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Applied Math Qualifying Exam Fall 2017

Instructions: Work 2 out of 3 problems in each of the 3 parts for a total
of 6 problems.

Part 1

(1) Let (un)∞n=1 be a sequence of harmonic functions defined on an open
bounded subset U of Rd, d ≥ 2, with each un ∈ C2(U). Assume that
un → u uniformly on U . Prove that u is harmonic on U .

(2) Consider the transport equation,{
∂tfj + u · ∇fj = 0 on R× U,
fj(0, x) = f0,j(x) on U,

for j = 1, 2. Here,
• U is a bounded open subset of Rd, d ≥ 2, having C∞ boundary;
• u is a given time-independent vector field in C∞(U) with u·n =

0 on ∂U ;
• fj = fj(t, x), j = 1, 2, is a scalar-valued function of time and

space;
• f0,j , j = 1, 2, lie in C(U);

You may assume the existence and uniqueness of solutions and the
existence and uniqueness of a flow map for u without proof. (Both
solutions and the flow map will be continuous in time and space.)

(a) Use an energy argument to prove that for all t ≥ 0,

‖f1(t)− f2(t)‖2L2

≤ ‖f0,1 − f0,2‖2L2 exp

∫ t

0
‖divu(s)‖L∞ ds.

Here, the L2-norm is defined by

‖h‖2L2 =

∫
U
h(x)2 dx.

(b) Using the flow map for u (or any other method you can come
up with) prove that for all t ≥ 0,

‖f1(t)− f2(t)‖L∞ ≤ ‖f0,1 − f0,2‖L∞ .
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(3) Let v : R×Rd → Rd be a time-varying vector field. Assume that for
some M1 > 0, ‖v(t)‖L∞ ≤ M1 for all t ∈ R and for some M2 > 0,
v(t) has a Lipschitz constant no larger than M2 for all t ∈ R.
(a) Show that for any (t0,x0) ∈ R× Rd, solutions to{

x′(t) = v(t,x(t)),

x(t0) = x0

are unique. (You do not need to prove existence.)

(b) Define Y : R× Rd × R→ Rd by

Y(t0,x0, t) = x(t),

where x is the solution from (a). Prove that Y is continuous.
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Part 2

(1) Let U be a bounded open set with smooth boundary ∂U . Consider
the initial boundary value problem for u(x, t):

ut −∆u+ bu = f, x ∈ U, t > 0,
u(x, 0) = g(x), x ∈ U,
ut + ∂u

∂n + u = 0, x ∈ ∂U, t > 0,

where ∂u
∂n is the exterior normal derivative [and b is a constant]. Show

that smooth solutions of this problem are unique.

(2) (a): Find an explicit solution to the problem: ut − uxx = cosx, x ∈ [0, 2π], t > 0,
ux(0, t) = ux(2π, t) = 0, t > 0,
u(x, 0) = cosx+ cos 2x, x ∈ [0, 2π].

(Hint: consider v(x, t) = u(x, t) − cosx, and employ the separation
of variables to solve for v.)
(b): Does there exist a steady state solution to the equation in (a)
with the boundary condition

ux(0) = 1, ux(2π) = 0?

Explain your answer.

(3) Find the solution of the partial differential equation

ux + x2yuy = −u,
with the condition u(x = 0, y) = y2 using the method of character-
istics.
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Part 3

(1) Let U be a bounded domain in Rd with a C∞ boundary, let f ∈
L2(U), and let µ > 0 be a constant. Consider the Dirichlet problem,{

−∆u+ µu = f in U,

u = 0 on ∂U.

(a) Define what it means for u ∈ H1
0 (U) to be a weak solution to

this Dirichlet problem.

(b) Show that a weak solution exists.

(2) Let U be a bounded domain in Rd with a C∞ boundary. Assume
that u ∈ C2(U) ∩H1

0 (U) is a strong solution to{
∆u = u3 + u in U,

u = 0 on ∂U.

Note that u ≡ 0 is clearly a solution, but this is a nonlinear problem,
so we have no general uniqueness theorem that covers it.

(a) Use the weak maximum principle to show that u ≡ 0 is the only
solution.

(b) Show the same thing using an energy method.

(3) (a) Prove that for any u ∈ C1(Rd) and any p ∈ (1,∞),

∂j |u|p = p|u|p−1∂ju sgn(u).

Here, the derivative is a classical derivative. Also, sgn: R→ R
is defined by

sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(b) Prove that for any u ∈ H1(Rd) having the property that |u| > ε
for some ε > 0,

∂j |u|2 = 2|u|∂ju sgn(u),

where now we mean the weak derivative. (This is the weak
derivative version of part (a) specialized to p = 2.)

Comment: The assumption that |u(x)| > ε is not necessary,
but may help you in dealing with the sgn function, should you
choose to employ a sequence of smooth approximating functions
and use the result in part (a) for that sequence.
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Instructions: Work 2 out of 3 problems in each of the 3 parts for a total
of 6 problems.
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Part 1

(1) Let Ω be an open subset of Rd and let

C(Ω) = {f : Ω→ R
∣∣∣f is continuous}

with the norm,

‖f‖C(Ω) = sup
x∈Ω
|f(x)|.

Prove that C(Ω) is a Banach space.

(2) Let Ω be a bounded domain in R2, d ≥ 1, with smooth boundary.
(a) Use the divergence theorem to derive Green’s identity,∫

Ω
∆u v = −

∫
Ω
∇u · ∇v +

∫
∂Ω

(∇u · n)v,

where u and v are smooth scalar-valued functions on Ω, and n
is the outward unit normal vector.

(b) Consider the Cauchy problem, ∂tu = ∆u+ cu for (t, x) ∈ (0,∞)× Ω,
u(t, x) = 0 for (t, x) ∈ (0,∞)× ∂Ω,

u(0, x) = g(x) for x ∈ Ω,

on a bounded domain Ω ⊆ Rd having a smooth boundary. Here,
c is a positive constant. Suppose u1 and u2 are two smooth so-
lutions of the above Cauchy problem with different initial con-
ditions g1 and g2. Show that if g1 and g2 are “close” in L2(Ω)
then the solutions u1 and u2 are also close in L2(Ω) at any later
time t > 0. Derive an estimate of how close. (Green’s identity
and Gronwall’s inequality will be useful here.)

(3) Let A(t) be a continuous function from t in R to the space of square,
real-valued matrices.
(a) Show that for every solution of the (non-autonomous) linear

system, ẋ = A(t)x, we have

‖x(t)‖ ≤ ‖x(0)‖e
∫ t
0 ‖A(s)‖ ds,

where ‖A(s)‖ is the operator norm and ‖x(t)‖ is the usual Eu-
clidean norm.

(b) Show that if
∫ t

0‖A(s)‖ ds < ∞ then every solution, x(t), has a
finite limit as t→∞.
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Part 2

(1) (a) Find the entropy solution to the Burgers’ equation ut+uux = 0
with the initial datum

g(x) =


1 if x ≤ 0,

1− x if 0 ≤ x ≤ 1,

0 if x ≥ 1.

(b) Consider the Burgers’ equation with source term 1 with the
initial datum x:

ut + uux = 1, u(t = 0) = x.

Find the equation for the characteristics and also find an explicit
formula for the solution of this initial value problem.

(2) Let f ∈ C2
c (R3) be given. Define for x ∈ R3

u(x) =

∫
R3

Φ(x− y)f(y)dy

where Φ(x) = 1
4π|x| . Prove that −∆u = f in R3. You can use the

fact u ∈ C2(R3) without a proof.

(3) Let u be a classical solution of the following initial boundary value
problem:

ut = uxx, in (a, b)× (0, T )

u(a, t) = u(b, t) = 0

u(x, 0) = u0(x)

where u0 is a continuous function.

(a) Show that the solutions are unique.

(b) Show that there exists a constant α > 0 such that

‖u(·, t)‖2L2 ≤ e−αt‖u0‖2L2 .
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Part 3

(1) Let U be the open unit ball in Rd.
(a) Let

u(x) = |x|−α.
For which values of α > 0, d ≥ 1, and p > 1 does u belong to
W 1,p(U)?

(b) Show that

u(x) = log log
(

1 + |x|−1
)

belongs to W 1,2(U) but does not belong to L∞(U).

(2) Let U = (0, 1)2, the unit square in R2. Can the Lax-Milgram theo-
rem be applied to the bilinear form, B[u, v] : H1

0 (U) ×H1
0 (U) → R,

defined by

B[u, v] =

∫ 1

0

∫ 1

0

∂u

∂x2

∂v

∂x2
− ∂u

∂x1

∂v

∂x1
?

(3) Suppose u ∈ C2(U) ∩ C(U) and let

Lu =
n∑

i,j=1

aijuxixj ,

where the coefficient, aij , are continuous and satisfy the uniform
ellipticity condition. Prove the weak maximum principle; namely,
that if Lu ≤ 0 then

max
U

u = max
∂U

u.
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Instructions: Work 2 out of 3 problems in each of the 3 parts for a total
of 6 problems.

Part 1

(1) A fundamental solution to the autonomous linear system, ẋ = Ax, is
a nonsingular matrix-valued function, Φ: R → Md×d, with Φ′(t) =
AΦ(t).

(a) Show that Ψ(t) = eAt is a fundamental solution satisfying Ψ(0) =
I, the identity matrix. (You may use standard facts about eAt

without proof.)

(b) Show that x(t) = Φ(t)Φ(0)−1x0 is a solution to the IVP, ẋ =
Ax, x(0) = x0.

(c) Show that any fundamental solution is of the form, Φ(t) =
eAtM , for some non-singular matrix M .

(d) Consider the nonhomogeneous linear system,

ẋ = Ax + b(t),

where b is continuous in time. (So b can vary with time, but
A cannot.) Show that

x(t) = Φ(t)Φ(0)−1x0 +

∫ t

0
Φ(t)Φ−1(s)b(s) ds

is a solution to the IVP, ẋ = Ax + b(t), x(0) = x0.
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(2) (a) Consider the linear system of ODEs,

ẏ1 = −y1, ẏ2 = 2y2,

which has the origin as the only equilibrium point. Determine
the explicit solution to this system given the initial condition,
y(0) = a = (a1, a2). What are the stable and unstable mani-
folds for this system? (One or both might be empty.)

(b) Now consider the perturbed, nonlinear system,

ẋ1 = −x1, ẋ2 = 2x2 − 5εx3
1,

which also has the origin as the only equilibrium point. De-
termine the explicit solution to this system given the initial
condition, x(0) = a = (a1, a2). (One method: let y1, y2 be
the solution to the linear system in (a) with initial condition,
(y1, y2) = (1, 1), assume that x2 = c1y2 + c2y

3
1, and then deter-

mine c1 and c2.)

(c) What is the stable manifold for the system in (b)?

(3) Consider the system of equations,{
ẋ1 = x2 − x1f(x1, x2),
ẋ2 = −x1 − x2f(x1, x2),

where f lies in C1(R2).

(a) Show that if f is positive in some neighborhood of the origin
then the origin is an asymptotically stable equilibrium point.

(b) Show that if f is negative in some neighborhood of the origin
then the origin is an unstable equilibrium point.

Hint for both parts: Construct a Lyapunov function.
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Part 2

(1) Let g be a bounded, continuous function on Rn. For (x, t) ∈ Rn ×
(0,+∞) define

u(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy,

where Φ is the fundamental solution of the heat equation,

Φ(x, t) =
1

(4πt)n/2
e−
|x|2
4t .

Let x0 ∈ Rn. Prove that

lim
(x,t)→(x0,0)

u(x, t) = g(x0).

Hint: You can use the fact that
∫
Rn Φ(x, t)dx = 1 for every t > 0 without proving

it. You can also use without proving it the fact that for every r0 > 0,

lim
(x,t)→(x0,0)

∫
|y−x0|>r0

Φ(x− y, t)dy = 0.

In other words, Φ(·, t) has mass one and as (x, t)→ (x0, 0) all the mass concen-

trate around the the point x0.

(2) Let Ω ⊂ Rn be a bounded open domain with smooth boundary and
define the energy

E(w) =
1

2

∫
Ω
|∇w|2dx−

∫
∂Ω
hw,

where h is a smooth functions defined on the boundary of Ω. Suppose
u ∈ C2(Ω) satisfies

E(u) ≤ E(w) for all w ∈ C2(Ω).

What PDE is u satisfying? What are the boundary conditions?
Prove it.

Hint: Start by considering perturbation u+ εv where v ∈ C2
c (Ω). This will give

you the PDE. Then consider perturbation u + εv where v ∈ C2(Ω) to get the

boundary condition.

(3) Let u and v belong to C2
1 (UT ) ∩ C(UT ) and satisfy

ut = ∆u+ f

vt = ∆v + g.

Show that if u ≥ v on the parabolic boundary ΓT and f ≥ g in UT

then u ≥ v in all of UT . This is called a comparison principle.
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Part 3

(1) (a) Prove or disprove the following:

Let U be a bounded, open subset of R2. If u ∈ W 1,2(U), then
u ∈ L∞(U) with the estimate

‖u‖L∞(U) ≤ C‖u‖W 1,2(U)

where C does not depend on u.

(b) Let U be a bounded, open set in Rn with smooth boundary.
Show that

‖Du‖2L2(U) ≤ C‖u‖L2(U)‖D2u‖L2(U)

for all u ∈ H1
0 (U) ∩H2(U) where C does not depend on u.

(2) Consider the following Dirichlet problem

−∆u+ µu = f in U

u = 0 on ∂U

where µ is a given constant. U is a bounded, open subset of Rn.

(a) Show the existence of a weak solution u ∈ H1
0 (U) of the above

problem for µ > 0.

(b) Show the existence of a weak solution u ∈ H1
0 (U) of the above

problem for µ = 0.

(c) Discuss the problem when µ < 0.

(3) Consider the Poisson equation with Dirichlet boundary condition:{
−∆u = f in U

u = 0 on ∂U

where U is a bounded, open subset of Rn and f ∈ L2(U). We know
there exists a weak solution u ∈ H1

0 (U). Prove that u ∈ H2
loc(U).
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