
Syllabus for the qualifying examination in Real Analysis

Undergraduate materials:

• R and Rn

• Basic topology: compact and connected sets, convergent sequences, Cauchy

sequences, metric space completion.

• Sequences and series – numerical

• Continuity

• Differentiation

• Riemann integral

• Sequences and series of function, uniform convergence

• Fourier series (Chapter 8 from [8])

• Several variables: differentiation, inverse and implicit function theorem, Stokes

theorem

• Stone-Weierstrass theorem

• Arzela-Ascoli theorem

Measure Theory (209A)

• Properties of both abstract and Lebesgue-Stieltjes measures

• Caratheodory extension process constructing a measure on a sigma-algebra

from a premeasure on an algebra; construction of Lebesgue-Stieltjes measure

via this process

• Borel measures; complete measures; sigma-finite measure spaces

• Properties of measurable functions

• Abstract integration as well as Lebesgue integration on Rn

• Dominated and monotone convergence theorems, Fatou’s Lemma

• Special examples: Cantor sets, Cantor function, construction of a non-Lebesgue

measurable subset of [0, 1].
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• Modes of convergence: pointwise, uniform, almost everywhere, in measure,

in L1-norm, and implications between modes of convergence; Egoroff’s and

Lusin’s theorems

• Product measures: Fubini-Tonelli’s theorem

• Relation of Lebesgue integral to Riemann integral

• Radon-Nikodym theorem; Hahn, Jordan, and Lebesgue decompositions

• Lebesgue’s differentiation theorem in Rn ; functions of bounded variation,

absolute continuity

Functional analysis (209B)

• Normed vector spaces: Banach spaces, quotients, adjoints, Hahn-Banach The-

orem, Baire Category theorem, open mapping theorem, closed graph theorem,

the uniform boundedness principle.

• Topological vector spaces: weak topology, weak-∗ topology, Alaoglu’s theo-

rem.

• Hilbert space: Schwartz’ inequality, Parallelogram law, Pythagorean theorem,

Bessel’s inequality, Parseval’s identity

• Lp spaces and lp spaces: Holder, Minkowski inequalities, duals

Fourier analysis (209C)

• Various classes of functions: C∞ , C∞
c , Cc , C0. Schwarz class of functions and

distributions, tempered distributions which are bounded linear functionals on

the Schwarz class. Urysohn’s lemma.

• Convolution, Fourier transform and its properties. Fourier inversion theorem,

Young’s, Hausdorff-Young inequalities.
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