonzero root such that ia is a root for some i = 2, ■ ■ ■, p—2.

Consider the subspace K of L spanned by all Lix (including L0 = H). Then K is

a subalgebra, and its center Igclearly is {h e H | a(/i) = 0}. The quotient algebra

K/I has rank one, with Cartan subalgebra H/I, and the roots of K/I consist
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of those mappings id. of H¡I which are induced by roots of L of the form ia.

It then follows easily from [9, pp. 42-47] (see [2, Lemma 3.1]) that K¡I is a

Witt algebra, with ia a root for all i, and that there are nonzero elements uix

in Lix such that uixujx = ii -j)ui¡+J)x (mod I). Since I £ H and LixLjx ç L(¡+J>,

this implies that

(2.1) uixuJx = ii -7>(i+J> if i + j #0 (modp).

We may assume that u0 was chosen so that uxu_x = 2u0. We may write

u2xu_2x = 4u0 + 3-2-lv, where v is some element, possibly 0, in I. We shall

show by induction that

(2.2) uixu^ix = 2iu0 + (i 4- l)i(i — l)v,     i = 0, ■•■,p— 1.

Indeed, for i = 3, — , p —1, we have (i — 2)uixu_ix = iu(i-,)Xux)u-lx =

("(;-!)*"-;>*+ "(i-DaKw-J = -2(2i-l)t/0 + (1 4- i)u(i-,)xu_(i_,)x =

(i — 2)2iu0 + ii — 2)(i 4- l)i(i — l)v, which proves (2.2).

It would be convenient if we could conclude directly that t> = 0. However

this is not possible without referring to the imbedding in L and using the as-

sumption that Lis centerless, since (2.1) and (2.2) actually define a (p 4- ^-di-

mensional Lie algebra with center (v) which is a nontrivial central extension

of the Witt algebra. In order to show that v is in the center of L, we shall use a

device motivated by the existence in the Witt algebra of two nonconjugate Cartan

decompositions, each giving rise to a convenient multiplication table.

The Witt algebra W over £ may be regarded as the Lie algebra of derivations

of the p-dimensional commutative associative algebra £[x] with xp= 1. Thus W

has a basis f0,fi,---,fP-i, where ft is the derivation of £[x] determined by

x/; = x'+1, and these basis elements have the multiplication table

(2.3) fifj = ii-j)fi+j,

where the subscripts are added modulo p. Taking y = x — 1 as a generator

of £[x], so that this algebra becomes £[y] with yp = 0, we see that W also

has a basis e-„e0,■■■,ep^2, where ye¡ = y'+1, and for — 1 _ i, j ^ p — 2,

(2.4) efij - (i - j)ei+j,       ek = 0ii k>p-2.

Since xe¡ = (x — l)e¡ = (x — 1)'+1, we have

(2.5) et =   I   (i+. l)i-iyft-j,       i= -1.-.P-2
j=o \    J    I

and similarly, since y/¡ = (y 4- l)i+1,

fi =   Z   ( le,-,, ¿ = 0,---,p-l.
;-o \   J    I



382 RICHARD E. BLOCK [February

We are now ready to complete the proof that L contains the Witt algebra.

Lemma 2.2. Suppose that a is a nonzero root such that ka is a root for

some k = 2,---,p — 2. Then all ia are roots, and there are nonzero elements

uix in Lixfor i = 0,---,p — l such that uixuJx = (i — j)u^+J)x for all i, j, that is,

Lx and Lkx generate a Witt algebra.

Proof. Choosing the elements ulx in K so that (2.1) and (2.2) hold, what

we must show is that the element v in I is zero. Let Wx be the subalgebra of L

spanned by v and the uix, i = 0, 1,—,p— 1. Suppose that v^=0, and set

e't=   Z f't^í-iy-íi-i)..    i- -1.-.P-2    íe'k = 0iík>p-2).
j = o\    J    1

Since Wx¡ív) is the Witt algebra, we have

c/ej = ii-j)e'i+J mod(u).

Since e'0 = u0 — u_x, there is no term in v in e¡e'0, and it follows that e'0 and v

span a Cartan subalgebra of Wx with one-dimensional root spaces spanned by

the e'i, i= —1,1,2,—,jp—2. Therefore e\e'j has no term in v unless ¿4-j = 0

mod p. But e'i is uix plus terms of lower index, so the only term in v in e'ie'p^i

is that of uixu(p-i)x, that is, e¡e^t = ¿(i 4- 1)(í — l)v. Now suppose that

ßiv)¥=0 for some root p\ Consider the representation space M = Z¡ Lß + ixior

Wx under right multiplication. Since a(u) = 0, (/? 4- ¿a)(¡;) = ß(v) for all i, and u

is represented by a nonzero scalar. The elements e('p_1)/2, eJp+1)/2, ep-2 and

v span a subalgebra B of H^ containing u in its square.

Let N be an irreducible B-submodule of M. Since v is represented by a non-

zero scalar of trace 0, N has dimension p, M = N, and M is irreducible under B.

But since p> 5, ep_2 is in the center of B, and so is represented by a scalar

on M. Therefore ep-2e2, which is a nonzero multiple of v, is represented by

0, a contradiction. Hence ß(o) = 0 for all roots ß, and v is in the center of Land

so vanishes. This completes the proof of the lemma.

3. Representations of the Witt algebra. Let W be the Witt algebra over a field £,

with basis e_1,e0,---,ep_2 and multiplication given by (2.4). Let F be a vector

space over £ with basis v0,v„---,vp_,, and let a, b be given scalars. For each

e¡ define a linear transformation on V by setting (for i = 0,—,p — 1)

Viej = li + iJ+l)a]vi+J   if   (t,j)^(0,-l);   vk = 0   if   fe>p-l;

(3.1)
v0e_, = bvp_,.

Note that if j > p — 2 then either vi+j = 0 or i = 0, j = p — 1 and the coef-

ficient of vi+J vanishes. We claim that the linear mapping A = Aab, determined
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by (3.1), of Wto linear transformations on V, is a representation of W. Indeed

if j # k and either i / 0 or j, k ^ — I then

(»(*>* - iVißkPi

= {[i 4- íj + l)a][i+j + ik + l)fl] - [i + (/c 4- l)a][i 4- kij + l)a]}vi+j+k

= (/-*)[' + (1 +J + fe)«>»+j+* = C/-fc)»i«j+* = »à«/«*)-

Also, if k > 0 then iv0e-l)ek — (v0ek)e-, = 0 — /c(/c 4- l)avk-, = ( —1 — k)v0ek-,

= vQie-,ek), and (»o*.^ - (ü0e0)e_x = [pi-\ + a)-ba]vp-, = -v0e_,

= v0ie_,e0). Hence A is a representation.

If a — 1 and b = 0 then v0,v,,---,vp_2 span a subspace of K which is invariant

under all e¡. We shall denote by A'10 the restriction of A10 to the representation

of W on this (p — l)-dimensional subspace.

Lemma 3.1. Let A = Aab be the representation of W defined above, and

suppose that a # 0,1. Then there exists a characteristic vector v of e* which

is annihilated by ef and e2, and for any such v, the characteristic value

for e*   is a — I.

Proof. Clearly vp-, satisfies the conditions for v. Now suppose that

v # 0, ve0 = cv and ve, = ve2 = 0. Since Vis spanned by characteristic vectors of

e$ with distinct characteristic roots, we may suppose that v = v¡ for some i

(0 _ i _ p — 1), and thus c = i + a. But v¡e, = 0 only if i = p — 1 or i + 2a = 0,

while vfi2 = 0 only if i = p — 1 or i = p — 2 or i + 3a = 0. Therefore the con-

ditions that vfi, = v¡e2 = 0 and a =^0,1 imply that i = p — 1 and c = a — 1,

and the lemma is proved.

Theorem 3.1. Let W be the Witt algebra over an algebraically closed field

F of characteristic p > 3. The (nontrivial) irreducible representations of W

of degree not greater than p are, up to equivalence, the mappings Aab

ia,beF; (a,b)#(0,0), (1,0)) and A{0 defined above. Two of the irreducible

representations Aab,Acll, with ia,b) ^ ic,d), are equivalent if and only if b = d

and either a = 1, c = 0 or a =0, c = l.

Proof. The Witt algebra is a restricted Lie algebra, and for the basis elements

e¡ (satisfying (2.4)) we have ef = 0 for i= -l,l,2,---,p—2, and el =e0. Ii

A is a (not necessarily restricted) irreducible representation of a restricted Lie

algebra K over £, then for any k in K, by Schur's Lemma (/cA)p — (/cp)A is a

scalar multiple of the identity transformation. In particaulr if A is an irreducible

representation of W, there are scalars s¡ = e,(A) such that

(3.2) i<$f-4   =eo(A)/, iefy = eiiA)I,       i = -1,1,2,-,p-2.

The irreducible representations of W over £ have been considered by Chang

[3]. For any given values of e¿ (¿ = — 1,—,p —2) he determines the number of
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inequivalent irreducible representations A of IT of each degree whose invariants

e¡(A) have the given values. His results on the irreducible representations A of IT

of degree not greater than p [3, pp. 172, 176] are as follows: e((A) = 0 for

i = 1,—,p — 2; moreover for given values a-,,e0,0,•••,0, of the invariants, the

number of inequivalent irreducible representations of W is p, all of degree p,

in case e0 # 0; p — 1, all of degree p, in case e0 = 0 and e_x # 0; and, p, of

which p — 2 are of degree p, one of degree p — 1 and one (the trivial represen-

tation) of degree 1, in case e0 = e_,=0.

Let V ' be an irreducible invariant subspace of F for the representation A = Aab.

Since V is spanned by characteristic vectors of e% with distinct characteristic

roots, and since V contains a characteristic vector of e^, some v¡ (0 = / _: p—1)

is in V. Then V is spanned by all iiviejj)---)ejr, so that V is spanned by some

of the Vj. Repeatedly operating with et„ we see that v0,v„---,v¡ are all in V.

But by the result of Chang, the dimension of V is 1, p — 1 or p. Hence either

V' = iv0) or V = iv0,---,vp_2) or V = V. By (3.1), (t>0) is invariant only if

ia,b) = (0,0), and iv0,---,vp-2) is invariant only if (a,6) = (l,0). Therefore

Aab is   irreducible provided ia,b) # (0,0), (1,0), and A'10 is irreducible.

By (3.1), the representations A = Aab satisfy (3.2) with £_i(A) = 1 • 2 ■•• (p— l)b

= — b, e0(A) = ap — a and £i(A) = ••• = ep_2(A) = 0. Hence for any values

e_,,eo,0,•••,0, there is a Aa() having invariants with these values, and the rep-

resentations Aa+kb, for all k in £p, also have invariants with the given values,

but no other Acd has this property. Moreover e0(Afl6) = 0 if and only if aeFp.

By the result of Chang, it will complete the proof to show that Aab and Aa+kb

(k e £p, k / 0) are equivalent only if a = 0 and k = 1 or a = 1 and k = — 1.

But we see that this condition follows immediately from Lemma 3.1, taking

into account the fact that if a = 0 or 1 then vp-,e, = vp-,e2 = 0 and

vp-,e0 = —vp-, or 0. Thus the theorem is proved.

Since A is restricted if and only if e;(A) = 0 for i = —1,0, — ,p—2, we imme-

diately get the following consequence.

Corollary3.1. ^4ny (nontrivial) irreducible restricted representation of the

Witt algebra, over an algebraically closed field of characteristic p>3, is

equivalent to one of the p—1 representations A'10,A20, —,A_1>0, which are

irreducible and inequivalent.

4. Application of the representation formulas. If a is a root such that the root

spaces Lix generate a Witt algebra, we shall denote this Witt algebra by W„. If

also ß is a root, then Z,L^+i(I is a representation space for Wx; we shall write

2w Lß+ix = Mßx,
i

and  we shall write rßx for the representation  of Wa on  Mßx.  Note that

MßxM-ßx^H + Wx.
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Lemma 4.1. Suppose that a and ß are roots and that the root spaces Lix

generate a Witt algebra Wx. IfMßxM_ßx $ Wx then MßxM„ßx £ {h e H | a'h) = 0}.

Proof. We shall take nonzero elements uix in Lix (i = 0, •■•,p —1) such that

uixujx = ii — j)u(i+j)x, and also a basis e_1,e0,---,ep_2 of Wx such that (2.4)

holds.

If Mßx or M_ßx is one-dimensional then Mßx = Lß, M-ßx = L_ß, and

LßL_ß^H. Moreover LxLß = LxL_ß = 0, so that Lx(LßL_ß) = 0, that is

a(L^L_ß) = 0, and the conclusion holds in this case.

Now suppose Mßx is not one-dimensional. Then there is a root ß + ia distinct

from ß, and so (adu0)p does not vanish on Mßx. Hence not all composition

factors of rßx are trivial. Therefore Fßx either is irreducible of degree p — 1 or

p, or contains a composition factor of degree p — 1.

We shall now consider the possibilities for the representations of Wx on Mßx

and M_pa in a number of cases, showing that the first three cases cannot occur,

and that in the remaining cases the conclusion of the lemma holds. We take a

basis h„---,hr-,,u0 of H such that a(/z¡) = 0, i = 1, —,r — 1. Under the hypoth-

esis, there is an /i, (1 _ / _ r — 1) such that some element in MßxM_ßx has a

nonzero component in h¡. In what follows, 0 and 1 will sometimes denote integers

and sometimes elements of £; which is meant should be clear from the context.

However i,j,k and n will denote integers.

Case 1. Tßx and F_ßx both irreducible of degree p, with TítI=Aaí, and

F-ßx = A¿b. where  a + a'^l and either a # 0, 1 or a' #0,1:

By symmetry we may suppose that a #0,1. There is a basis v0, ••■,yp_1 of

Mßx such that (3.1) holds, and similarly a basis v'0, ■■■,v'p_, oiM^ßx such that (3.1)

holds with v¡, a, b replaced by v'¡,a',b'. We denote by cy the coefficient of ht

in the expression for v-p'¡ as a linear combination of the given basis elements

of H plus elements in other root spaces. Then cu = 0 ii i > p — I or j > p — 1.

We shall only consider the cu with nonnegative subscripts. By the Jacobi identity,

iviv'j)ek = iviek)vj + viiv'jek) > taking the terms in ht, we get

(4.1) 0 - [i + (fc + l)a]ci+kJ + [j + ik + l)a']ciJ+k, fc # -1 or i,j # 0,

and, when k = — 1 and i = 0,

(4.2) Q = bcp-,j+jc0J-1,      ]*0.

With k = 0, (4.1) implies that ctJ = 0 unless (i 4-7)1 4- a + a' = 0. Since cy # 0

for some i,j, a + a' eFp; we write

a4-a' = nl,       le£,       O^n^p.

Hence if ctj # 0 then i 4- j 4- n = 0, p or 2p.

By (4.1), if c¡í+1 = 0 then ci+,j = 0 unless il 4- 2a = 0. In particular, since
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a fí 0, if c0,;+i = 0thenctj- = 0. Also, with k = 2 in (4.1) we see that if c,_lj + 2 = 0

((' > 0) then ci+,j = 0 unless (i — 1)1 4- 3a = 0. Since a / 1, either il 4- 2a # 0

or (i — 1)1 4- 3a # 0 and hence

if c,,f+1 = c,_1J+2 = 0 then ci+lJ = 0 (¿>0),

(4.3)
if c0J+, =0 then ci; = 0.

Now suppose that i + j + n = 2p. Then cu is one of

^p — n + p.Oj^p-n + p— 1,1 s '"s^p —n.ps^p-n—l.p+1

(all subscripts are nonnegative). Since the last two terms vanish, repeated appli-

cation of (4.3) shows that all terms vanish, and cu = 0.

Next suppose that i +j + n = p. Then ctj is one of cp-n0,cp-„-.,,, ••■,c0p_„.

Since we have shown that cp_lp_„+1 = 0, and since n # 1, (4.2) implies that

co,p-n = 0. Then repeated application of (4.3) again shows that ctJ = 0.

Finally, if i + j 4- n = 0, then i =j = n = 0, and the only relevant ct] is c00•

But (4.2) with j = 1 implies that c00 = 0. Hence Case 1 cannot occur.

Case 2. Degree p, with one of Tßx,Y_ßx irreducible, and the other having

a ip—l)-dimensional invariant subspace:

By symmetry we may suppose that Tßa is irreducible, and hence Tßx s Aab

where ia,b) # (0,0),(1,0). Take a basis v0, ■■■,vp_, of Mßx such that (3.1) holds.

Then M_ßx has a basis v'0,---,v'p_, such that

v'fij = (i 4-7' 4- !>,'+;,        ¿ = 0,—,p-2,

where »¡' = 0 if i>p — 1, and yp_!e0 is a linear combination of v¿,■•-,vp-2-

Changing v'p-, by subtracting a suitable linear combination of v0,---,vp-2, we

may suppose that t;p_1e0 = 0. By a weight argument, there exist scalars

b'_,,b',,b'2,---,b'p-2 suchthat

vp-,e_, = bL,v'p-2,vj,-,ei = b'¡v'^,,    i = l,2,--,p-2.

Write (ade_!)p= D. Then D is a derivation which annihilates M_ßx and

MßxM_ßx. Therefore iMßxD)M_ßx - 0. Since D acts as the scalar —bl on Mßx,

this implies that £> = 0, and hence a # 0,1.

We continue using the notation cu of Case 1, and write a ' = 1. In particular

with n defined as before, it follows that n#l,2. Now (4.1) holds provided

7' # p - 1 or k = 0. Moreover if ; # p - 1 then (4.2) and (4.3) hold. If j = p - 1

and k = 1 or 2 then instead of (4.1) one has

0 = li + ik + l)a]ci+ktP_, + b'kcirk..,,

and hence, as in the proof of (4.3), if c¡0 = c¡_, t = 0 (/ > 0) then cl+lp_, = 0,

and if c00 = 0 then c,p-, = 0. We need only show that cp_„ 0 = cp_„_x x = 0
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in order to carry through in this case the previous proof that cu = 0 if

i + i + n = 2p. If i # 0, an analogue of (4.2) obtained by taking 7 = 0 and

k = — says that 0 = ict-lf0 + 0. Since n # 1, it follows that cp_„0 = 0. But

then (4.1) with i = p — n — I, j = 0 and k = 1  also gives cp_„_,t, = 0.

No further use of (4.3) when j = p — 1 is made in Case 1 unless n = 0, in

which case we must show that cliP-1 = 0 = coo. But since b = 0, (4.2) with

7 = 1 implies that c00 = 0, and we have already noted that this implies that

cltP-1 = 0. Hence Case 2 cannot occur.

Case 3. Degree p, with one T^,r_pa irreducible and the other having a

one-dimensional invariant subspace:

We may suppose that Mßx is as in the proof of Case 2. Let v'p_, be a basis of

the one-dimensional invariant subspace of M_ßx. Then M_ßx[ivj-j) has a basis

v0,---,vp-2 such that ölei = ii +j + l)vi+j, where vk = 0 ii k > p — 1. Take an

element v¡ in v¡, i = 0,---,p — 2. Then v[e0 = (i 4- í)v¡ + diVp_, for some scalar

d¡. Changing v¡ by adding c/¡/(¿ 4- l)up'-i to it, we may assume that

*>íeo = O + l)yí- By a weight argument,

v¡ej =   (i +7 + iK+j if i +7 # P-l and (¡J) # (0,-1), (p - 1,-1);

ut=   0   if k> p — 1,

and there are scalars bj, / = —1,1,2, •••,p —2, such that

p¿€_i = &'-i»¿-i,     »^-1-1 = &í»i-i,   J = l,—,J>-2.

Write a' = 1, and define the cy and n as in Case 1. Then as in Case 2, ¿> = 0

and hence a # 0,1 and n # 1,2. Now (4.1) holds with only the coefficient of

ciJ+k changed for certain subscripts, and (4.2) holds except when j ¥= p— 1. It

follows that the proof in Case 1 goes through here without change —■ the ex-

ceptional case of (4.2) is not used since p — «4-l#p — 1 because n # 2. Hence

Case 3 cannot occur.

Case 4. Tßx and T^ßx both irreducible of degree p, with Tßx = Aab and

r_ßx = Aa'b., where  a + a' = 1   or a = a' = 0  or  a = a' = 1:

Since the irreducible representations A0b and Alb are equivalent, we may as-

sume that a + a' = 1. Let v¡ and v'¡ be as in Case 1. For any integer k, let k*

denote the integer such that —l_/c*<p — 1 and k = k* (modp). For all

i, j, v¡Vj is either 0 or a characteristic vector for e0 with characteristic root

(j + a)\ 4- 0' 4- a')\ = ii +j + 1)1. Let du denote the coefficient of e(i+J + 1). in

the expression of v¡Vj as a linear combination of e_x, • •-,£„_2, h,,---,hr_, (thus

vtVj = áyejj+j + D» unless (i +j+ 1)* = 0). In particular, du = 0 if i > p — 1 or

j > p — 1. As with the ctj, we shall only consider dtj with nonnegative subscripts.

To prove the conclusion of the lemma, it suffices to show that all du vanish.

We have iviv'j)ek = ív¡ek)Vj + vfv'jej); this gives
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[(i +7 + 1)* -k] [(i 4-7 + 1)* + k] %j

(4.4)

= [i + ík + l)a]di+kJ + [j + (fc + l)a']diJ+k, k # -1 or i,j # 0,

where, for any integer i, we write i"1 = 1 if i < p — 1 and ¿x = 0 if i = p — 1.

If (i + j + 1)* # — 1 and k = — 1 then the coefficient of dy in (4.4) is nonzero,

so that if d(_, j = dfj-i = 0 then dfj- = 0 (if (i, /c) = (0, — 1) then d;_, tJ is replaced

by dp-,j, since the term in dj-ij in (4.4) must be replaced by bdp_,j-, similar-

ly if (7, k) = (0, -1) then dUi-, is replaced by dip_j). It follows by induction

that to prove that all dy vanish it suffices to prove that dtJ = 0 whenever

(¿+7 + l)*=-l.

Now suppose that (i + j + 1)* = -1. With fe = p - 2, (4.4) shows that dy = 0

unless one of i,j is 0 or 1. Hence by symmetry the only remaining d;j- that need

to be considered are dlp_3 and d0p_2 • With / = 1, j = p — 4 and k = 1, (4.4)

gives 0 = (1 + 2a)d2-p_4 + ( —4 + 2a')dliP_3, and hence dlp_3 = 0 unless

a' = 2-1. If a' = 2-1 then, with i = \,j = p - 5 (> 1 since p = 7) and fc = 2, (4.4)

gives 0 = 0 + ( —5 + 3a')dlp_3 = d1>p_3. Hence always dlp_3 = 0. Now with

i = 0, j = p - 3 and k = 1, (4.4) gives 0 = 0 + (-3 + 2a')d0p_2. Also with

j = 0, 7' = p - 4 and fe -»2, (4.4) gives 0 = 0 + (-4 + 3a')d0,p-2 • Since either

-3-1 +2a'#0 or -4-1 + 3a' #0, c/0)P_2 = 0. Hence always dtJ = 0 and the

conclusion of the lemma holds in Case 4.

In the next three cases Tßx and F_ßx will be reducible of degree p. We will

take a basis v'0, •••,t>p_1 of M_^a with multiplication as in the appropriate one

of Cases 2 and 3, and similarly for a basis of Mßx, without the primes. We may

write a = a' = I. We shall use the same notation for d¡j,i* and ¿x as in Case 4,

except that now since a + a' = 2 we must replace (i + j + 1)* in the definition

of dt} by (i+7 + 2)*.

Case 5. Degree p, Tßx and T_ßx both having an invariant subspace of di-

mension p — 1 :

The analogue of (4.4) holds, with (i+j + 1)* replaced by (i +7 + 2)*, except

that the term in di+kJ or íí(J+ft is also changed if i — p — 1 or 7 = p — 1. As

in Case 4, it suffices to prove that du = 0 whenever (i +7 + 2)* = -1 and either

i = 1 or i = 0 or, now, i = p — 1. Therefore we must consider áp_lp_2, d,tP_4,

and i/0,p-3- With i = p - 1, j = p - 5 and fe = 3, ((i + 7 + 2)* + fc)x =0, and

the analogue of (4.4) gives 0 = b3d2p^5 + (—5 + A)dp_,jP-2, so that

dp_1>p_2 = 0. With i = 1, 7 = p —5 and & = 1, the analogue of (4.4) gives

0 = 0 + (-5 + 2)d1>p_4 and dlp_4 = 0. Then with i = 0, 7 = p - 4, fe = 1 we

have 0 = 0 + ( —4 + 2)d0p_3. It follows that always dij = 0, and the conclu-

sion of the lemma holds in Case 5.

Case 6. Degree p, Tßx and T_ßx both having an invariant subspace of di-

mension one:
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The analogue of (4.4) holds, with (i+j' + l)* replaced by (i+j + 2)*, ex-

cept that the term in di+kJ or d(>J+k is also changed if i + k = p — 1 or

j + k = p — 1. As before, it suffices to prove that dtJ = 0 whenever (i + j + 2)* = 1

and either i = 1 or i = 0 (since, with k = p — 2, i + k = p — 1 only if i = 1)

But this is shown exactly as in Case 5, and the conclusion of the lemma holds

in Case 6.

Case 7. Degree p, one of Tßx having an invariant subspace of dimension

p — 1, the other having an invariant subspace of dimension one:

This case is handled as in Cases 5 and 6. Suppose Fßx has the (p — ̂ -dimen-

sional invariant subspace. Then we need only show that dp_lp_2 = dlp_4

= d0,p-3 = 0, and this is shown exactly as in Case 5. Hence the conclusion of

the lemma holds in Case 7.

Case 8.   Both Tßx and T_ßx have degree p— 1:

We simply set z;p_, = up_, = 0 and use the proof in Case 5. Hence the lemma's

conclusion holds in Case 8.

We have considered all possibilities for Tßx and V_ßx. Thus the lemma is proved.

5. Existence of a direct summand of rank one.

Lemma 5.1. Suppose that a and ß are roots such that the root spaces Lix

generate a Witt algebra Wx. If ß + ia is also a root for some i = 1,—,p—1,

then all ß + ia are roots and (more important) LßL_ß £ Wx.

Proof. We shall use the notation Mßx, M_ßx as in Lemma 4.1. Suppose that

the hypotheses hold but that LßL_ß $ Wx. Take nonzero elements uß in Lß,uß+ix

in Lß + ix and u_ß in L-ß, and write ußu_ß = hß. Then ßQiß)^0 by (A) but

aihß) = 0 by Lemma 4.1, so that iß + ia)Qiß) # 0. By the Jacobi identity,

iußuß + lx)u.ß = iußu_ß)uß + ix + ußiuß + ixu-ß).

But uß + ixU-ße Lix C\MßxM_ßx, which vanishes by Lemma 4.1. Therefore,

iußuß + ix)u_ß = hßuß + ix = — iß + ia)ihß)uß + ;x # 0 and hence 2ß + ia is a root.

Since dim M^ > 1, dimM^ _ p — 1. It follows that dimM2/Sa _ p — 2, so that

there are distinct roots ß + ja and ß + ka such that 2ß + 27'a and 2ß + 2fca are

roots. By Lemma 2.2, Lß+jx and L2ß + 2Jx generate a Witt algebra Wß+Jx, and

similarly we get Wß+kx. By Lemma 4.1, aiLß+JxL_ß_jx) = 0 and so LXL_X $ Wß+jx.

We may now apply Lemma 4.1 to Wß+Jx and MXtß+jxM_xß+jai and conclude

that iß +ja)ÍLxL_x) = 0. Similarly we have iß + fca)(LaL_J = 0. This implies

that a(LctL_£t) = 0, contradicting (A). This proves the last statement of the lemma.

If not all ß + ia are roots then Mßx and M_ßx both have dimension p—1 and

so are as in Case 8 of the proof of Lemma 4.1. But the treatment of Case 8 did

not use the hypothesis of Lemma 4.1 that MßxM_ßx ^Wx, and showed that

aiLßL_ß) = 0. But LßL_ß ^Wx, and so, by (A), a(LßL_ß)^0, a contradiction.

Thus the lemma is proved.
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We are now ready to complete the proof that, under the hypotheses of the

main theorem and the assumption that the base field is algebraically closed, L

is a direct sum of algebras which are either simple of classical type or of rank

one. Suppose that Lis not a direct sum of simple algebras of classical type. Then

by Lemmas 2.1 and 2.2, there is a root a such that the root spaces Lx,L2x,---L(p_,)x

generate a Witt algebra Wx. For each nonzero root ß let hß be a nonzero element

of LßL_ß, and write

5= {ß\ß a root, /?#0, hßeihx)},   K = (/ij + Z Lß.
ß eS

If ß,yeS and LßLy^0 then ß + y is a root and 'LßLj)L_ß_y'=iLßL_ß-.j)Ly

+ LßiLyL_ß_j) £ L_yLy + LßL_ß £ (/ia). Hence K is a subalgebra of L. Since

ßihj) ¿0iißeS,it follows that (/ij is a Cartan subalgebra of K. If ß e S and ß

is not of the form ¿a, write

Jß= (lLil+jfJ nK.

Then Jß is a subalgebra of K and (ÄJ is also a Cartan subalgebra of Jß. By a

result of Kaplansky [6, Theorem 4, p. 164] on Lie algebras of rank one, the

roots form a group, so that Jß has dimension p2, and all iß are roots (this may

also be proved more directly with the use of the Weyl-Jacobson lemma). If

ßeS,y <£S and y #0, then LyL_y $ Wß, and so, by Lemma 5.1, LyWß = 0.

Now let K* be the subalgebra of L generated by all Ly such that y $ S and

y # 0. Then X*X = 0. Every Lö (<5 7e 0) is contained in K or K*, and since H

is spanned by the L¿L_¡ because L= L2, we have K + K* = L. Since M* = 0

and L is centerless, X n X* = 0, and hence L is the direct sum of the ideals K

and K*. It is easy to see that the rank one algebra K is simple, or this may be

concluded by using [2]. Therefore by induction it follows that Lis a direct sum

of simple algebras which are either of classical type or have rank one.

Now suppose that the base field £ is not algebraically closed, and let £ be its

algebraic closure. It is obvious that LE satisfies axioms (i) and (A), with respect

to HE. Since by (ii) the roots span the dual space of H, no nonzero element of

HE is annihilated by all roots, and it follows that LE also satisfies axiom (ii).

For each of the simple direct summands L;(£) of LE, let L¡ be the subalgebra

of L generated by all La for nonzero roots such that (La)E is in L¡(£). Then

(L¡)£ = L¡(£), L¡ is simple, and L is a direct sum of the L¡. Moreover, L¡ is of

classical type or of rank one according as L¡(£) is, and L¡ satisfies our axioms.

The only thing we need to do to complete the proof of the main theorem is

to show that if £ is perfect and L has a one-dimensional Cartan subalgebra

H = (u0)such that Axiom (A) is satisfied, then Lis an Albert-Zassenhaus algebra.

Let £ be the algebraic closure of L. Then by [2] LE is an Albert-Zassenhaus

algebra, the roots of L with respect to H form a group, and LE has a basis {ux}

containing u0 and satisfying (1.1), where each root a is identified with the scalar
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a(u0) and uxe(Lx)E. The facts in [9, pp. 42-47] used in the proof of Lemma 3.1

of [2] are valid for £ perfect. Hence elements u'ix in Lix (i = 0, — ,p — 1), with

«ó = "o> may be chosen so that ujxujx = (i —j)au'ixJrJx, and this choice is unique

even among elements in (Lict)£. It follows that uix = u¡xeL¡x. Hence the basis

elements ux are in L, so that Lis an Albert-Zassenhaus algebra. This completes

the proof of the main theorem.

6. Remarks on representations of the Witt algebra and on algebras of rank one.

We shall now indicate the form that Theorem 3.1, on the representations of the

Witt algebra W, takes when the representations are expressed in terms of the

basis elements f0,---,fp-,  of IP having multiplication table (2.3).

Let Z be a vector space over the base field £ of W, with basis z0,z,,---,zp_,,

and let a and c be given scalars. For each fj define a linear transformation on Z

by setting (for i = 0, —,p— 1)

(6.1) zjj = (c + i +ja)zi+j,

where all subscripts are taken modulo p. Then we claim that the linear mapping

Q = Qac, determined by (6.1), of Wto linear transformations on Z, is a represen-

tation of W. This may be shown directly, or if c $ Fp, by the use of part of the

multiplication table of a suitable Albert-Zassenhaus algebra, as in [2, p. 22].

If ceFp, one of the more general Lie algebras of [1, Theorem 9, p. 133] may

be used in the same way to show that Q is a representation.

If c = 0 and a = l then z„---,zp_, span an invariant (p — l)-dimensional

subspace of Z. We shall denote by Q.¡0 the restriction of i!10 to this subspace.

Since the subspace contains no one-dimensional invariant subspace Sl',0 is ir-

reducible and equivalent to A'10.

Theorem 6.1. Let W be the Witt algebra over an algebraically closed field

F of characteristic p > 3. The inontrivial) irreducible representations of W

of degree not greater than p are, up to equivalence, the mappings Qac (a,ce£;

c$Fp or 0^0,1) and fl/0. The irreducible representation Qac is equivalent

to the representation Aab of Theorem 3.1 where b = cp— ap — (c — a). Two ir-

reducible representations i2aiCl and £ia2C2 are equivalent if and only ifc2 = c, + i,

for some i in Fp, and either a, = a2 or iaua2) = (0,1) or (1,0).

Proof. Let Q = fiac be one of the representations defined above. Since

e_,=f.,, [Qac(e_ ,)]p = e_,I where e_,= \\ic + i - a) = cp - ap ~ic - a).

Write z = z0 +•••+ zp_i. By (2.5), e0=/o-/-i> e,=f,-2f0+f_, and

^2 =/a - ¥i + 3/o -f-i- Thus ze0 = Z,[(c + i)z( -(c + t - a)z^,] = (a-l)z,

and similarly it may be seen that ze, = ze2 = 0. If Z contains a one-dimensional

subspace invariant under all £2BC(/j) then the subspace is spanned by some z¡

with c + i = c + i + a = 0. Now suppose that c j§£p or a ^ 0, and that Z con-

tains a proper invariant subspace Z'. Then Z' has dimension p—1 and is irre-
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ducible, the restriction of Q to Z' is equivalent to Ai0, and ze0eZ'. If z£Z'

then a = 1, while ii zeZ' then z must correspond to a scalar multiple of i;p_2

under the equivalence with Ai0, so that a=0. But cp — ap — (c — a) = 0, so

that ceFp.

It follows that if c $ Fp or a # 0,1 then fiac is irreducible. Comparing z with t>

of Lemma 3.1, we see that Qac is equivalent to Aab, where b = e_, = cp —ap— ic — a).

The rest of the theorem follows immediately from Theorem 3.1 and the fact

that if c is a root of (x — a)p — (x — a) = b then the other roots are c + i for i

in £p. Thus the theorem is proved.

As with Corollary 3.1, there is an immediate consequence for restricted rep-

resentations.

Corollary 6.1. Any inontrivial) irreducible restricted representation of the

Witt algebra, over an algebraically closed field of characteristic p>3, is

equivalent to one of£l',0,Q20,---,Q-,0. These p — 1 representations are inequiv-

alent and irreducible, andaré equivalent to A',0,A20,---,A-,0,  respectively.

In [2] an important tool in the proof is the use of the formulas (6.1) above

for the representations Qac with c <£ £p. The proof in [2], at least for p > 5, could

be brought into closer relationship with the proof in the present paper by using

Theorem 6.1 above. This remark refers principally to the proof in [2, pp. 25-29]

that / is skew-symmetric. That proof could be somewhat simplified by using

arguments just like that in Case 4 of Lemma 4.1 above to eliminate all except

a couple of possible values for /(a, /?)+/( — a, ß). For the remaining values the

system of dy's, and hence the ux+ißU-x+jß, are determined uniquely up to scalar

multiple. A computation in two ways of (uißux)u-x then leads to the conclusion

that f is skew-symmetric.
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