Complex Analysis Syllabus for the qualifying examination

1. Undergraduate material.

- a) Complex numbers and their geometry
- b) The Riemann-Stieltjes integral (chapter 6 in ref. 5)
- c) Green's formula in two dimensions
- d) Uniform convergence and equicontinuity of sequences of functions (chapter 7 in ref.
 5); integrals of functions depending on parameters.

2. Elementary analytic functions and their mapping properties.

- a) Linear fractional transformations and the Riemann sphere
- b) Cross-ratio
- c) The exponential and the logarithm
- d) Trigonometric functions

3. The Cauchy-Riemann equations.

- a) The operators ∂ and $\bar{\partial}$ in Cartesian and polar coordinates
- b) The homogeneous equation $\bar{\partial}u = 0$; properties of Re(u) and Im(u).
- c) The inhomogeneous equation $\bar{\partial}u = f$.

4. Cauchy theorem and its consequences.

- a) Proofs and Cauchy's formula
- b) Cauchy's inequalities
- c) The uniqueness principle
- d) The maximum modulus principle and Schwarz lemma
- e) The open mapping principle
- f) Liouville's theorem and the fundamental theorem of algebra
- g) Winding numbers, the argument principle and Rouche's theorem.

5. Singularities of analytic functions.

- a) Classification of singularities,
- b) Casorati-Weierstrass theorem,
- c) Residue theorem,
- d) Computation of definite integrals.

6. Taylor and Laurent series.

- a) Cauchy-Hadamard formula for the radius of convergence,
- b) Abel's theorem,
- c) Laurent series,
- d) Infinite products,
- e) The expansions of elementary functions in infinite series and in infinite products.

7. Conformal transformations.

- a) Riemann's mapping theorem,
- b) The reflection principle,
- c) Elementary conformal transformations.

8. Harmonic functions.

- a) Maximum principle,
- b) Mean value theorem,
- c) Poisson and Jensen formulae,
- d) Dirichlet problem,
- e) Subharmonic functions.

References.

- 1) L. Ahlfors, Complex Analysis, McGraw-Hill.
- 2) J. Conway, Functions of One Complex Variable, 2nd edition, Springer.
- 3) K. Knopp, Theory of Functions, Parts I and II; Problem Book, Vol. I and II, Dover.
- 4) R. Narasimhan, Complex Analysis in One Variable, Birkhäuser.
- 5) W. Rudin, Principles of Mathematical Analysis, 3d. edition, McGraw-Hill (undergraduate material, only chapters 6 and 7)
- 6) S. Saks and A. Zygmund, Analytic Functions, Warsaw.