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1. Introduction. For a number of years, the only known simple Lie alge-

pras of characteristic p>0 not analogues of the classical algebras of char-

acteristic zero were those of dimension pn of H. Zassenhaus [9], and of dimen-

sion np" of N. Jacobson [5], both generalizations of the ^-dimensional alge-

bras of E. Witt. During the last few years, a number of new classes of simple

Lie algebras have been determined. These are due to Kaplansky, who in [6]

noted the existence of a class of algebras of dimension rpn, 1 gr g w, generaliz-

ing those of Zassenhaus and Jacobson; to M. S. Frank, who in [2]obtained

algebras ©„ of dimension (n — l)(pn — l); and to A. A. Albert and M. S.

Frank, who in [l ] determined new classes of simple algebras Xn, %$m, So, and

Sj, of dimensions (n — l)pn, p2m — 2, pn — l and pn — 2 respectively, and a gen-

eralization of the Zassenhaus algebras, of dimension pn.

In this paper we obtain a new class of simple Lie algebras, which we shall

designate by the symbol £(®, 5, /). Here ® is an additive group, of order

pn> 1, which is a direct sum of a finite number of finite elementary ^-groups

®oi • • • , ®m- These groups are then finite dimensional vector spaces over

the prime field %p. We let m(@) denote the index m, allow ®0 to be zero, and

assume that either p>2 or ® ?^®i. For i = l, • • • , m, we take 5< to be a non-

zero element of ®<, and write 5=5i+ • • • +Sm. We index a basis of 8(®, 5,/)

over a field $ of characteristic p by the elements of ® other than 0 and — S,

denoting by v(a) the basis element corresponding to a. Furthermore we as-

sume given, for each i, a nondegenerate skew-symmetric biadditive function

/,- on (®,-, ®j) to §, such that, for i = l, • ■ • , m, there are additive functions

gu hi, on ®i to %, with f,-(5.) =0 and/<(a, 8) = gi(°t)hi(0) -gi(0)h{(a) for every
a and 8 in ®<- The definition of the algebra 8(®, S,f) may then be completed

by defining multiplication in the algebra by v(a)v(8) = JZ?-ofi(ai, 0d
■v(a+8 — 8i), where a< and 8i are the components of a and 0 in ®<, and where

50 and v(0) denote zero. Then we shall prove that 8(®, 5,/) is a central simple

Lie algebra. Its dimension is pn — 2 except when ® = ®0, in which case the

Presented to the Society on September 1, 1955 and April 14, 1956 under the titles Some

properties of new simple Lie algebras and New simple Lie algebras of order p"—2; received by the

editors March 8, 1957.

(') This paper is essentially the author's doctoral thesis, the University of Chicago, August,

1956. The author wishes to express his gratitude to Professor A. A. Albert, under whom the

thesis was written.

This work was sponsored in part by the Office of Ordnance Research, U. S. Army, under
Contract DA-11-022-ORD-1571.

421



422 RICHARD BLOCK [November

dimension is pn — 1. The algebras for which ® = ®0 and @ = ©i are direct

generalizations of the algebras S0 and 85, respectively.

G. B. Seligman in [7; 8] considered algebras over an algebraically closed

field of characteristic p>7, and proved that if a restricted simple Lie algebra

has a restricted representation with the associated trace form nondegenerate,

then the algebra must be classical. It has been an open question whether

there exist nonclassical restricted simple Lie algebras with any nondegenerate

trace form. We shall find a nondegenerate trace form for every one of the

algebras 2(®, 5,/), and shall determine which of them are restricted. These

restricted algebras generalize the algebras 5Sm. We shall show them to be the

same, up to isomorphism, as a certain class of algebras which we shall de-

note by 93m,M, these being subalgebras of the Witt-Jacobson algebras. We

shall also examine the closely related simple algebras ©„ and £„ (w>2) for

the property of being restricted and having a trace form, proving that <3„ is

restricted, but has a nondegenerate trace form if and only if w = 3, and that

£„ is not restricted. Thus the algebras %$m,u and ©3 constitute the only known

nonclassical restricted simple Lie algebras with a nondegenerate trace form(2).

We shall show that if p>3, ®^®o, ®^®i and n>2m, then g(®, 8, f) is

not isomorphic to any previously known simple Lie algebra, even though its

dimension is not new('). The question as to when algebras of the same dimen-

sion are nonisomorphic is a very deep one, especially when the strong prop-

erties of matrix algebras are not available. In general, it is not enough to

show that the algebras have Cartan subalgebras of different dimensions.

For it has not been known whether the Cartan decompositions relative to

two Cartan subalgebras of a simple algebra need be essentially the same. In

fact we shall give an example here, for any positive integer q and any prime

characteristic, of one of our simple algebras 8(®, 5, /) with Cartan subalge-

bras of q distinct dimensions.

Here we shall make the first use of the algebras of derivations for distin-

guishing among algebras of the same dimension. For p>3, we shall deter-

mine the algebra of derivations of 2(®, S, /), and show that two algebras

8(®, 5, /) and 8(®', 8', /') are isomorphic only if either ®0 = 0, ®0' =0 and

m(®)=m(®'), or ®0^0, ®0'5*0 and min [2, m(®)]=min [2, m(®')]. More-

over the determination of derivations yields a proof that except for a 7-

dimensional algebra of characteristic 3 and possibly certain algebras of char-

acteristic 2, the algebras 8(®, 5,/) are nonclassical.

2. New Lie algebras. Let g be a field of characteristic p and let the non-

zero group

(2) Certain of our results on restrictedness have also been obtained by Seligman.

(3) Added in proof. Since this was written, the paper of S. A. Jennings and R. Ree, On a

family of Lie algebras of characteristic p, Trans. Amer. Math. Soc. vol. 84 (1957) pp. 192-207,
has appeared. They determine simple Lie algebras of dimensions m(pn — 1), mp", and pn—2,

where 1 gf»<re. Their algebras of dimension p" — l are included among ours, and the class of

their algebras of dimension p" — 2 may be seen to be the same as the class of our algebras for

which © = ®i.
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(1) ®   =   @0 +   •   •   •   +   ®m

be the direct sum of a finite number of finite abelian groups ®o, • • • , ®m.

Then every a in ® has a unique expression as the sum

(2) a = ao + ■ • ■ + am

with components a,- in ©j. Select some 5 in ®. Then

(3) 5 = So + • • • +Sm (Si G ®i).

Also let/=/(a, 8) be a skew-symmetric biadditive form on ® taking values

in g. Now suppose that

u: a —» u(a) = ua

is a one-to-one mapping of ® onto a basis of a vector space £ over g. Then

the multiplication table

(4) Ua.Up = JZ f(oti, 8j)u(a + 8 - Si)
i-0

defines an anticommutative algebra 8 over %.

If 5, = 0 for more than one index i then, by taking the sum of the ®j

over those indices for which 5, = 0 and considering this as a single subgroup

©4 of ® with 5k = 0, we get an algebra of the type defined by Formulas (1)

through (4), with smaller m and with 5.5=0 except for one index, say i = 0.

Hence we may assume, without loss of generality, that

(5) So = 0,       8f r* 0 (i= 1, ■ ■ • , m),

where we allow @0 to be zero.

The definition of the algebra S does not involve any expression of the form

f(a,, 0j) with a;G®„ |3y£®j, i^j. Hence we may also assume, without loss

of generality, that all such expressions are zero, so that, denoting by fi the

restriction of / to ®,-, we have

f(a, 8) = /o(«o, 8o) +-\-fm(am, 8m).

We now determine when 8 satisfies the Jacobi identity. We have

(uauj)uy =  -J JZf(on, 8,)u(a + 8 - 8j)\uy

m

=  JZ /(«.", &)/(«i + 8i - Sh yj)u(a + 8 + y-Si-Sj).
iJ—0

For any particular k and /, we take the term for which i = k, j = l and, when

k^l, the term for which i — l, j — k, and add these to the similar terms in

(u0Uy)ua + (uyuj)up. We get a term in u(a+8+y — 5k — 5j) whose coefficient is

the following:
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f(ak, Bk)f(ai, yi) + f(yk, «*)/(«,, ft) + f(ak, ft)/(ft, yi)
(6)

+ /(fo, 7*)/(ft, «i) + /(ft, 7*)/(Yi, «i) + /(y*, «*)/(7i, ft),

plus a term, in case &?*/, obtained from (6) by interchanging k and /. This

term is the negative of (6) since / is skew-symmetric and so the sum is zero.

In case k =1, the coefficient is given by (6) plus the expression/(a*, Bk)f(yk, 8k)

+ f(8k,yk)f(ak,hk) + f(yk,ak)f(Bk,8k). Thus, since (6) is zero when k = l and

since u(a+8+y — 28,-) =u(a+B+y — 2Sy) only if £=/, we see that the Jacobi

identity is satisfied if and only if

(7) f(ai, Bi)f(yi, 5,) + /(ft, y,-)/(«,-, 5,-) + f(yit «,-)/(ft, 8,) = 0

for i = 1, • • • , m and for all a, /S and y in ®.

H fiyi, 8,) 5*0 for some 7,- in ®,-, then we take g<(a.) =/'(a,-, 8t) and hi(a,)

=/(7«, a.) [f(7,-, 8,)]_1, so that g< and hi are additive functions on ®<, taking

values in g, with

(8) giiS,) = 0.

Moreover, (7) implies that

(9) /(«,-, ft) = gi(a/)hi(B,) - gi(B,)hi(cxt)

for every a,-, ft in ®{.

Conversely if g = gi, h = ht are given additive functions on ®„ with values

in g, satisfying (8), then taking / such that (9) holds, we have f(ait 8<)

= g(a,)h(8i). Hence for a = at, ft=ft and y=7< in ®< we have

/(«, B)f(y, S,) + /(ft y)f(a, 8.) + f(y, a)f(3, 8.)

= [g(c*)h(fi)g(y) + g(3)h(y)g(a) + g(y)h(a)g(B) - g(B)h(a)g(y)

- g(y)K8)g(a) - g(a)h(y)g(8)]h(8i) = 0,

and (7) holds. Thus we have proved the following theorem.

Theorem 1. The algebra defined by Formulas (1) through (5) is a Lie

algebra if and only if it is true that for i = 1, • • • , m, either f(ait 8.) =0 for all

ai in ®i or there exist additive functions gi, hi on ®,- with values in g, such that

(8) awd (9) hold.

We note that the condition of Theorem 1 holds for any i such that ®<

is a vector space over gP of dimension S3, since (7) holds automatically

for such a ®,-.

3. Simple algebras. The algebra 8 contains the one-dimensional ideal

wov5, since for any a in ®, UoUa = 0. Henceforth we consider the algebra 8'

= 8 — Uoft. It has basis elements

va = v(a) = Ua + UoF (a £ ®, a 5* 0),
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and its multiplication is determined by

m

(10) VaVfi = JZf(m, 8i)v(a + 8- Si),        v(0) = 0.
«'-0

The subspace of 8' spanned by the basis elements va tor a^—S forms an

ideal. For by (10), vavp contains a term in z>_j only if a+0 — 5,= —5 for some i,

in which case a{= —0i and/(a,-, 0i) =0. We call this ideal 8(@, 5,/). The con-

dition of Theorem 1 for an algebra to be a Lie algebra holds for the algebra

8(®, 5, f) also, as follows from the proof of Theorem 1.

Theorem 2. If the algebra 2(&, S,f) is simple then each fi is nondegenerate

and ® is an elementary p-group.

For suppose that/(«i, Bj) =0 for some nonzero a,- in ®< and every Bi in ®;.

Then v(aj)vp = 0 for every B ln ®i so that v(a/)^ forms a one-dimensional ideal

of 8(®, 5, /) unless «;= —5. If «,-= —5 then V-is\$ forms a one-dimensional

ideal of 2(&, 5, /) unless 25=0, so that we may assume that m = l, that is,

5 = 5i, that 25=0, and that/(5, 0)=O for every 0 in ®. But then all elements

of the form va+va+s, a£®, a?^0, 5, span a proper ideal, since in this case

(va+va+i)v0=[f(ao, 0o)+f(au 0j)](va+is+Va+f)+s). Now if some ®,- is not an

elementary £>-group, then there is a nonzero element ai = pyi in ®,-, so that

f(a„ 0j) =pf(yi, Bj) =0 and fi is degenerate. Thus if each/,- is nondegenerate,

then each ®,- is an elementary £-group, so that ® is also an elementary p-

group and the theorem is proved.

We shall henceforth assume that 2(®, 5, /) is a Lie algebra, so that, if

ij^O and fi is nondegenerate, there are additive functions gi, ht on ®j such

that (8) and (9) hold.

We shall proceed to the proof of the converse of Theorem 2, making use

of the following two notions. For a in ®, a^0, —5, and x= JZ^o.-s ItpVp in

8(®i 8, /), we say that a is x-admissible if £^0, and we define the length \(x)

of x to be the number of nonzero coordinates (# of x.

Albert and Frank [l ] introduced the special cases of the algebras 8(®, 5,/)

for which ® = ®0 and ® = ®i, calling the algebras 80 and 2s, respectively. They

considered @ as being an w-dimensional vector space over the prime field $p.

The algebra 80 was proved to be simple for any p and w > 1 under the assump-

tion that f(a, 0)=O only if a and 8 are linearly dependent over gp- For the

algebra 2s, the notation wa in [l ] corresponds to our va+s- Albert and Frank

proved, for every p> 2 and w> 1, that 2s is simple if there is a fixed basis of ®

with 5 as a basis element, such that/(a, )8) =0 implies that a, B either are

linearly dependent over %p or both have zero coefficient in 5. In the following

two lemmas, we shall prove 80 and 2s to be simple under the weaker hypoth-

esis that / is nondegenerate.

Lemma 1. If ® = ®0, that is, m = 0, and if fis nondegenerate, then 8(®, 5,/)

= 8o is simple.
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For suppose that 9JJ is a nonzero ideal of 80 and that x = J^ t;pvp is a non-

zero element of 9JJ of minimal length. If X(x) > 1, let a and a' be distinct x-

admissible elements of ®. Then there is no 7 such that/(a, 7) = 0 and f(a', 7)

5*0, for otherwise xvy= 2^,p &f(8, y)vp+y would be nonzero and have smaller

length than x. Hence for any 7 in ®,f(a, 7) =0 if and only if/(a', 7) =0. Now

suppose that 7 is such that/(a, 7)5*0; then also f(a', 7)5*0. If we take

y=xvy= X)<3 £&f(ft 7)^+7, then a+7 and a'+7 are y-admissible, y is a non-

zero element of 3D? and X(y) ^X(x), so that y also has minimal length. There-

fore /(a+7, a'+7)=0 since f(a'+y, a'+7)=0. But also/(a, a')=0 since

f(a', a') =0, and so 0=/(a+7, a'+7) =/(a, 7) —f(a', 7). Hence for any 7 we

have f(a, y)=f(a', 7), /(a— a', 7)=0, so that by the nondegeneracy of /,

a — a'=0 and a = a', a contradiction.

Thus X(x) =1 and 9JJ contains some va with a5*0. Let 21 be the set of all

8 for which Vg is in 9)t. If /3£2l and/(ft 7) 5*0 then 7 £21, since vfi)y-e=f(B, 7;^
5*0. The nonzero element a is in 21 and by the nondegeneracy of/ there is an

a' with/(a, a') 5*0. Thus a' is also in 21. Suppose that y£2I. Then f(a', 7) =0,

so that f(a', a+7) =/(a', a) 5*0 and a+7 is in 21. We may choosey' such that

f(y, y') 5*0; thus 7'£2I. But then f(a, y') =0, /(a+7, 7') =f(y, y') 5*0, and
since a+7 is in 21, so is 7', a contradiction. Hence 21 = ®,^ contains every

basis element, 9ft = 80 and 80 is simple.

Lemma 2: If p>2, ® = ®i and f is nondegenerate, then the Lie algebra

8(®, S,/)=8a w simple.

In this proof we shall use our assumption that there are additive functions

g = gi and h = hi such that (8), (9) hold. We note that by the nondegeneracy

of/, there is no nonzero a in ® such that g(a) =h(a) =0. Let SR be a nonzero

ideal of 8s, x = 2^b 1^/3 be a nonzero element of ffi of minimal length, and

suppose that X(x)>l. If g(a) =0 for some x-admissible a, then with 7 such

that g(y) 5*0, we have/(a, 7) = — g(y)h(a) 5*0, \(xvy) ^X(x), a+7 —8 is (xvy)-

admissible and g(a+7 — 8) =g(y) 5*0. Hence we may assume that g(j3)?*0

for some x-admissible ft Now if g(a) =0 for some x-admissible a, then/(ft a)

= g(B)h(a)^0, xz>a5*0 since ft+a —85*0, and \(xva) <X(x), a contradiction.

Hence for every x-admissible ft g(8) 5*0. Take an x-admissible a and let

y=xv-a+2i. Then /(a, -a + 28) =2g(a)h(8) 5*0, S=a + (-a + 28)-8 is y-

admissible, y 5* 0 and X(y) S X(x), so that X(y) = X(x). Thus 8 — a + 8

= ft+( —a + 2S) — 8 is y-admissible for every x-admissible ft and since 8 is

y-admissible and g(8)=0, we have g(B— a+8) =g(B) — g(a) =0 for every x-

admissible ft Now let a and 8 be distinct x-admissible elements of ®. If

a+B — 85*0, then since \(xvp) <\(x), we have xvp = 0, /(a, 8)=g(a)h(B)

— g(a)h(a)=0, h(a)=h(B), a=ft a contradiction, while if a+ft—8 = 0, we

obtain the same contradiction by using xv-$.

Hence X(x) = 1 and 'SSI contains some basis element va. If g(a) =0, so that

h(a) 5*0, then with 8 such that g(B) 5*0, we have/(a, 8) = -g(8)h(a) 5*0. Thus
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9)c contains va+$-s where g(a+0 — 5) =g(B)r^0, so that 9JI always contains a

vy with g(y) 9*0. Now let 0 be such that g(0) =0 and 0^ -5. It follows that

h(0 + 8) t^O. Then 9?c contains VyV-y+p+s=f(y, 0+b)v$, and thus 99? contains v$

since/(7, /3 + 5) =g(7)/?(/3+5) f^O. In particular 9Jc contains vs and so 93c also

contains vavs=f(a, S)va and fla for any a such that g(a)^0, since /(a, 5)

= g(a)&(5) 5^0. Hence 9Jc contains every basis element and 9JJ = 8j.

Theorem 3. Suppose that either p>2 or ®=^®i, and that each fi is non-

degenerate. Then 8(®, 5,/) is a central simple algebra. When ®^®0, the dimen-

sion of the simple algebra 8(®, 5,/) is p" — 2, while when © = ®0, the dimension is

pn — l, where ® is an elementary p-group of order pn, w > 1, in either case.

The simplicity of 8(®, 5, /) when @f^®o, ®i remains to be proved. We

note that if a, is a nonzero element of ®<, then there is a Bi in ©,- such that

/(a,-, 0j)^-O and at+B,— 5,-f^O, for by the nondegeneracy of/,- there is a 7,-

in ©,- such that/(a,-, yj) 7^0, and if a,+7,— 5, = 0 then f(ait 8j) =f(ait ai+yj)

r^O and we could take 5,- for j8,-.

Now let 93c be a nonzero ideal of 8(®, 5, /), and x = JZe ^vp an element of

9JJ of minimal length, and suppose that X(x) > 1. Then for some i, and we take

i = 0 if possible, there are distinct elements a,- and a{ in ®< such that a,- and

ai are the components in ®,- of x-admissible elements a and a'. We may as-

sume that some x-admissible element is not in ®,-. For otherwise we may take

an x-admissible Bi, a 7, in ®,- such that f(0i, yj) 9^0, and for somejVi, an

element 7y?^0, — Sj in ®y, and then, with 7 =7,-+7y, we may use xvy in place

of x, since \(xvy) g\(x) and Bi+Jt — 5,+7y is (xvj)-admissible. Thus we may

suppose that the component ay of a is nonzero for some J9&i, and also, by

multiplying x if necessary by v(yj) with/(5<, 7,) 7*0, that a^bi. Choose ey

in ®y such that/(ay, ey)r^0 and ay+e,- —5y7*0. We note that if iVO then

ai+bi is not x-admissible, for otherwise xtt(ey) would be a nonzero element of

9Jc of smaller length than x. Since xv(— a,) = JZ& £&f(Bt, —aj)v(B—ai — Sj) has

smaller length than x and so is zero, we have f(8i, —aj)=0 for every x-

admissible 8- Now consider y =xt>(—a<+ey) = JZb %fsf(Bj, ej)v(B—ai+ej — b'j).

Then a — a^ + ey — 5y is y-admissible and X(y)gX(x), so that X(y) =X(x) and

a' —ai+tj — bj is also y-admissible. Choose e< such that/(a,' — a<, ej)7*0 and

a,' — a< + e; — 5^5=0, and take z=yz>(ei) unless e; = —5. If e< = —5 then m=i = l

and j =0, so that by our assumption on i, we have Bo=Bo tor any y-admissible

elements B and B', and we take z=yv(ao + eo + ej) in this case. Thus 9Jc con-

tains 2, Zr^O and X(z) <X(y), a contradiction.

Hence X(x) = 1 and 9Jc contains some va with a7*0. Let |3 be any element

of ® other than —5; we shall show that v$ is in 9Jc. For some i, Bit* — 5<, and

by multiplying if necessary va by i»(7»+7y) with/(a,-, 7i)^0, we may assume

that ay?^0 for some J7*i. Choosing a 7y in ®y such that f(aj,yj) 7*0 and

ay+7y —Syj^O and considering vav(— a+aj+yj) =/(ay, 7y)z'(ay+7y—5y), where

we first multiply va by an appropriate vy in case — a+a,-+7y = —6, we may
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assume that a = ay is in ®y. Now for any ft 5* —8< in ®j, we may choose ft"

in ®i such that/(ft', ft+8.) 5*0 and -ft"+ft+8<5*-8<. Also choose ey
such that/(ay, ef) 5*0 and — ay+ey5* — 8j. Then 9ft contains

v(cx,)v(B'i'  - cxj + ey) = /(ay, «y)l>(ft" + ey - 5y)

and
»(ft" + ey - 8,)v(-B'i' + ft + 8, - ay + 8y) = /(ft", ft + 8i)v(B<).

Thus 9ft contains »,j, for since ft5* — 8;, we may take ft such that /(ft', ft + 8<)

5*0 and then use w(/3/)»(-0/ +/3 + S.) =/(ft, ft+8^0, unless -ft'+ft+8,-
= — 8, in which case with appropriate ft', f< and fy we may use

v(Bl)v(-Bi + U + Si + fy) = /(ft, f< + S.Mf,- + fy),

»(f* + fi)f(-f< - fy + 8 + 8,) = Mi, Bi + 8,)v0.

Hence 9ft contains a basis of 8(®, 8,/) and 9ft = 8(®, 8,f) is simple.

Our proofs of simplicity are independent of v5, so that the simple algebras

8(®, 8, /) are central.

We shall now determine which nondegenerate functions / satisfy the con-

dition of Theorem 1, which, as we have noted, is necessary and sufficient for

the algebra 8(®, 8, /) to be a Lie algebra.

Theorem 4. Suppose that 8 = 8,- is a nonzero element of the group ® = ®„

and that g = gi and h = hi are additive functions on ® with values in %, such that

g(8t) =0. Then a necessary and sufficient condition for the function f defined by

(9) to be nondegenerate is that ® be an elementary p-group, that is, a vector space

over the prime field %p, and that there exists a basis (8, ft, • • • , ft) of ® over %p

such that for some k with 0Sk<r, g(S)=g(ft) = • • • =g(ft)=0 and the sets
{g(ft+i), • • ■ ,g(ft)}, {h(8), • ■ • ,h(8k)\ each are linearly independent over gp.

For we already know that it is necessary that ® be an elementary p-

group. It is also clear that g cannot be identically zero and that if g(B) =h(B)

= 0, then 8 = 0. Then taking {8, ft, • • • , ft} to be a basis of the kernel of g,

and extending this to a basis of ®,the condition follows. Conversely if the

condition holds and/(a, ft =0 for all 8 in ®, then/(a, 8) =g(a)h(8) =0 so that

g(a) =0, and/(a, ft) = —g(8T)h(a) =0 so that also h(a) =0, and therefore a = 0

and / is nondegenerate.

Henceforth we shall assume that whenever we refer to 8(®, 8, /), the

algebra is a simple Lie algebra. Thus in particular the dimension over \^p of

each nonzero ®( will be greater than one.

4. Cartan subalgebras. In this section we assume that the base field % is

algebraically closed. Let § be a nilpotent subalgebra of a Lie algebra 8. A

function p on § to % is called a root of 8 with respect to § if there is a nonzero

x in 8 such that for every right multiplication Rh with h in §, x is annihilated

by some power of Rh—p(h)I. The set of all such x is called the root space 8„

for p. Then p=0 is a root, 80 is a subalgebra of 8, the zero-subalgebra for §,
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which contains §, and 2 has a decomposition as the (vector space) direct

sum of all root spaces 8P. If £> = 8o, then § is called a Cartan subalgebra of 2,

and the decomposition of 2 into root spaces is called a Cartan decomposition

of 2. The condition § = So is equivalent to the condition that the nilpotent

subalgebra § is its own normalizer, that is, that yh in !q for every h in §

implies that y is in §. If x is a regular element of S, that is, if the zero-sub-

algebra § corresponding to x (or x%) has minimal dimension, then this sub-

algebra § is a Cartan subalgebra of 2. Thus Cartan subalgebras exist for

any 8.

The property of being the zero-subalgebra for a regular element is not

used as the definition of a Cartan subalgebra, since such use would not be

of advantage in the existing structure theory, and since the property is very

difficult to prove for a given subalgebra. For zero characteristic, all Cartan

subalgebras of 8 are conjugate and thus all are zero-subalgebras for regular

elements. However for prime characteristic, Theorem 6 below shows that a

Cartan subalgebra of a simple algebra 8 need not contain a regular element,

and that the Cartan decompositions relative to two Cartan subalgebras of 8

need not be essentially the same.

We shall first determine Cartan decompositions for the algebra 8(®, 5,/).

Let 9co be a maximal subset of ®0 for which restriction of/is identically zero,

that is, a subset of ®o such that for any B in ®o, /(a, 8) =0 tor all a in 9co if

and only if B is in 9co. Then 9?o is a subgroup of ®0, and 9co = 0 only if ®0 = 0.

Let 9c< be the kernel of gi, i = l, ■ ■ ■ , m, and let 9c = 9co + • ■ • +9fcm.

Theorem 5. The subspace few of S(®, 5, /) spanned by all va with a in

9? (a7*—o) is a Cartan subalgebra o/8(®, 5,/).

Fqr ^sr is clearly abelian. Suppose that x = JZy ^yvy is in the zero-sub-

algebra of §!». Then for the right multiplication i?[t;(5,-)], i7*0, we have

xR[v(Si)]> = JZy %yf(yi,8i)tVy = 0 for some /, so that gi(yj) =0 for any x-

admissible 7. Also for any a in 9co we have xR(va)'= JZy £t/(7oi a)tVy+ta = 0,

so that/(7o, a) =0 for any x-admissible 7 and any a in 9co, that is, 70 is in 9co

and 7 is in 9? for any x-admissible 7, x is in §31 and few is a Cartan subalgebra.

Since §51 is abelian, any root p is linear on §sr. Moreover vpR(vj)p

=f(B, a)»Vf,, so that vfi[R(va) -f(8, a)/]" = 0, and if f(B, a) =f(y, a) tor all a
in 9c then 18—7 is in 9c. It follows that any root p corresponds to a coset (3+9?

such that p(vj) =f(B, «) for any a in 9c, and such that the corresponding root

space 2„ is spanned by all vy with 7 in B+%1. Thus if ® has order p" and 9c has

order pr, then §« has dimension pr — 2 (or pr— 1 in case ® = ®0), each root

space 8P for p^O has dimension pr, and the roots form an elementary p-

group of order £n_r.

Theorem 6. For any prime p and positive integer q, there exists a simple Lie

algebra of characteristic p with Cartan subalgebras of q distinct dimensions.
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We shall use for the required examples algebras 8(®, 8, /) with © = ®0. Let

® be a vector space over %p of dimension r = g(g + l)/2 + l, with basis 33

= {ft- •••- ft}=»iW • • • W93flU{ft}, where 23i={ft}, S82={ft, ft},
■ • • , 538 = {ft-9, • • • , ft-i}. Also let {(■</:♦, J = 1, • • ■ , r;i<j} be a set of

r(r— 1)/2 elements of % which are linearly independent over %p. We define

the skew-symmetric biadditive function / on ® in terms of its values for the

elements of the basis 93 by setting/(ft, ft) = £,-y for i<j if ft, ft are in different

sets 93* or if j=r, and /(ft, ft) =0 if ft, ft are in the same 93*. Then / is non-

degenerate, since if/(a, ft) =0 for a 5*0, then a = tBr, in which case/(a, ft) 5*0.

Thus 8(®, 8,f) is a simple Lie algebra. Let 'Hft(k) be the subspace of ® spanned

by 93*;, k = l, ■ ■ • , q. Then clearly/ is identically zero on yi(k) and if/(a, y)

= 0 for every a in Sl(k) then y is in 3l(k). Therefore the subspace §«(*) of

8(@, 8,/), spanned (over %) by all va with a in 5ft(&), is a Cartan subalgebra of

dimension ph — l,k = l, • • • , q, and the theorem is proved.

5. Trace forms and restrictedness. A symmetric bilinear form / on a Lie

algebra 8 is called a trace form (or an invariant or associative form) if

(11) l(ab, c) = t(a, be)

for every a, b and c in 8.

We define a bilinear form on 8(®, 8, /) in terms of the form for the elements

of a basis by setting

(12) t(va, Vp) = 1 if a + 8 = - 5,        t(va, vp) = 0 if a + 8 5* - 8.

Theorem 7. The form defined by (12) is a nondegenerate trace form on the

simple Lie algebra 8(®, 8, /).

The form is obviously symmetric. To prove (11), it is enough to show

for basis elements va, vp, vy that t(vavp,vy) = t(va,vpvy). But t(vavg,vy)

= Zr.o/(«.-, 8/)t{v(a+B-8,), vy} = 2Z?-ofic*i, ft)**, where X, = l or 0 ac-
cording to whether a+j3+y — 8,= —8 or not. Also t(va, vpvy) = 2r=o/(ft>7»)

■t\va, v(B+y-8,)} = Er.o/(ft. 7i)X,. When X, = l, we have ai+Bi+yi = 0
andf (at, ft) =/(-ft-7<, ft) =f(-Ji, ft) =/(ft, 7<), so that t is a trace form.
Since the Lie algebra is simple and t is not identically zero, / is nondegenerate.

A centerless Lie algebra 8 over a field § °i characteristic p is called re-

stricted if the £th power of every inner derivation is inner, that is, if for every

x in 8 there is an element z (necessarily unique) in 8 such that for every y in 8,

(13) y(Rxy = yRz

holds for the right multiplications Rx and Rt. The element z is denoted by x".

It then follows [3] that for any x, y in 8 and £ in g.

(14) (x + yY = x" + y + s(x, y),        ($*)* = £>*!>,

where s(x, y) is a linear combination of (p — l)-fold products of x and y. If

8 is a subspace of an associative algebra 21 closed under commutation and
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(associative) pth powers, then for x in 8, z = xv satisfies (13) and 8 (assumed

to be centerless) is restricted; by (14) and the restrictedness of 21, it is enough

that 8 contain the pth power of every element in some basis of it.

We shall prove the restrictedness of certain of the algebras 8(®, 5, /)

by using particular representations of them. Let S3» = g[zi, • • • , z„] be the

commutative associative algebra of all polynomials in zx, • • • , zn with coeffi-

cients in g, subject only to the restrictions that z\= ■ ■ ■ =z^ = l, so that

23n has dimension pn over g. A derivation of 23„ is determined by the values,

which may be arbitrary elements of 93„, onto which it sends zi, • • • , z„. We

shall use the vector (oi, • ■ • , a„) to denote the derivation A which, for

i — 1, • • • , w, sends z,-onto o,-. Then if S3 = (&i, ■ • ■ ,&„) is another derivation,

the commutator product of A and B is the derivation C = A B = (cu • • • , cj),

where

"   /da{ <pbi    \
(15) d = 2^ (— °i ~ — ai) (i = 1, • • ■ ,n).

i-i\dzj dzj    /

Let Xi = Zi—l, i = l, ■ ■ ■ , n. Then $8n also equals the commutative associa-

tive algebra %\x,i, • • • , x»] of all polynomials in xx, ■ • • , xn, subject only

to the restriction that xf = • ■ • =xj = 0, and the derivation (oi, • • • , aj) is

also the unique derivation sending x,- onto a,-, i = l, • ■ ■ , n. Since da/dxj

= da/dzj for any a in S8n, (15) becomes

"   /dat dbi    \
(16) *=£( —bj- —as) (i=l, •••,»).

y_i \dXj dXj    J

Now suppose that n = 2m and let pi, ■ ■ ■ , pm be arbitrary fixed nonzero

elements of %. Define 35m,M to be the set of all derivations of S32m of the form

nn     a(a*     (      ** a* d4> d<t,\
(17) A(<j>)   =   [pi ,   ■   ■   ■    ,  Hm ,    - P1—-I   •   •   •  , — Pm——  ),

\        OZm+i OZim OZi dzm /

where the term of cj> in (zx ■ ■ ■ z2m)p_1 has coefficient zero. Then $„,,„ is also

the set of all derivations

/       d<p dtp d<p d(p \
(18) A (<t>)   =   I llX- >   •   ■   •   > Pm   -'   —  UX - )   ■  •   •  >   — Pm-■  ) ,

\     dxm+x dxim dxx dxm/

where the term of </> in (xt • • • x2m)p_1 has coefficient zero. By (15) we have

(19) WAV)-19).       .-£„(*-*—*-**),
y_i      \dZj   dZm+j        dzm+j   dZj/

and also the similar formula with x in place of z. Write

(20) D(ku ■ ■ ■ , kim) = A(z\1 • ■ ■ zlT).



432 RICHARD BLOCK [November

Then the D(ku ■ ■ ■ , k2m) with 0Skj<p and (ku • • • , k2m)^(0, • • • , 0),
(p — 1, • • ■ , p — 1) form a basis of 93m,,. over g, and by (19) we have

D(ki,  •   •   • , k2m) ■ D(Si,  ■  •   •  , 52m)

m

= 2J mikiSm+i — km+iSi)D(ki + si, • • • , ki + Si — 1, ki+i
(21) ,_i

i    $i+l>   '   '   '  ,  km+i +  Sm+i 1,  km+i+l + Sm+i+l,   '   '   '  ,  k2m +  S2m),

where the indices are to be added modulo p. Since (kfsm+i — km+iSi) =0 if

ki+Si — 1 =km+i+sm+i— 1 =p — 1, it follows that 93m,,, is closed under com-

mutator products, that is, 93m.,. is a Lie algebra.

When jui= ■ ■ ■ =pm = l and p>2, the algebra 93m,,., with the representa-

tion used in (18), was studied in [l] by Albert and Frank, who called it 93m.

Lemma 3. If ®o = 0 and ®x, ■ ■ ■ , ®m are 2-dimensional over %p then

8(@, 8, /) is isomorphic to an algebra 93m,,., awd conversely each 93m,,. *5 is0~

morphic to an algebra 8(®, 8, /) with ® of this type.

Indeed ior i = l, ■ • • , m take a basis f,-, 8<—f,- of ®,- over %p and let

Ui=f(£i, Si), so that /i,-5*0. Then consider the mapping

w: v\ E [*<f< + km+i(8i - f,)]l -» D(kh ■ ■ ■ , k2m)

for ki, ■ ■ ■ , k2m in ov Here d_8 corresponds to D(p — 1, • ■ • , p — 1), so that

the linear mapping w* determined by w sends 8(®, 8,f) onto 93m,,.- It follows

from (10) and (21) that w* preserves multiplication of basis elements and

thus w* is the required isomorphism. The converse also follows, since ^,- de-

termines /,-.

Now write

(22) E(kh- ■ ■ ,k2m) = A(xki  ■ ■ .xk2T).

Then the E(ku ■ ■ ■ , k2m) with 0Skj<p-l and (ku • • • , k2m)^(0, • • • , 0),
(p — 1, • • ■ , p — 1) also form a basis of 93m,„, and their multiplication table

is the same as that of the D, given by (21), but now of course E(qu • • • , q2m)

= 0 if gy^p for some j, 1 SjS2m.

Lemma 4. The algebra 93m,M is restricted.

Since 93m,,. is contained in the algebra of all linear transformations of

932m, it is enough to prove that 93m,,. contains the (associative) pth power of

each of the basis elements E(ku • ■ ■ , kim). This pth power is of course always

a derivation of 932m, so that it is determined by the values it takes on

Xi, ■ ■ ■ , Xim. If C is a linear transformation of 932m sending Xy onto Cj, then

for the (associative) product of C and E = E(ku ■ ■ • , k2m) we have, by (18)

and (22),
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_,_                    A      /          *i             *»+.-i             *!» dc>
XjLt. = CjE =  JLi^iX "m+iXl   ■  ■ ■ xm+i        • • • Xim -

(23) "     V
,      *1 *i-l *2m        5C,     \ f. . »     s

— *,Xi    •   •   • Xj •  •  • X2m   ~- I (j =   1,  •   •   • , 2ff»).
dXni+i/

Now first suppose that kt>l for some /, 1 g/g2w. Then xf is a factor of

each XyE, and by (23), if x't is a factor of each XjE" then x:s+1 is a factor of each

xy£,+1. Thus x? is a factor of each XjEp and Ep = 0.

Next suppose that each kt is 0 or 1. If 1 ̂ j^m and

CiA.\ -      J?'— b h       ' '*' *y . ° **2"(^ V Cy,t        XjUt — KjKm+j[ijXi     '  '  • Xy    •  •  ' Xm+j '  '  ' Xim    ,

and we substitute in (23) with C = E' and Cy = Cy,„ then in the right hand side

of (23) the two terms of the ith summand cancel for iy&j and we have

cy,«+i = Cj,,E = XjE

(25) _      2   2 »+l   («+l)*, 2*j-l 0 (»+D*!m
—  ^y^m+yMy     Xi                     " Xy          •  •  • Xm+j •  '  • X2m .

Since kj, km+j are 0 or 1, (25) is (24) with s + 1 in place of s. But when 1 g /<m,

by the definition of E we have (24) if kj =5 = 1, so (24) holds for s=£, and

xyEp=0 except when &y = &m+y = l and &,- = 0 for i¥-j, m+j, in which case

XjEp=UjXj. When w</g2w, we have to interchange the exponents of Xy and

xm+y in the right hand sides of (24), (25) and multiply by (-1)', (-1)8+1

respectively. Again xy£p = 0 except when kj-n = kj = l and ki = 0 for i 7*m — 7, j,

in which case XjEp = ( — uj)pXj. Thus Ep = 0 unless E = A(xjXm+j) for some

j, 1 £j^m, in which case Ep=pFi~1E, so that SSm,M is restricted.

Theorem 8. The simple Lie algebra 8(@, 5, /) is restricted if and only if

®o = 0 owd ©1, • • • , ®m have order p2. These restricted algebras are the same,

up to isomorphism, as the algebras 3?m,„, which are simple for p>2 or m> 1.

The necessity of the condition for restrictedness is what remains to be

proved. Suppose that 8(®, 5, /) is restricted and that a is a nonzero element

of ®,-. Then for any v$,

(26) v„(vj)p = f(8i, a)f(8i - Si, a) ■ ■ .f(fit - (p - l)8i, a)vfi.

Denoted by q(B, a) the coefficient of vp on the right hand side of (26). Sup-

pose that (fla)p= JZy £(7)Pt- If » = 0 and 0 is some element of ®0 such that

/(0, a) 7*0, then q(B", a) =f(fi, a)p7*0. But v(fi) { JZy £(tX} has no term in
v(0). Hence ®0 = 0 and i7*0. Choose a such that/(a, 5.) 7*0. For any nonzero

0 in ®,-, v(0) { JZy £(7)*S-} gives a term in v(0) only when 7 = 5*. But then

£(5,)/(|3, Si) =q(0, a). When B=a we have q(8, a) =0 and /(fi, Sj) 7*0, so that
£(5.) =0 and therefore q(B, a) =0 for any /3 in ®,-.

Now let 71, • • • , 7r, 8i be a basis of ®,- over %p. Since/,- is nondegenerate,
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/(Y«, 8t) 5*0 for some s, say for 5 = 1. Then q(yT, 71) =0 so thatf(yr—j8i, 71) =0

for some j in gp. By changing the basis element yr to yr—j8i if necessary, we

may assume that/(yr, 71) =0. Since/(7i + S,-, 8.) 5*0, we also have q(yT, 71 + S,)

= 0. Thus for some k in %p, f(yr-k8i, 7i + 8<) =0, f(yr, 8x)+kf(yi, 8,) = g> (7r)

■hi(8i)+kgi(yi)hi(8i)=0, gi(yr+kyi)=0. But 0-/(71, 7r+&7i)=g,(7i)&*
-(7r+^7i), so that h(yr+kyx)=0 also. Thus 7r+^7i = 0, r = l, ®* is 2-dimen-

sional over %p, and the theorem is proved.

6. The algebras ©„ and %n. The simple algebras 93m,,. are closely related

to the simple algebras ©n of Frank [2], and Xn of Albert and Frank [l ]. We

shall use here the same notation as in the preceding section for 93»

= rj[xi, ■ ■ ■ , %n] and its derivations. Then ©„ is defined to be the set of all

derivations A = (ax, • • • , o„) of 93„ such that the divergence

dai dan

dxi dx„

of A is zero and such that for each i = l, ■ ■ ■ , n and j = 0, • ■ ■ , p — 1, the

element a* has no term in x{(xi • • • x,_iXi+i ■ • • x„)p~'. It was proved in [2]

that for any w>2 and any prime p, ©„ is a simple Lie algebra of dimension

(n — l)(pn — 1), and that ©„ is spanned by the derivations

dd dd
(27) Dij(d) = (gi, • • • , gn),    gi = -—,    gj = - —>    gk = 0      (£5* i,j),

dXj aXi

where d is any element of 93„ and i^j, i, j = l, ■ ■ ■ , n. Then of course

(28) Dij(d) = - Dji(d),

and we also have, for i, j, k distinct,

/ dd \ / dd \ / dd \

<29) D"U)--p"U)+D"fe>
In particular

(30) DjkixjXk) = — Dij(xiXj) + Dik(xiXk).

We shall write

Eij(Sl, ■ ■ ■ , sn) = Dij(xX   • • ■ xnn).

Then ©„ is spanned by the elements E,y(5i, • • ■ , sn) with i<j and 0Ssk<p

ior each 5*. From (16) and (27) we may compute that

Eij(su ■ • ■ , sn)-Eij(h, ■ ■ ■ ,tn)

= (sdj — Sjtt)Eij(si + h, ■ ■ ■ , Si + U— 1, • ■ ■ ,Sj+ tj — 1, ■ ■ ■ ,s„+ U)

and, for i, j, k distinct,
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Eij(si, • • • , sn) • Eik(h, • ■ • , tj)

= SitkEij(Si + h, • • • , Si + ti — 1, • • • , sk + tk — 1, • • • , Sn + tj)
\OdCj

— SjljEik(Si + h,  ■   ■   ■  ,Si+ ti —  1,  •   ■   ■ ,Sj + tj —  1,  •   •   • ,Sn + Q

+ SitiEjk(si + h, ■ ■ ■ , Si + h — 2, ■ • • , sn + tj).

Using (30) we see that, for i, j, k distinct,

Eij(sh  ■  •  ■  , Sn) ■ Dij(XiXJ)   =   (Si - Sj)Eij(Si,  ■  ■   ■  , Sn),

Eij(sh ■ ■ • , sj) ■ Dik(xiXk) = (si — sk - l)Eij(su ■ ■ ■ , sn)

Theorem 9. The algebra @„ is restricted.

As we noted in the preceding section, in order to prove @n restricted it

will suffice to show that it contains the (associative) £th power of each of the

derivations £,y(Ji, • • • , sj). If A is a linear transformation of S3n sending x(

onto at, then for the (associative) product of A and E—Eij(si, • ■ • , sn) we

have
»! i,-i .„ dat ,, 8i_i ,„ dat

XiAE = atE = SjXi  • • • xy      • • • x„ —- — SiXi   • • • x,-      • • • xn ->
dXi dxj

the analogue of (23). Thus if 0<Sk<p for some k7*i, j, then xtEp has xj

as a factor, so that £p = 0 in this case. But if E = Djj(x!iiXj'), then, exactly as

for the element E(si, 0, Sj, 0) of the algebra 3S2, we have £p=0 unless Si = Sj

= 1, in which case EP=E. Thus ©n is restricted.

In our examination of trace forms on the algebras ©„, we shall use the

following lemma, which is itself of interest.

Lemma 5. Assume % algebraically closed and let § be the subspace o/ ©„

spanned by all elements -E,-,(si, • • • , sj) with Si = ss and 5a=s,- — 1 /or k7*i, j,

where i,-j = l, ■ ■ ■ , n. Then § is a Cartan subalgebra o/ ©„.

For it follows from (31), (32), (28) and (29) that § is abelian. Now let

Pi, ■ • • , Pn be elements of % which are linearly independent over %p, and write

n

b = JZ PiDu(xiXJ).

Then b is in §, and by (33), (28) and (30), we have

Eij(si, • • • , s„)b =  <pj(si — sj) +   JZ pk(si — sk— l)\Eu(si, • • ■ , sn)
\ Ml,/ /

and, when 1 7*i, j,

Eij(si, ■ • • ,s„)-b =  < -pi(si — si — 1) — pj(sj - si - 1)

+     JZ     Pk(~Si + Si + 1 + Si — Sh —  1)> Eij(sX,  •  ■  ■ , Sn).
Ml,i,/ /
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Now choosing a basis of ©„ from among the E(j(si, • • • , 5„), we see that,

for any c in ©„, if ( • • • (c-b) • • • 6) =0 then cb=0 and c is in &. Hence

^ is a Cartan subalgebra of ©„.

Theorem 10. When w>3 awy trace form on ©„ «s identically zero.

We may assume that % is algebraically closed. Suppose that t is a nonzero

trace form on ©„, w>3. Since ©Bis simple, / is nondegenerate. But the restric-

tion to a Ca,rtan subalgebra of a nondegenerate trace form on a Lie algebra is

always nondegenerate on the subalgebra. Thus for D=Z?i2(xiX2), there must

be some E = Eij(su ■ ■ • , sn), with 5, = 5y and Sk = 5,-1 for &5*t, j, such that

t(D, E)5*0. By (30) and (28), we may assume that * = 1. Now since w>3, we

may take an element c = (0, ■ ■ • ,1,- ■ ■ , 0) with 1 in the &th place, &5*1, 2,j.

Then for the right multiplication Rc we have Di2(xiX2xvt~1)(R<)v~l=—D,

while E(—Rc)p-1 — 0 since 5* = 5i — 1 <p — 1. But by p — 1 applications of (11),

we have <(£>, E)=t{ —Di2(xiX2x\~l), E(Re)p~1} =0, a contradiction, and the

theorem is proved.

We now consider the remaining case, w = 3. Here we shall write, for i, j, k

distinct,

eu(a) = eij(cti, aj, ak) = E<y(si, s2, s3),

where

ai = si      (ai = 0, •■■ ,p-l;l= 1,2,3).

We define a symmetric bilinear form / on ©3 in terms of the values of the form

for the elements e{j(a) by setting

(34)   t{eij(a), eik(p — a{, p — ak — 1, p — aj — 1)] = a,-,

(i,j,k) = (1,2, 3), (2, 3,1), (3,1,2),

and letting t vanish on other pairs of elements etj(a), except of course those

for which / is defined through (34) by the use of (28) and symmetry of the

form.

We note that a basis of @3 is given by all 612(a), ei3(ft, 623(7) such that ai

or a2 is nonzero, ft 5*0 or ft = p —1, and 71= p — 1 and 72 or 73 is nonzero.

Then in order to show that the effect of / for an e,y(a) is the same as its effect

for the linear combination of elements in our basis which equals e,y(a), it

suffices to show that the expressions

2^j ot,t{eqT(aq, ar, a, — 1), C<y(ft}
(3,r)=(l,2),(2,3),(3,l)

always vanish, and this follows from (34), each term vanishing unless a<+ft

= ay+ft = a*+ft + l =p. Hence / is well-defined.

Theorem 11. The form t is a nondegenerate trace form on ©3.

We need to verify (11) for the elements e<y(a). By (28) and the symmetry
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of the form, it is enough to consider the following three types of substitutions

for a, b, c. First, when

a = eij(a),        b = e,y(/3),        c = e{j(y),

we use (31), and obtain t(a-b, c)=0=t(a, b-c). Next, when

o = eij(a),       b = c,y(/3),       c = eik(y),

we have

l(a-b, c) = (atBj - aj8i)t[eij(ai + 8i — 1, ay + Bi - 1, a* + 8k), eik(y)}

and, by (32),

/(a, b-c) = t{eij(a), -/3y7.e«(/3i + 7. - 1, Bk + 7*, Bj + yj ~ 1)

+ 8<iiejk(fij + yj, 8k + 7*, fit + 7> - 2)},

so that t(a-b, c)=0=t(a, b-c) unless a,-+/?j+7,- — 1 = ay+j3y+7y = a*+/3*+7jt

+ l=p, in which case t(a-b, c) = (a</3y—ajBJ)(— yj) = ( — j3y7,)a, + ((3l7,)ay

= /(o, b-c). Finally, when

a = ea(a),        b = ejk(fi),        c = Cy*(7),

we have

t(a-b, c) = l{aiBkeij(ai + Bi ~ 1, otj + Bj, ak + 8k — 1)

— aj8ieik(oii + Bi - 1, ctk + Bk, olj + Bi - 1), ey*(y)}

and

t(a, b-c) = l{eij(a), -8kyieik(fii + yt, Bk + 7* - 1, Bi + yj - 1)

+ fia#jk(fii + yi, Bk + yk- l,Bi + yi- 1)}

sothat/(o-o, c)=0=/(a, b-c) unless a,-+j3<+7,- = ay+j8y+7y = a*+/3i+7fc = £,

in which case t(a-b, c) = (aifik)(-yj)+(-a3-fii)(-yk) = (-fikyj)ai+(0t'Yk)ai

= t(a, b-c). Hence / is a trace form and, since ©3 is simple and / is not iden-

tically zero, / is nondegenerate.

We turn now to the algebra %n. This is defined to be the set of all deriva-

tions (oi, • • • , aj) of 93n for which the divergence equals the coordinate sum,

that is, for which

dai dan
-h • • • H-■ = at + • • • + a„.

dXi dx„

It was proved in [l ] that for every w>2 and p>2, I„ is a simple Lie algebra

of dimension (w — l)pn over %.

Theorem 12. The algebra Xn is not restricted.

For suppose that Zn were restricted, with A = (ax, • • • , a„) the (restricted)
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pth power in £„ of the derivation (xi, 1 —Xi, 0, • ■ • , 0). A simple computa-

tion shows that the ordinary (associative) pth power of (xi, 1 — Xi, 0, • • • , 0)

is the derivation (xi, — Xi, 0, • • • , 0) of 93n. Hence for every element B

= (bi, • • ■ , bn) oi Xn, we must have BA =B-(xu —xu 0, • • • , 0), that is,

(35) Z-, [ r— <**'- — b<) = — *i ~ T~ Xl + &Jl        0 = 1, • • • , n),
<_i \ dxi dXi    /       oxi dx2

where ^i= — 1, £2 = 1 and %%= • • • =£„ = 0. First taking B = (1, —1,0, • • • ,0),

we have

daj      da,-
(36) -T^+T^fc (j=l, ••-,w).

flXi       dXj

Then with B = (xu 1 —Xi, 0, • • • , 0), so that B-A =0, we have

daj daj       day day
(37) — £yai-xi-1-xi = — £y(ai — »i)-= 0,

dxi OX2       3x2 dx2

ij - 1, • • • , n).

Taking j = l in (37) we see that

(36) ai = xi.

Now with B = (l—x2, x2, 0, • • • , 0) we use (38) and (35) for j = l to obtain

— a2 —(1—x2)=Xi —(1—x2), that is, o2= — a*.

We next take k>2. It follows from (37) and (36) that dak/dxi = dak/dx2

= 0. Hence using B = (l—xk, 0, • • • , xk, • • • , 0), where bk = Xk, we obtain,

from the case/ = & of (35),

dak
(39) at-xk = 0.

ox*

Finally, taking B = (0, 1, 0, • • • , —1, • • ■ , 0), where bk= — 1, we get

dak/dxk = 0, which in combination with (39) shows that a* = 0. Hence A

= (xi, — Xi, 0, • • • , 0), which is not in %n, a contradiction.

7. The derivation algebra of 8(®, 8, /) and criteria for nonisomorphism.

Let D be a derivation of the simple Lie algebra 8(®, 8, /) and let e(a, 7) be

the coefficient of va+y in vaD, so that

(40) D: va -> X) cia> 7K+t = 53 c(«> ~« + tK,
76© 7€<8

where we may set

(41) c(a, -a) = c(a, -a-8) =0

for every a in ®. Since 77 is a derivation, we have (vaVp)D = (fla.Z?)i/,3+t>0(i>l8.D)

forevery a, |3 in ® with a, ft?* —8. Thus
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m

,.„,    Z   Z {/(«<. ft)c[«+/»-8<, -(«+£-«.•)+7]
(42) 76(j  <_o

- /(yi+Si,fii)c(a, -a+y-B+Si)-/(ai,yi+Sj)c(8, -fi+y-a+5{)}vy = 0.

Take e such that y=a+fi+e7*0. Then (42) gives

m

„ ,-,     Z {/(«•-, ft)c(« + 18 - «*, « + «.) - /(«,• + «< + 5,-, ft)e(«, e + 5.)
(43) ,-_0

- /(ai, Bi +ei + Sj)c(8, e + St)} = 0.

Conversely, if the linear transformation D of 8(®, 5,/) satisfies (43) for every

a, fi7*—8 and every e such that a+B+t7*0, then it satisfies (42) and is a

derivation.

We shall use Ra = R(a) to denote right multiplication on 8(®, 5,/) by the

element va with a in ®. Since right multiplication by »_j is a derivation on the

algebra S' = 8 — %u0, where 8 is defined by (1) through (5), and since (8')2

C8(®, 5,/), it follows that Rs is a derivation of 8(®, S,f). We shall call any

linear combination of the Ra an extended inner derivation ol 8(®, 5,/).

For any k and any 7* in ®*, define a linear transformation D(yk, —8k) of

8(®, S, /) by setting

(44) vaD(yk, -Sj) = /(ak, yk)v(a - Sj).

Lemma 6. The mappings D(yk, —8k) are derivations o/8(®, 5,/).

We have c(a, e+8j)=0 tor D(yk, —Sj) unless e=—5,- —5* for some i.

When e= —5,-5*, the left hand side of (43) equals

/(at, 8i)/(ak + 8k~ St, yj) - /(a{ - Sk, |84)/(«*, yj) - /(at, Bi ~ Sj)/(fik, yj)

= /(«.-, Bi) [/(«* + Bk, yj) - /(ak, yj) - /(Bk, 7*)]

+ [/(«.•, 0i)f(7k, Sj) + f(yk, ak)f(8i, Sk) + f(fik, yj)/(ai, Sk)],

which clearly equals zero when i 7*k, and (7) gives the desired result when

i = k.
Now let 0-01, • • • , o-0ro De a basis of ®0 over %p and <ra, • • • , aiu, Si a

basis of ©< over %p such that /(an, Sj)7*0, i = l, • • • , m. Denote by -s,y(a)

the coefficient of atj in a, for i = 0, - ■ ■ , m, and by Si(a) the coefficient of 6,-

in a, for t = l, • • », tn. Define linear transformations D(S, 0) and £>(<r,-y, 0)

of 8(®, 5, /) by setting

(45) vaD(S, 0) = T-1 + JZ Si(a)~\ va

if ®o = 0, D(S, 0) =0 if ®o^0, and

(46) vaD(ffih 0) = Sij(a)va,
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where these definitions of course depend on the particular bases chosen for

the ®k.

Lemma 7. The mappings D(8, 0) and D(aij, 0) are derivations o/8(®, 8,/).

For each of these mappings we have c(a, e + 8k) =0 unless e= — 8k. When

considering D(8, 0) we may suppose that ®0 = 0. Then with e= —8k, (43) re-

duces to

fi<**, ft) {[- 2 + £ Si(a + ft] - [- 1 + 2Z *(«)]

- [-i + I>.(ft]} =o,

which clearly holds. Next consider D'an, 0). Then with e= — 8k, (43) reduces

to f(ak, ft) {5,y(a+ft —5,y(a) —Sij(B)} =0, which also holds.

We now begin showing that when p>3 the derivations discussed in

Lemmas 6 and 7, together with the extended inner derivations, span the

algebra of derivations of 8(®, 8,/). We shall henceforth assume that p>3 ex-

cept when explicitly otherwise stated.

We shall also henceforth assume that, for any element y in ®, if we use

some coefficient c(y, f) (not multiplied by a factor which equals zero) then

75* —8. Then in every case in which we shall apply (43) for which it could

happen that a or 8 was equal to —8, it will be possible, by a trivial modifica-

tion of the proof, to take a and 8 such that neither equals — 8. We shall make

no further mention of this in applying (43) in the following proofs.

Lemma 8. Suppose that a3£@y awa" ft£®*, J5*£. Then for any element 0

of ® we have

(47) /(ft, dk)c(aj, 6 - Sf) = /(ay, 0y)c(ft, 0 - 8k).

For if ay+ft+0-8y-8*5*O then (43) with e=0-8y-S* gives (47). Now
consider the case ay+ft+0 — 8y — S* = 0. If O5*0y, 6k then using (47) for the

previous case we have /(ft, 0*)c(ay, 0 — 8,) = /(ay, 0y)c(ft + 0*, 9 — 8k)

=/(ft, 0*)c(ay+0y, 0-8y)=f(ay, 0y)c(ft, 0-8*), while if say/(ay, 0y)=O and
/(ft,0*) 5*0 then both sides of (47) vanish since c(ajt 0 - 8y) =/(«,-, 0y) [/(ft, 0*) J"1

•c(Bk+0k, 6 — Sk) =0, and the lemma is proved.

Lemma 9. If aj, Bj are in ©y and if the component 0,- of 0 is nonzero for some

ij£j then

(48) /(ft, 0y)c(«y, 6 - Sj) = /(«y, 0y)C(ft, 6 - Sf).

For with 7, such that/(7,-, 6t) 5*0, Lemma 8 implies that

/"(ft, 0y)C(ay, 6 - Sj)  = /(ft, 0y)/(ay, 0y) [f(yiy 6,)]'^, 6  - 8,)

= /(ay,0y)C(ft,0-8y).
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All elements of ® occurring in the proofs of the next three lemmas are in

®y. We shall drop the subscript/, write ca tor c(a, 0—8j) and take e=0 — 25y

in these three proofs.

Lemma 10. I/a,, fi, and 6 are in ®y and/(0j, 8j) 7*0 then (48) holds, provided
that aj+d — Sj and fij+9 — Sj are nonzero.

For (43) implies that /(a, 8)ca-/(a+6, 8)ca-/(a, 6)cs = 0, that is,/(5, d)ca

=/(a, 6)cs, and similarly/(5, 6)cfi=/(B, 6)cs. Thus/(/3, 6)ca=/(fi, 0)[/(8, d)]'1
■/(a, 6)cs=/(a, d)cg, and the lemma is proved.

Lemma 11. Suppose that aj, Biandd are in ®j,J7*0, and that/(d, Sj) =0 and

d7*8s, that is, gi(B)=0 and hj(8)7*hj(8j). Then (48) holds.

We may suppose that 6 7*0 since otherwise both sides of (48) vanish. We

shall first show that

(49) Cy   =   Cy+i

tor every 7. Suppose that #(7) 7*0. If / is an integer such that /^ — 1 (mod p)

then 7+/7 + (0-25)^O and (43) gives /(ty, 0-8)cy=/(y, B-S)cty. Since

/(y, 9 — 8)=g(y)h(6 — 8)7*0, we have cty=Uy. Now with 5 such that 2s

= 1 (mod p), we have c_T = 2c_,T= — 2scy= —cy. Since 7 + (— 7 + 5)+e = 0 — 5

7*0 and Cy-y+ss = Co = 0, we have, by (43), /(—7+5, y+6 — 8)cy=/(y,

—y+6)c-y+s, that is, cy= —C-y+s, and hence cy+s= —C-y = Cy. Thus (49) holds

for any 7 such that #(7) 7*0.

Now suppose that 75^0 and g(y) =0, so that ^(7) 7*0, and choose -n such

that g(ri)7*0. Since 17+7+e^O, we have /(i7,7)c,+T_j = /(r)+9 — S,y)cn

+/(v, y+6 — 8)cy, which reduces to

(50) cv+y = c, + [h(y)]~1h(y + 0 ~ S)cy.

Iterating this we obtain cn+ty = cv+t[h(y)]-1h(y+d — 8)cy, while substituting

ty for 7 in (50) we obtain cv+ty = c, + [h(ty) ]_1fe(/7 + 0 — 5)cty. Hence

h(ty+B — 8)cty = t2h(y+6 — 8)Cy, and it follows, using (41), that, for /

^0 (mod p), cty = 0 if and only if c7 = 0. If cy7*0 then — 77 + (i,+7+5)+e

= 7+0-5^0 and, by (43), /(-17, v+y+8)Cy=/(-r,+0-8, ij+7+5)c_,

+/(-!,, n+y+0)c,+y+l, that is,/(-r,,y+8)cy=/(-r,,y+6)c-,+/(-v, y+6)

■ {c,+ [h(y)]-1h(y+e-8)Cy}, whence h(y)h(y+8)=h(y+$)h(y+0-8) and,
by expanding,

(51) 2h(y)[h(S) - h(0)] = h(6)[h(6) - h(S)].

But when cy7*0 then c27^0 also and we may substitute 27 for 7 in (51) and

obtain ih(y)[H8) -h(d)]=2h(y)[h(8) -h(8)], h(8)=h(d), 0 = 5, a contradic-
tion. Hence cy = 0 = cy+s and (49) holds for any 7.

If a+B+e = 0 then j3= -a-0-26 and either g(a) =g(B) =0 and ca = c» = 0

or g(a) 7*0 and, by (50), Cf,= -ca,/(fi, 0) = -/(a, 0) and (48) holds. Similarly
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(48) holds when (a + S)+ft-|-e = 0. Now we may use (43) to obtain both

f(a, 8)ca+s-s = f(a + 9 - 8, B)ca + f(a, 8 +0 - 8)cp and f(a + 8, B)ca+p
=f(a+9, B)ca+s+f(a + 8, B+9 — 8)cp, whence, by applying (49) and subtract-
ing,

(52) /"(ft 8)ca+p = /(ft 8)ca + /(ft 8)cp.

If/(ft 8) =0 then g(B) =0,/(ft 0) =0, cp = 0 and (48) holds, while if/(ft 8) 5*0,
then (52) gives ca+p = ca+Cp, which with (43) and (49) gives

(53) /(ft 0 - S)ca = f(a, 6 - 8)cp.

Multiplying both sides of (53) by h(9)[h(9-8)]~l, we obtain (48), and the
lemma is proved.

Lemma 12. Formula (48) holds when j = 0 and ao, ft awa" 0 are in ®0.

In this proof we again drop the subscripts j = 0 and denote c(a, 9) by ca.

We may assume 05*0. We shall first show that

(54) cty = tcy

for any y and any integer I. If /(y, 0)5*0 then y+/7+05*O and, by (43),

/(7+0> ty)cy+f(y, ty+9)cly = 0, so that (54) holds for such 7. For any 77 such

that/(?7,0) 5*0, we have 77 -0+05*0, so that (43) gives/(r?, -0)c,_» =/(??, -0)c„

c„_a = c and, by iteration, c„+t» = c, for any integer t. On the other hand,

77+/0+05*O, and (43) gives/(t?, t9)cri+u=f(rj, t9)cn+f(r), t9+9)cte, so that ct) = 0

ior t^—1 (mod p), while c_« = 0 by (41). Thus (54) holds for 7 a multiple of 0.

Now suppose that f(y, 0) =0 and 7 is not a multiple of 0. By the non-

degeneracy of /, we may choose 17 such that

(55) 0 9*f(V,6),f(V, 2y + 6).

Suppose that c75*0. Since 77+7+05*0, (43) gives/(r?, y)c^+y = f(r)+9, y)cv

+f(v, y+9)cy. But then/(»7, 7)5*0, since otherwise we would have/(r;, 7+0)

=firl, 0) 5*0 and cy = 0. Thus we have

(56) c*+y = c, + [f(v, y)]-lf(v, 7 + 6)cy.

Then since — 77 + (77 + 7) + 0 5* 0, (43) and (56) give /(— 77, 77 + y)cy

=fi-V+0, 77+7)c-,+/(-77, 77+7+0)C,+T=/(-77, 7+0)c_,+/(-77, y+6)c,

+fi-V, y+6)[fiv, 7)h1/(l, y+9)cy, whence f(n, y)f(-r,, y)=f(~V, 7+0)
■f(n, 7+0), and 0 =f(V, 9) [2/(77, 7) +/(t?, 0) ] =/(t?, 0)/(t7, 27 +0), which contra-
dicts (55). Hence cy=0 = cty, so that (54) is true.

Now ii a+B+9 = 0 then 8 =-a-9,Cp = C-a-e = C-a=-ca,f(B,9) = -f(a,9)

and (48) holds. Similarly (48) holds if 2a + 28+9 = 0, so we may assume that

O5*a+ft+0, 2a+2ft+0. Then (43) gives/(a, B)ca+p=f(a+9, B)ca+f(a, B+9)cp

and /(2a, 2B)c2a+2p=f(2a+9, 28)c2a+f(2a, 2ft+0)c2/S, whence, by applying

(55) and subtracting, we get/(0, 2B)c2a+f(2a, 9)c2p = 0, which gives (48), and

the lemma is proved.
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Lemma 13. The derivation D differs by an extended inner derivation /rom

a derivation /or which c(0k, f) =0 /or every k and Bk in ®* owo" every f 7*0, —6*.

Indeed if 0^0, 5i, • • • , 8m, choose j and ay in ®y such that /(aj,dj)7*0

and ay+0 —5y^0, and define

(57) h, =  [/(ay, 0y)]-May, 0 - Sj).

Then k> is well defined by (57) since Lemmas 8 through 12 proved that (47)

holds unless j = k>0 and either 0 = 5y or ay+0 —5y = 0 or fij+6 — 5y = 0. We

also set ke = 0 for 0 = 0, 5i, • ■ • , 5m. Now consider the extended inner deriva-

tion R of 8(®, 5, /) induced by right multiplication by JZo k>v>- F°r 0k in ®*,

R   maps   v(0j)   onto   JZs/(0k,6k)kev(Bk+9-8k)  =   JZe*h.smc(0k,   0-5*)
■v(0k +0 - Sj). Hence the derivation D-R has c(8k, 0 - 8k)=0 for 0

7*0, 5i, • • • , 5m, that is, c(fik, f) =0 for f 7* — 5*, Sx — Sk, ■ • • , 8m — 5*. But if
t = 8j—8k for J7*0, k, then with ay in ®y such that/(ay, 5y) 7*0 we have aj+fik

+ ( — 8j)7*0 and, by (43),/(ay, 8j)c(Bk, f) =0, and the lemma is proved.

Recall that in selecting a basis of ®* over gp we chose aki such that

i(<Jki, 8j)7*0, k = l, • • • , m. We shall write 0*1=0-* and/(o*, 5*) =a*.

Lemma 14. The derivation D differs by

m

JZ (a*)_1{c(<r*, -Sk)D(Sk, -Sj) - c(2Sk, -Sk)D(ak, -Sj)/2\
k-l

/rom a derivation/or which c(ak, —8j) =0 /or every k7*0 and ak in ®*.

By the definition of D(yk, —Sj) in (44), the conclusion of the lemma is

equivalent to the statement that, for the coefficients c(a, 0) determined by D,

(58) c(ak, -Sj) = (a*)-1{c((r*, -Sk)/(ak, Sk) - c(2Sk, -Sk)/(yk, <rk)/2\

for every k7*0 and a*7*Sk in ®*. All elements of ® occurring henceforth in

the proof of this lemma are in ®*, and we shall drop the subscripts k and de-

note c(a, —Sj) by c„. By (43) we have

(59) /(fi, y)c»+y-s = /(8 - S, y)c» + /(fi, 7 - S)cy,

provided 0+y + ( — 2S)t*0. It /(y, S)t*0 then for any integer / we have

y+ty + (-2S)7*0 and/(-5, ty)cy+/(y, -S)cty = 0, that is,

(60) Cty    =    tCy.

Also when /(y, S)t*0 we have 7+25 + (-25)?*0, /(y, 2S)cy+i=/(y, 25)cy

+f(y, 8)c2j, Cy+l = Cy+Cis/2 and, by iteration,

(61) Cy+tS = Cy + ten/2.

If a= — ff+S or —cr+25, then (61) and (60) give (58), so we may assume

that a^-cr+5, -<r+25, 5. Then a + (o-+5) + (-25)^0, and, by (59) and
(61), we have
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(62)        f(a, o- + 8)ca+c =f(a-8,a + 8)ca + f(a, a)c, + f(a, a)as/2.

Now if /(a,8)=0, we have (a + a) +(-cr + 8) + ( - 28) =a - 85*0 and

f(a+a, —a + 8)ca=f(a, —a)ca+,+f(a, —o-)c_,+j, that is, by (62), (61) and

(60), - f(a + 8,a)ca = - f(a - 8,a)ca - f(a,a)c„ - f(a,a)c2S/2 + f(a,a)c,

—f(a, a)c2S/2, whence 2/(8, a)ca=f(a, a)c2S, which gives (58) for the case

f(a, 8) =0. In particular it follows that (61) holds even when/(y, 8) =0.

Now a+o- + (-28)5*0 and, by (61) and (59), f(a, a)ca+a-f(a, a)c2l/2

=/(a, a)ca+,-i=f(a — 8, a)ca+f(a, a — 8)c„ that is, /(a, a)ca+,=f(a — 8, a)ca

+f(a, a — 8)c,+f(a, a)c2i/2, which, subtracted from (62), gives f(a, 8)ca+c

=f(a, 8)ca+f(a, 8)cff. Thus if/(a, 8)5*0, then ca+<, = ca+c„, which, substituted

in (62), gives (58), and the lemma is proved.

Lemma 15. Suppose that c(ak, f) =0 for every k, ak in ®k and nonzero f.

Then c(a, f) = 0 for every a and nonzero f.

For suppose that c(a, f) 5*0 for some a and nonzero f. Thus also a+f 5*0.

If a+a<+(f-8^)5*0, then, by (43), 0=/(f<, a,)c(a, f), since c(ait f-S, + 8y)
5*0 only if f = 8< —Sy, i^j, in which case/(ay, fy+8y) =0. Similarly, if a + (—a,)

+ (f-8<)5*0, then/(f,-, a,)c(a, f)=0. Hence/(a,-, f<)=0 for all i. Moreover

a + 8, + (f-8i)=a+r5*0, so that/(a* 8,)c(a, f) =/(a,-+f, 8,)c(a, f), that is,
/(f„ 8.) =0 for alii.

Now suppose that 05*aj+f,-, f< for some i. By the nondegeneracy of/,-,

we may choose ft such that 0 5*/(a,+f,-, ft),/(f,-, ft). Either a+ft+(f -8,-) 5*0

or a-ft+(r-S.)5*0. But c(a±ft—8,-,r)=0 since/(a<±ft-S<,r<) = ±/(ft,f.)
5*0. Thus (43) gives either 0 =/(a,+f,-, ft)c(a, f) or 0=/(a<+r<, -Bx)c(a, f),
so that c(a, f) =0, a contradiction.

Hence for any i either ai+f, = 0 or f< = 0. Then, since 05*f, a+f, we have

fy = 0 and ay5*0 for some j and a* = —f*5*0 for some &5*/. Then f(ak, 8*)

=/( — £*, S*)=0. Now choose y,- such that /(ay, 7y)5*0. Then a+ (7,— ak)

+ (f — 3y) has a nonzero component in ©*, so that (43) gives

'"(ay, 7y)c(a + 7y - a* - 8y, f)

=/(«y+fy, 7y)c(a, f)+/(a*+f*+5*, -ak)c(a, f-8y+8*)+/(ay, yy+fy)c(yy-a*, f)

+/(«*, — a*+f*+8*)c(7y—a*, f—5y+5*)+   2~1 /(«»', i"i+8i)c(yj—ak, f—8*+5,).

But c(a+7y—a* —Sy, f) =0 since a* — a*+f*5*0, c(yj—ak, f) =0 since —a*+f*

5*0, and, when i^j, k, f(ait f, + 8,)c(7y —a*, f — 8y —S,)=0 since either fi+S<

5*0 or/(a,-, ?<+8f) =0. Hence we get/(ay, 7y)c(a, f) =0, c(a, f) =0, a contra-

diction, and the lemma is proved.

Lemma 16. Suppose that c(a, f) =0 whenever f 5*0. Then the derivation D

differs by a scalar multiple of D(8, 0) from a derivation for which

c(ti8i + • • • + tm8m, 0) = 0

for any integers h, • • • , tm.
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In this proof we shall write c(a, 0) =c(a) =ca. By the hypothesis, there are

nonzero terms in (43) only when e= — 5y for some j, in which case we have

(63) /(aj, 8j){c(a + 8 ~ Sj) - ca - op]  = 0,

provided a+B~8j7*0. Choose a such that/(a,-, Sj) 7*0 for i = l, ■ ■ ■ , m. Sup-

pose that /y^O (mod p). Then with 0 = tx8x+ ■ ■ ■ +tmSm we have /(ay, (3j)

= /y/(ay, 5y)5*=0, so that (63) gives

(64) c(a + tx8x + • • • + tm8m — Sj) = ca + c(tx8x + • • • + tmSm).

But then for i= 1, • ■ ■ , m we have c(a + 5;) =c„+c(25,-), so that, by iteration,

c(a + tx8i+ ■ ■ ■+ tm8m - Sj) = ca+ tic(28i) + • • • + (/y - l)c(25y) + • ■ •

+/mc(25m), which, combined with (64), gives

(65) c(txSx + • • • + tmSm) = ixc(28x) +•■• + (/;- l)c(25y) +-\-tmc(2Sm).

Now when ®0^0, choose 0O and 0o in @0 such that/((30, 0a) 7*0, and Bi in

®i such that /(0i, 5<)^0. Then with j = 0, (63) gives /(0O, 0J){c(0o+0j)

-c(8o-B{+0i-8i)-c(0J+Si)}=O, while with j=i, (63) gives /(0f, St)
■ {c(8o+Bi-8i) - c(Bo-Bo' +0i-8i) - c(Bo' +5,-)} = 0. Thus c(Bo+8i-8i)
— c(0o+0i). Now with 7 such that/(7,-, 5,-)^0 and c(y — 5,)=c7, (63) gives

/(7.-, 25.) {cy — c(y — Si) — c(28j)) =0, so that c(25,)=0 for i = l, ■ ■ ■ , m, and

by (65) the lemma holds when ®05^0.

Now suppose that ®0 = 0. By (64), we have ca+c(28j)=c(a+8j)=ca

+c(8i + 8j) = c(a + 8j) = ca+c(28j), so that c(25.) =c(25*) for i, k = l, • • • , m.

Thus, by (65) and (45), z»(/i5i+ • • ■ +/m5m)I> = c(25i)(-l+/i+ • • ■ +tm)

■v(tx8x+ ■ ■ • +tm8m) = c(28i)v(tx8x+ ■ ■ ■ +tm8m)D(S, 0), and the lemma is

proved.

Lemma 17. Suppose that c(a, f) =0 whenever either £t*0 or a is o/ the /orm

txSx+ ■ • ■ +tm8m. Then D is a linear combination o/ the derivations £>(o",y, 0).

By the definition of the derivations D(cr,-y, 0) in (46), it is enough to show

that

(66) ca+p = ca + c$

for every a and 0, where in this proof we continue to write c(a, 0) =c(a) =ca.

We may again use (63) whenever a+0 — 8j7*0, and (64) whenever /y/(ay, 5y)

7^0. We shall first show that

(67) c(a — Sj) = ca

for any a and any i. It follows from (64) that if /(ait 8j)7*0 then c(a — Sj)

= ca + (p — l)c(28j) =ca, so that we may assume here that i7*0, /(a,-, 5,) =0,

and a7*0, 5,-. Now we may choose y such that, for some j, the expressions

/(ay —5<, 7,-),a —5,+7 —5y,/(ai+7<) 6,),/(ay, 7y) and a+7—5y are all nonzero.

Then, by (63) and the case of (67) already proved,
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c(a — Si) + cy = c(a + 7 — 5,- — 8y) = c(a + y — 8j) = ca + cy,

so that (67) holds. Hence (63) reduces to

(68) f(ait 8i){ca+p - ca - cp} =0,

again under the condition that a+B — 8j5*0.

If a has nonzero components at, aj, i^j, then we may take y such that

the expressions/(ay, 7y), 7+a —Sy, /(a,-, 7,) and 7+a — ay — S< are all nonzero.

Then cy + ca = cy+a = e(y+a — ay)+c(ay) = cy+c(a—af) +c(ay). Thus ca

= c(a — a,-)+c(ay), so that it is enough to prove (66) when a, 8 are nonzero

elements of ©,- such that either f(a, B)=0 or a+B — 8, = 0. Suppose that

a^—B, —B + 8i. Since fi is a nondegenerate form and p5*2, we may choose

7 in ®t such that 0 5*/(a, 7), /(ft 7), /(a+ft 7). Then (68) implies that

ca+p+cy = ca+p+y = ca + cp+y = ca+cp+cy, and (66) holds when a5*—ft — ft-f-S,-.

But c(— a + 8,) =c_a = C(,_i)a = (p — l)ca, and the lemma is proved.

Theorem 13. When p>3 the derivations D(ak, —8k), D(8k, —8k), D(aij,0)

and D(8, 0), defined in (44), (46) and (45), together with the extended inner

derivations, span the algebra 8(®, 8,/) of all derivations a/8(®, 8,/).

This is an immediate consequence of Lemmas 13 through 17.

We shall now determine the structure of the algebra 8*(®, 8, /) of outer

derivations of 8(®, 8,f). We shall write w, w0, • • • , nm for the dimensions of

®, ®o, • • • , ®m over ftp-

When ® = ®o, the set consisting of the inner derivations Ra, for all nonzero

a in ©, and the derivations D(aQi, 0), ■ ■ ■ , D(aon, 0), is clearly linearly inde-

pendent over g and hus tis a basis of 8(®, 8, /). Since any two derivations

D(aa, 0), D(oki, 0) commute, 8*(®, 8, f) is an w-dimensional abelian algebra

in this case.

Now suppose that ®5*®o- The set of derivations

9t = {R«:a<= ®, a 5*0}

is linearly independent, since v(ai)R-s= —f(o-i,8i)v(ai — 8 — 81)5*0 while

v(ax)Ry=f((TX, yi)v(<Ti+y — 81) has no term in v(ax — 8 — 8x) when 75*— 8. The

set of derivations

© = {D(o-k, -Sk), D(8k, -8k): k= 1, ■ ■ ■ ,m\

is also linearly independent, since ^"-i \bkD(ak, —8k)+bk D(8k, —8k)] maps

v(8k) onto zero only if bk = 0 and maps v(ak) onto zero only if bk =0. We define

a set of derivations X by setting

£ = {D(8, 0), D(o-ij, 0): * - 1, • • • , m;j = 2, • • • , m - l}

when ©o = 0, and

X = {D(c0k, 0), D(cnj, 0): k = 1, • • • , w0; i = 1, >■ • ■ , m;j = 2, ■ ■ ■ , n, — 1}

when ®o5*0.
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Since vav(S{) = /(ai,8j)va = Zy'-'i1 s,-y(a)/(o-,-y,5,>a, we have R(8j)

= JZTAK^a, 8j)D(aa, 0). Then when i7*0, D(aa, 0) is contained in the space

spanned by R(8j) and % since /(an, 8i)7*0. But the set 5£KJ{D(axx, 0), • • • ,

D(Gmi, 0)} is clearly linearly independent and thus 2;W{i?(5i), ■ ■ • , R(8m)}

is linearly independent. Since vaRp has no term in v(a — 8j) for any k, and

has a term in va only it B = 8( tor some i7*0, it follows that StWSWJis linearly

independent. Then by Theorem 13 we have the following result.

Lemma 18. The set 3tW@WJ is a basis o/8(®, 5,/) when ®^@0.

We continue to assume that ®?^©o. We shall write R*s for the outer

derivation determined by i?_s, and D*(a, fi) for the outer derivation deter-

mined by D(a, fi), where (a, /3) = (o-<y, 0), (5, 0), (o-f, —5,) or (5,-, — Sj). Now

when ®0 = 0, the set

^ 58 = [R*-s, D*(*i, -Si), D*(Si, -Si), D*(<nj, 0), D*(S, 0):

(69) -1 ■      i ilt = 1, • • • ,m;j = 2, • • ■ , m — IJ

is a basis of 8*(®, 5, /), and when ®o?^0, the set

S = {R*-s, D*(o-k, -Sj), D*(Sh, -Sk), D*(aoi, 0), D*(atj, 0):

i, k = 1, • • • , m;j = 2, ■ ■ ■ , w,- — 1; / = 1, • • ■ , n0}

is a basis of 8*(®, 5, /).

For any i,j, *and /, jP(o%y, 0) commutes with D(aki, 0), D(8, 0), D(ak, —8k),

D(8k, —8j) and i?_j. When J7*k, D(B,; —8j) and D(yk, —Sj) commute for
any fi,- in ®y and yk in ®*, while

va[D(<n, -8j)-D(8i, -Si)]

= [/(«•> <ri)f(<*i, Si) — /(ai, 8i)/(aj — Si, (n) ]v(a — 25,)

= /(<n, 8i)/(af, —Sj)v(a — 2Sj) = aiVaR(—8j).

Moreover va[D(yi, —8j)-R-s] has no nonzero terms except those in the ele-

ments v(a — 8 — 5, — Sj) with i, jt*0. Hence all products of elements of S are

zero except when m = l, in which case

(71) £*(<ri, Sj)-D*(Sx, -Sj) = axR*s 7* 0.

If ®o = 0 then D(8, 0) t* 0 and

va[D(S, 0) ■ D(7i, -Si)]

=  {[- 1 + Z *(«)]/(«., 7.0

-/(«.-, yi) [- 2 + Z Sj(a)   \v(a - tj)

= /(cti, yi)v(a — S/) = vaD(yi, —Si).
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Hence

(72) D*(8, 0)-D*(o-i, -St) = D*(cn, -Si),

D*(8, 0)-D*(8i, -Si) = D*{dt, - Si), i=l,---,m.

Furthermore

va[D(8, 0).R-,\ = T-l + E Jy(«)l[ E/(«„ -Si)v(a - 8 - «,-)]

- S {/(«•-, ~«0 [- (« + 2) + E 5y(a)l »(«-«- «i)l

= X) (« + !)/(«.-, ~8i)v(a - 8 - Si) = (m + l)vaR-S.
<=i

Hence

(73) D*(8, 0) i?*_a = (« + l)7?*_s,

and we have determined all products of elements of 93. We collect these re-

sults in the following theorem.

Theorem 14. Suppose that p>3. If ® = ®0 then the algebra 8*(®, 8, /) of

outer derivations of 8(®, 8, /) is an n-dimensional abelian algebra. If ®o=0,

then 8*(®, 8, /) has dimension n + 2, with a basis 93 given by (69), awd all non-

zero products of elements of 93 are given by (72), (73) awd, in case m = l, (71).

If ®o5*0 and ®5*®o, then 8*(®, 8, /) has dimension n + l, with a basis (5

given by (70), and is abelian unless m = 1, in which case the only nonzero product

of elements of & is given by (71).

We deduce as immediate consequences of this theorem the solvability of

8*(®, 8, /) and our criterion for nonisomorphism of algebras 8(®, 8,/) of the

same dimension. We let m(®) denote the index m occurring in the direct sum

decomposition (1) of ®.

Corollary 1. Two algebras 8(®, 8,/) owa" 8(®', 8',/') of the same dimension

are isomorphic only if either ®o = 0, @0'=0 owa" m(®)=m(®'), or ®o5*0,

®o' 5*0 owa" min [2, m(®)]=min [2, m(®')].

This follows upon our noting the dimensions of the algebras of outer

derivations and their squares, since if ®0 = 0 then [8*(®, S,/)](2) has dimension

2m+ 1 when m + lf^0 (mod p) and dimension 2m otherwise, while if ®05*0

then [8*(®, S,/)](2) is one-dimensional if and only if m = l.

Corollary 2. The algebra 8*(®, 8, /) is always solvable.
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Indeed the second derived algebra [8*(®, 8, /)](2) is always zero unless

® = ®i, in which case [8*(®, S,/)]<3>=0.

By examining the dimensions of the known algebras and applying Corol-

lary 2, we find that when p>3 one of our algebras 8(®, 8, /) may be iso-

morphic to a previously known nonclassical simple Lie algebra only if ® = ®0,

® = ®i or n = 2m, Moreover by Theorem 8 (on restrictedness) it follows that

if p>2 and w>2w then 8(®, 8,f) is not isomorphic to any classical algebra.

The algebras 8(®, 8, /) for which n = 2m are the same as the algebras

9?m,„ considered in §5. Let $r be the simple Lie algebra of all r-rowed square

matrices of trace zero modulo scalar matrices. Then 93m,,< and tyr have the

same dimension when r = pm. It is proved in [l] that 93m is isomorphic to

tyr H and only if m = l and r = p = 3, and the proof for 93m may easily be ex-

tended to a proof for 93m,,.. However, this theorem is an immediate conse-

quence of results on the derivations of the algebras, and we include it in our

final corollary.

Corollary 3. When p>2, 8(®, 8, /) is isomorphic to a classical algebra

only if p = 3 and 8(®, 8, f) is 7-dimensional. When p = 2, 8(®, 8,f) is not iso-
morphic to any algebra tyr-

For it is proved in [9] that the algebra of outer derivations of ty, has

dimension 0 or 1 for any p, and it is proved in [4] that when p>2 all deriva-

tions of the classical algebras of types B, C, and D are inner. But for any p,

the outer derivations D*(au -Si), D*(8U -Si) (or D*(a0i, 0), D*(am, 0)

when ® = ®o) of 8(®, 8,/) are linearly independent. There is no isomorphism

between 8(®, 8, /) and an exceptional simple algebra of dimension q unless

p = 2 and g = 14, since otherwise their dimensions are distinct.
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