
Real Analysis Qualifier — 2023

Undergraduate Problems

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Describe a function f : (0, 1) → R that is continuous but not uniformly continuous. Prove
that it has these properties.

2. Suppose that f : [0, 1]→ R has a continuous derivative f ′. Prove that f is uniformly contin-
uous.

3. State the definition of continuity. Then show by definition that f(x) = x2+x+2 is continuous
on R.

4. Prove the series
∑∞

i=1(−1)iai is convergent, where the numbers ai > 0 decrease to 0 as i→∞.

1



209A

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will not
receive credit. In this part, R is equipped with Lebesgue measurable sets and the Lebesgue measure.

1. State the definition that a set in R is measurable. Use the definition to prove that the set of
irrational numbers in [0, 1] is measurable.

2. State the definition that a function from R to R is measurable. Let fn, n ∈ {1, 2, 3, ...}, be
measureable and prove that f = supn fn(x) is also measurable. Is the conclusion still true if
the index set {1, 2, 3, ...} is replaced by the interval [0, 1]. Why?

3. Suppose fn, f ∈ L1[0, 1] and fn → f a.e.

(a). Show by examples that even if limn

∫ 1
0 fn exists, it may not equal

∫ 1
0 f .

(b). Prove that
∫ 1
0 |fn − f | → 0 if and only if

∫
|fn| →

∫
|f |.

4. Compute the following limit and justify the calculation

lim
n→∞

∫ 1

0
(1 + nx2)(1 + x)−ndx.
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209B

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit. In this part, m denotes the Lebesgue measure.

1. State the complex measure version of the Lebesgue-Radon-Nikodym (LRN) Theorem. Then
construct a measurable space (X,M) with two positivite measures ν and λ such that ν � λ
but dν 6= fdλ for any f . Show all your steps and explain why LRN fails for your example.

2. State the Lebesgue differetiation theorem. Then use it to prove the following result. Let
E ⊂ Rn be a Borel set. Then for m-a.e. x ∈ E, it holds that

lim
r→0

m(E ∩B(r, x))

m(B(r, x))
= 1.

Note here B(r, x) = {y ∈ Rn : ‖x− y‖ < r} where ‖ · ‖ is the standard distance in Rn.

3. State and prove the Baire category theorem.

4. State and prove the Riemann Lebesgue lemma for functions defined on T = R/Z. Here you
may use the Stone-Weierstrass theorem and the fact that C(T) is densed in (L1(T,m), ‖ · ‖1).
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209C

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will not
receive credit. In this part, R is equipped with Lebesgue measurable sets and the Lebesgue measure.

1. If f ∈ Lp ∩ L∞ for some p <∞ and f ∈ Lq for all q > p, then

||f ||∞ = lim
q→∞

||f ||q

2. State and prove Holder’s inequality for Lebesgue measurable functions on R.

3. Let f be a smooth function on R with compact support. Show that if the Fourier transform
of f also has compact support, then f = 0 .

4. Show that any normed vector space can be embedded into a Banach space.
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Real Analysis Qualifier — 2022

Undergraduate Problems

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Suppose that f(x) has continuous first derivative on [0, 2π]. Show that

lim
n→∞

∫ 2π

0
f(x) sin(nx)dx = 0.

2. Let f(x) : [0, 1]→ R be the function so that

f(x) =

{
1, x ∈ Q
2, x /∈ Q

.

Prove using definition of Riemann integral that f is not Riemann integrable on [0, 1].

3. Prove from definition that the function f(x) = 0, x ≤ 0; f(x) = e−2/x, x > 0 is differentiable
at x = 0 and f ′(0) = 0.

4. Prove using ε-δ deifnition of continuity that f(x) =
√
x is continuous on [0,∞).

1



209A

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Let (X,M, µ) be a measure space. Let N = {N ∈M : µ(N) = 0} and

M = {E ∪ F : E ∈M and F ⊂ N for some N ∈ N}.

(a) Show that M is a σ-algebra.

(b) Show that there is a unique extension µ of µ to a complete measure on M.

2. Let (X,M) be a measurable space and let µ : M→ [0,∞] be finite additive and µ(∅) = 0.
Show that µ is a measure on (X,M) if and only if it is continuous from below. Recall that
we say µ is continuous from below if {Ej}∞1 ⊂ M and Ej ⊂ Ej+1 for all j ≥ 1, then
µ(∪∞1 Ej) = lim

j→∞
µ(Ej).

3. State Fatou’s lemma and Lebesgue dominated convergence theorem. Then use Fatou’s lemma
to prove the Lebesgue dominated convergence theorem.

4. Consider the measurable spaces X = Y = [0, 1] and let M = N = B[0,1] be the Borel-σ
algebra on [0, 1]. Let m be the Lebesuge measure and ν be the counting measure on [0, 1].
Consider the product space (X × Y,M⊗N , µ × ν). Show that the Fubini-Tonelli therorem
fails for the product space by constructing an explicit measurable function f on X×Y where
the two iterated integrals are not equal. You have to show all the necessary steps of your
computation. Explain why Fubini-Tonelli theorem doesn’t work in this context.
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209B

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. State without proof a version of the Lebesgue-Radon-Nikodym theorem. Let m be the
Lebesgue measure on [0, 1] and ν be the counting measure on [0, 1]. Show that ν does not
have a Lebesgue decomposition with respect to m.

2. State the definition that a function on R1 is absolutely continuous. Prove that an absolutely
continuous function on R1 whose derivative is 0 a.e. must be a constant.

3. State the closed graph theorem. Let Y = C[0, 1] be the space of continuous functions on [0, 1]
and X = C1[0, 1] the space of C1 functions on [0, 1], both equipped with the sup norm ‖ · ‖∞.
Show that the differentiation map d/dx from X to Y is closed but not bounded.

4. Construct a sequence of functions on L2[0, 1] which converges to the constant 1 weakly but
not to 1 strongly. You may assume the Riemann Lebesgue lemma.
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209C

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Show that the dual space of L∞[0, 1] strictly contains L1[0, 1].

2. Show that every closed convex set in a Hilbert space contains a unique element of minimal
norm.

3. Use function f(x) = 1
2 − x and Fourier series to show that

∑
n≥1

1
n2 = π2

6 .

4. Suppose f ∈ L2(R). Show that the L2 derivative f ′ exists iff ξf̂ ∈ L2, in which case
f̂ ′(ξ) = 2πiξf̂(ξ).
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Real Analysis Qualifier — 2021

Undergraduate Problems

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Prove using the ε-δ definition of continuity that f(x) = x2 is continuous on R.

2. Prove that if f : R→ R is differentiable at x0 and f(x0) > 0 then g =
√
f is differentiable at

x0 as well. Note g is well defined near x0. Do this using only the definition of the derivative.
(Don’t use the product rule, the chain rule, etc., unles you prove these.)

3. Use integration by parts to show that
∫ 1
0
f2(x)
x2

dx ≤ 4
∫ 1
0 (f ′(x))2dx for all smooth f on [0, 1]

such that f(0) = 0.

4. Suppose that f : R → R is differentiable with |f ′(x)| ≤ M for all x ∈ R, where M is some
positive real number. Prove that

|f(x)− f(y)| ≤M |x− y| for all x, y ∈ R.
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209A

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Given a measure space (X,M, µ) and E ∈ M, define µE(A) = µ(A ∩ E) for all A ∈ M.
Prove that µE is a measure; that is, (X,M, µE) is a measure space.

2. If f : R→ R is monotone then it is Borel measurable.

3. Given a measure space (X,M, µ), let f ∈ L+(M).1 Define λ(E) :=
∫
E f dµ for all E ∈ M.

Prove that λ is a measure on M and that for all g ∈ L+,∫
g dλ =

∫
fg dµ.

4. Let (X,M, µ) be a measure space. If µ(En) < ∞ for all n ∈ N and 1En → f in L1(M) as
n → ∞, then f is (almost everywhere) equal to the characteristic function of a measurable
set. 2

1Recall that L+(M) is the the space of all measurable functions from X to [0,∞].
2
1En is the characteristic function of En, also often written χEn .
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209B

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Let

g(x) =


ex − 1, x < 0;

ex, 0 ≤ x < 1;

x+ 3, x ≥ 1.

Let ν be the Borel measure generated by g, i.e. ν((a, b]) = g(b)− g(a) for all numbers b ≥ a.
Let ν = λ + fdµ be the Lebesque decomposition, where µ is the Lebsgue measure and λ is
singular w.r.t. µ. Determine λ and f explicitly.

2. State respectively the definitions that a function is of bounded variation and absolutely con-
tinuous on [0, 1]. Construct a continuous function on [0, 1] which is of bounded variation but
is not absolutely continuous.

3. Let X = [0, 2π], equipped with Lebesgue measure. (a). Let fn = sin21(nx). Prove that fn
converges to 0 weakly in L2(X) as n→∞. That is, lim

n→∞
〈g, fn〉 = 0 for all g ∈ L2(X) where

〈·, ·〉 is the inner product on L2(X). You may assume Riemann-Lebesgue Lemma. (b). Prove
that fn does not converge to 0 a.e.

4. Let [0, 1] be equipped with the Lebesgue measure. Let L1[0, 1] be the space of integrable
functions and Lp[0, 1], p > 1, be the space of functions whose p-th power is integrable on
[0, 1]. Show that Lp[0, 1] is a meager subset of L1[0, 1], i.e., Lp[0, 1] can be written as a
countable union of nowhere dense subsets of L1[0, 1]. Hint: Lp[0, 1] =

⋃∞
N=1{f : ‖f‖p ≤ N}.
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209C

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Let m be Lebesgue measure on the unit circle T = R/Z. Consider the space (L∞(T,m), ‖·‖L1)
where ‖f‖L1 =

∫
T |f |dm.

(a) Is it a Banach space? Prove your answer.

(b) Is it a separable space? Prove you answer. Here you may use the fact that trigonometric
polynomials are dense in (Lp(T,m), ‖ · ‖Lp) for 1 ≤ p <∞.

2. Let (X,M, µ) be measure space where µ is a positive measure. Let {fn}n≥1 be a Cauchy
sequence in (L1(X,µ), ‖ · ‖L1). Find a subsequence {fnk

}k≥1 of {fn} such that the pointwise
limit

f(x) := lim
k→∞

fnk
(x)

exists for µ-almost every x ∈ X and f ∈ L1(X,µ).

3. Recall the Schwartz space S(R) is a Fréchet space via the family of semi-norms

‖f‖k :=
∑

n,m:|n|+|m|≤k

sup
x∈R

∣∣∣xnf (m)(x)
∣∣∣ .

Consider the linear map Λ : S(R) → R where Λ(f) =
∫
R |xf |dx. Show that Λ is continuous

with respect to the natural topology on S(R).

4. Recall the Fourier Transformation on S(R) is defined as

f̂(ξ) := (2π)−
1
2

∫
R
f(x)e−ixξdx.

Show that f̂ ∈ C∞(R) for each f ∈ S(R).
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Real Analysis Qualifier — 2020

Undergraduate Problems

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Prove that if f : R→ R is differentiable then so is f2. Do this using only the definition of the
derivative. (Don’t use the product rule, the chain rule, etc., unles you prove these.)

2. Let f : R → R and g : R → R be continuous functions. Show using the ε-δ definition of
continuity that the composite f ◦ g : R→ R is continuous.

3. Prove or disprove this statement: if fn : [0, 1]→ R is a sequence of continuous functions and
fn converges uniformly to f : [0, 1]→ R, then∫ 1

0
fndx→

∫ 1

0
fdx.

4. Prove or disprove this statement: if f : R→ R is uniformly continuous, then f2 is uniformly
continuous.
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209A

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit. The notion of measure or measurable is in the sense of Lebesgue, unless stated
otherwise.

1. Suppose fn, f ∈ L1[0, 1]. Show that if fn → f in measure then

lim
n→∞

∫ 1

0

|fn − f |
1 + |fn − f |

dx→ 0.

2. Rigorously compute the limit

lim
n→∞

∫ 1

0

nxn−1

1 + x
dx.

3. State and prove Hölder’s inequality assuming Young’s inequality, which says

ab ≤ ap

p
+
bq

q

if 1
p + 1

q = 1, p, q > 1 and a, b ≥ 0.

4. Let f be a bounded measurable function and g be an integrable function on R. Prove that

lim
h→0

∫ ∞
−∞

f(x)(g(x+ h)− g(x))dx = 0.
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209B

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit.

1. Find a sequence of measurable functions fn : R→ R such that such that

lim
n→∞

∫
R
|fn(x)| dx = +∞

and

lim
n→∞

∫
R
|fn(x)|2 dx = 0

even though both integrals are finite for all n. Prove the sequence has all these properties.

2. Give a function f : [0, 1]→ R that is differentiable at every point (including endpoints, where
we use the one-sided derivative) but is not of bounded variation. Prove that it has these
properties.

3. Find numbers aij ∈ R for i, j = 1, 2, 3, . . . such that

∞∑
i=1

∞∑
j=1

aij = 1

but
∞∑
j=1

∞∑
i=1

aij = 2

Prove that all the sums involved actually converge.

4. Prove that there is no metric on the set of rational numbers that gives Q its usual topology
but makes Q into a complete metric space. (The “usual topology” on Q is its topology as a
subspace of R.)
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209C

Choose one problem from 1–2 and one from 3–4. Please show all work. Unsupported claims will
not receive credit. In what follows m denotes the Lebesgue measure and H denotes a Hilbert space.

1. Prove the following version of Riemann–Lebesgue Lemma. Let T = R/Z. Show that the
Fourier coefficients f̂ : Z→ C of f ∈ L1(T,m), f̂(n) =

∫
T f(x)e−2nπixdx, satisfy

lim
|n|→∞

|f̂(n)| = 0.

You may use the fact that trigometric polynomials are dense in (L1(T,m), ‖ · ‖1).

2. Let

f̂(ξ) := (2π)−
1
2

∫
R
f(x)e−ixξdx.

(a) State the definition of a Fréchet space.
(b) Describe the Schwartz space S(R) as a Fréchet space.
(c) Show that f̂ ∈ C1(R) for all f ∈ S(R). Note that you need to rigorously justify your steps.

3. Let M be a closed subspace of a Hilbert space H. For each x ∈ H, let P (x) be the closest
point to x in M .
(a) Show that P : H→M is well-defined and is a bounded linear operator.
(b) Compute its operator norm.

4. Let L : H→ C be a bounded linear functional that is not identically zero. Show that

ker(L) := {x ∈ H : L(x) = 0}

is subspace of H that has codimension one. That is, you need to find a subspace M ⊂ H such
that dim(M) = 1 and H = ker(L)⊕M .
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Real Analysis Qualifier — 2019

Undergraduate Problems

Choose one problem from 1–2 and one problem from 3–4. Please show all work. Unsupported
claims will not receive credit.

1. Find a function f : R → R that is differentiable everywhere but whose derivative is not
continuous everywhere. Prove it has both these properties.

2. Find a function f : R → R that is continuous at all irrational numbers and discontinuous at
all rational numbers. Prove it has both these properties.

3. Prove straight from the definition of Riemann integral that this function f : [0, 1] → R is
Riemann integrable:

f(x) =

{
0 if x ≤ 1/2
1 if x > 1/2

4. Prove straight from the definition of Riemann integral that this function f : [0, 1]→ R is not
Riemann integrable:

f(x) =

{
0 if x ∈ Q
1 if x /∈ Q

1



209A

Choose one problem from 1–2, one from 3–4 and one from 5–6. Please show all work. Unsupported
claims will not receive credit. The notion of measure or measurable is in the sense of Lebesgue,
unless stated otherwise.

1. State the definition that a set in R is Lebesgue measurable. Prove that every countable set
in R is Lebesgue measurable.

2. Prove that every set S ⊆ R with positive outer measure contains a nonmeasurable set.

3. Construct a bounded open set O ⊂ R such that the measure of O is strictly less than the
measure of its closure Ō.

4. Let {fn} be a sequence of measurable functions on [0, 1]. Prove that the set of points x ∈ [0, 1]
where fn(x) does not converge is measurable.

5. Let f : R → R be a measurable function. Prove that |f | is also measurable. Is the converse
true? Why?

6. State Egoroff’s Theorem. Use it to prove the Dominated Convergence Theorem for measurable
functions on the interval [0, 1] with Lebesgue measure.
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209B

Choose one problem from 1–2, one from 3–4, and one from from 5–6. Please show all work. Un-
supported claims will not receive credit.

1. Find a sequence of measurable functions fn : [0, 1]→ R that converges to zero in measure but
not almost everywhere. Prove it has both these properties.

2. Find a sequence of functions fn : [0, 1]→ R that converges to zero pointwise but has

lim
n→∞

∫
[0,1]

fn dx = +∞.

Prove it has both these properties.

3. Let `1 be the space of real-valued sequences (ci)
∞
i=1 with

∑∞
i=1 |ci| <∞, made into a Banach

space with the norm

‖c‖ =
∞∑
i=1

|ci|.

Find an infinite-dimensional closed subspace of `1 that is not all of `1.

4. Let C[0, 1] be the vector space of continuous real-valued functions f : [0, 1]→ R, made into a
normed vector space with the norm

‖f‖ =

∫
[0,1]
|f(x)| dx.

Show that C[0, 1] is not a Banach space with this norm.

5. Suppose that V is a Banach space and vi ∈ V is a sequence with

∞∑
i=1

‖vi‖ <∞.

Prove that the sum
∞∑
i=1

vi

converges in the norm topology on V .

6. Using the Baire category theorem, prove this version of the uniform boundedness principle:
if V and W are Banach spaces and S ⊆ L(V,W ) is a set of bounded operators from V to W
such that

sup
T∈S
‖Tv‖ <∞ for all x ∈ V,

then
sup
T∈S
‖T‖ <∞.
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209C

Choose one problem from 1–2 and one from 3-4. Please show all work. Unsupported claims will
not receive credit. In what follows we use Lebesgue measure on [0, 1] and R.

1. For any f ∈ C[0, 1], the space of continuous functions on [0, 1] with the sup norm, define a
linear functional

Tf =

∫ 1/4

0
xf(x)dx.

(a) Prove that T is a bounded linear functional on C[0, 1].
(b) Find the norm of T .

2. Show that the dual space of L∞[0, 1] strictly contains L1[0, 1].

3. (a) State the definition of S(R), the space of Schwartz functions on R.
(b) Prove that f(x) = e−x

2
is in S(R) and find its Fourier transform

f̂(ξ) =
1√
2π

∫
R
e−ixξf(x)dx.

4. (a) State the definition of S ′(R), the space of tempered distributions on R.
(b) Prove that the Heaviside function

h(x) =

{
0 if x < 0
1 if x ≥ 0

can be viewed as a tempered distribution and find its derivative.

4











Real Analysis Qualifier — 2017

Undergraduate Problems

Choose one problem from 1–2 and one problem from 3–4. Please show all work. Unsupported
claims will not receive credit.

1. Prove or disprove this statement: if fn : R → R is a sequence of continuous functions and
fn → f uniformly, then f is continuous.

2. Prove or disprove this statement: if f, g : R → R are continuous, then their product fg is
continuous.

3. Prove or disprove this statement: if f, g : R→ R are uniformly continuous, then their product
fg is uniformly continuous.

4. Give a function f : [0, 1]→ R that is not Riemann integrable, and prove that it is not.

1



209A

Choose one problem from 1–3 and one problem from 4–6. Please show all work. Unsupported
claims will not receive credit.

1. Suppose thatM is any σ-algebra of subsets of a set X, and µ is a measure on this σ-algebra.
Prove or disprove this statement: there is always a σ-algebraM containingM and a complete
measure µ extending µ.

2. A collection A of subsets of X is closed under countable increasing unions if whenever
Ai ∈ A is a sequence of sets with Ai ⊆ Ai+1, then

⋃∞
i=1Ai ∈ A. Prove or disprove this

statement: if A is an algebra closed under countable increasing unions, then A is a σ-algebra.

3. Prove or disprove this statement: if the functions fn : [0, 1]→ R are continuous and for every
x ∈ [0, 1] we have limn→∞ fn(x) = 0, then

lim
n→∞

∫ 1

0
fn(x) dx = 0.

4. A sequence of measurable functions fn : X → R converges to zero in measure if for any
ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)| > ε}

)
= 0.

Prove that if fn converges to zero in measure and µ is a finite measure then

lim
n→∞

∫
X

fn
1 + |fn|

dµ = 0.

5. Let f be a nonnegative function on Rn such that
∫
Rn f(x)pdx <∞. Prove that∫

Rn

f(x)pdx =

∫ ∞
0

ptp−1m{x : f(x) > t} dt.

where m(S) is the Lebesgue measure of the set S. Hint: use the Fubini–Tonelli theorem.

6. Let f be an integrable function on R. Prove that

lim
h→0

∫
|f(x+ h)− f(x)|dx = 0.

2



209B

Choose one problem from 1–2 and two problems from 3–6. Please show all work. Unsupported
claims will not receive credit.

1. Prove or disprove: finite linear combinations of the functions {e−nx}n∈N are dense in C[0, 1]
with its usual sup norm topology.

2. Prove that if µ, ν, λ are measures on the measurable space (X,M) and µ � λ, ν � λ, then
µ+ ν � λ.

3. Let f = f(x) be an absolutely continuous function on [0, 1] such that f ′ is in L2[0, 1] and that
f(0) = 0. Prove that

lim
x→0+

f(x)

x1/2
= 0.

Hint: use the Fundamental Theorem of Calculus on f(x)− f(0).

4. Describe a set S ⊆ [0, 1] that is nowhere dense yet has positive Lebesgue measure. Prove that
it has these properties.

5. Suppose V is a real Banach space. Prove that a linear functional f : V → R bounded if and
only it is continuous.

6. Suppose f ∈ L2[0, 1] and f2 ∈ L2[0, 1]. Show that f + 1 ∈ L3[0, 1].

3



209C

Choose one problem from 1–2 and one from 3–6. Please show all work. Unsupported claims will
not receive credit. In what follows we use Lebesgue measure on [0, 1] and R.

1. Prove that if T is a linear map from a real Hilbert space H to itself that preserves the norm,
then T also preserves angles.

2. Show that L∞[0, 1] is nonseparable, i.e., it does not have a countable dense subset.

3. If f ∈ Lp ∩ L∞ for some p <∞ and f ∈ Lq for all q > p, then

||f ||∞ = lim
q→∞

||f ||q

4. Suppose f ∈ L2(R). Then the L2 derivative f ′ exists iff ξf̂ ∈ L2, in which case f̂ ′(ξ) =
2πiξf̂(ξ).

5. Suppose that f is continuously differentiable on R except at x1, . . . , xm, where f has jump
discontinuities, and that its pointwise derivative df/dx (defined except at the the points xj)
is in L1

loc(R). Then the distribution derivative f ′ of f is given by:

f ′ = (df/dx) +

m∑
j=1

[f(xj+)− f(xj−)]τxjδ

where τx is the operation that translates a distribution by x.

4



Real Analysis Qualifier

Part I

Solve one problem out of (1)–(2), one out of (3)–(4) and one out of (5)–(6).
In what follows, let (X,M, µ) be a measure space.

(1) Prove or disprove this statement: if fn : R → R is a sequence of
continuous functions and fn → f uniformly, then f is continuous.

(2) Prove or disprove this statement: if f, g : R → R are continuous,
then their product fg is continuous.

(3) Prove or disprove this statement: there is a σ-algebraM containing
M and a complete measure µ extending µ.

(4) A collection A of subsets of X is closed under countable in-
creasing unions if whenever Ai ∈ A is a sequence of sets with
Ai ⊆ Ai+1, then

⋃∞
i=1Ai ∈ A. Prove or disprove this statement: if

A is an algebra closed under countable increasing unions, then A is
a σ-algebra.

(5) A sequence of measurable functions fn : X → R converges to zero in
measure if for any ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)| > ε}

)
= 0.

Prove that if fn converges to zero in measure then

lim
n→∞

∫
X

fn
1 + |fn|

dµ = 0.

(6) Prove or disprove this statement: if the functions fn : [0, 1]→ R are
continuous and for every x ∈ [0, 1] we have limn→∞ fn(x) = 0, then

lim
n→∞

∫ 1

0
fn(x) dx = 0.

1



Part II

Solve 3 out of the 5 problems below.

(1) State the Hölder and Minkowski inequalities. Use the former to
prove the later.

(2) Let f ∈ L1(Rn) and let

M(f) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

where B(x, r) is the ball of radius r centered at x. Prove that there
exists a constant C > 0 such that for all α > 0:

|{x : Mf(x) > α}| ≤ C

α

∫
|f(y)|dy.

You may use this fact: Let C be a collection of open balls in Rn

that covers a set U of finite measure. Then there exist finitely many
disjoint balls B1, . . . , Bk in C such that the sum of the volume of
these balls is greater than 3−na, where a is any number less than the
measure of U .

(3) (a) State the definition of weak and strong convergence of sequences
in a Banach space.

(b) Does weak convergence imply strong convergence? Explain why
it does or does not.

(c) Show that every weakly convergent sequence in a Banach space
is bounded with respect to the norm of the Banach space. (You may
assume the uniform boundedness principle.)

(4) Prove that a linear functional f on a normed vector space is bounded
if and only if f−1({0}) is a closed subspace of X.

(5) Show that the Banach space X = L1[0, 1] is not reflexive, namely X
is a proper subset of X∗∗.



Part III

Solve 3 out of the 5 problems below.

(1) Prove that every closed convex set in a Hilbert space has a unique
element of minimal norm.

(2) If f ∈ Lp ∩ L∞ for some p <∞ and f ∈ Lq for all q > p, then

‖f‖∞ = lim
q→∞

‖f‖q

(3) Let f(x) = 1
2 − x on the interval [0, 1). Extend f to be periodic

function on R. Use Fourier series of f to show that∑
k≥1

1

k2
=
π2

6
.

(4) If ψ ∈ C∞(R), show that

ψδ(k) =

k∑
j=0

(−1)j
k!

j!(k − j)!
ψ(j)(0)δ(k−j)

where δ(k) is the k-th derivative of delta function.

(5) Show that L∞[0, 1] is not separable, i.e., it does not have a countable
dense subset.



Real Analysis Qualifier — 2016

Undergraduate Problems

Choose 2 problems from the following. Please show all work. Unsupported claims will not receive
credit.

1. Show that a continuous function on a compact interval has a maximum and minimum value.

2. Let f = χQ be the characteristic function of the set of rational numbers. True or false:

(a) f is Riemann integrable on [0,1].

(b) f is Lebesgue integrable on [0,1].

Justify your answers. How would your answers be modified if Q were replaced by the set of irra-
tional numbers?

3. State the inverse function theorem for a function of two variables and give a sketch of the proof
of that theorem.

4. Show that if (xn)n∈N is an increasing sequence of real numbers then either xn → x for some
x ∈ R or for every M ∈ R there exists n with xn > M .

5. Find a sequence of continuous functions fn : [0, 1] → R that converges pointwise but not uni-
formly. Prove that this is the case.

6. Give an infinitely differentiable function f : R→ R for which f and all its derivatives f ′, f ′′, f ′′′, . . .
vanish at the origin, yet f is nonzero. Prove that this is the case.

1



Part A

Choose 2 problems from the following. Please show all work. Unsupported claims will not receive
credit.

1. Let {fn} be a sequence of real-valued measurable functions on a measure space (X,M, µ).

Show that the sets

(a) A := {x ∈ X : fn(x)→ +∞},

(b) B := {x ∈ X : fn(x)→ −∞}, and

(c) C := {x ∈ X : lim
n→∞

fn(x) exists}

are all measurable.

2. State precisely the Lebesgue dominated convergence theorem and give a sketch of its proof.

[Advice: You may use, without proof, one of the other classic convergence theorems.]

3. (a) Let (X,M, µ) be a measure space and f be a µ-integrable function such that f(x) > 0 for
µ-almost every x ∈ X. Show that if

∫
A fdµ = 0, where A ∈M, then µ(A) = 0.

(b) Let λ denote Lebesgue measure on R. Show that if f : [0,+∞) → R is a Lebesgue integrable

function such that

∫ t

0
f(x)dλ(x) = 0 for each t ≥ 0, then f(x) = 0, for every x ≥ 0.

4. Show that

(a) lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2x = 1.

(b) If

F (t) :=

∫ +∞

0

e−xt

1 + x2
dx,

for each t > 0, then F is well defined, as well as twice continuously differentiable on (0,+∞) and
satisfies the differential equation

F ′′(t) + F (t) =
1

t
, for all t > 0.

5. Let [a, b] be a compact interval. Show that if f : [a, b]→ R is an absolutely continuous function,
then ∫ b

b
|f ′(x)|dx = Vf ,

the total variation of f on [a, b].

2



Part B

Choose 3 problems from the following. Please show all work. Unsupported claims will not receive
credit.

1. State and prove Hölder’s inequality assuming the elementary inequality ab ≤ ap/p + bq/q for
positive numbers a, b, p, q such that 1/p+ 1/q = 1.

2. Construct a sequence of L2 functions on [0, 1] which converges to the 0 function weakly , but
which does not converge to 0 strongly in L2 norm.

3. State the definition of an absolutely continuous function on R. Let g be a Lipschitz function
on [0, 1] and f be an absolutely continuous function from [0, 1] to [0, 1]. Prove that the composite
g ◦ f is also absolutely continuous.

4. State the open mapping and closed graph theorems. Use the former to prove the latter.

5. Let F the the linear functional on C[−1, 1] defined by

F (x) =

∫ 0

−1
x(t)dt−

∫ 1

0
x(t)dt, ∀x ∈ C[−1, 1].

Prove that the norm of F is equal to 2.

3



Part C

Choose 3 problems from the following. Please show all work. Unsupported claims will not receive
credit. In what follows we use Lebesgue measure on [0, 1] and R.

1. Prove that if H is a Hilbert space, L ⊆ H is a closed linear subspace, and v ∈ H then there exists
a point x ∈ L achieving the minimum distance to v. In other words, if y ∈ H then ‖y−v‖ ≥ ‖x−v‖.

2. Do all of these:

(a) Find a function f : R→ R that is in L10(R) but not L12(R). Prove this is the case.

(b) Find a function f : R→ R that is in L12(R) but not L10(R). Prove this is the case.

(c) Prove that if f ∈ L10(R) and f ∈ L12(R) then f ∈ L11(R).

3. Prove, from scratch, that if f ∈ L1(Rn) then f̂ ∈ L∞(Rn).

4. Using the fact stated in Problem 3, prove that if f ∈ L1(Rn) then its Fourier transform f̂ is
continuous and approaches zero at infinity.

5. Prove that there is a tempered distribution T ∈ S(R)∗ given by

T (f) = lim
ε↓0

∫
R−[−ε,ε]

f(x)

x
dx

[Advice: It may help to show that T (f) = lim
ε↓0

∫ +∞

ε

f(x)− f(−x)

x
dx.]

4



Real Analysis Qualifier

Part I

Solve one problem out of (1)–(2), one out of (3)–(4) and one out of (5)–(6).
In what follows, let (X,M, µ) be a measure space.

(1) Prove or disprove this statement: if fn : R → R is a sequence of
continuous functions and fn → f uniformly, then f is continuous.

(2) Prove or disprove this statement: if f, g : R → R are continuous,
then their product fg is continuous.

(3) Prove or disprove this statement: there is a σ-algebraM containing
M and a complete measure µ extending µ.

(4) A collection A of subsets of X is closed under countable in-
creasing unions if whenever Ai ∈ A is a sequence of sets with
Ai ⊆ Ai+1, then

⋃∞
i=1Ai ∈ A. Prove or disprove this statement: if

A is an algebra closed under countable increasing unions, then A is
a σ-algebra.

(5) A sequence of measurable functions fn : X → R converges to zero in
measure if for any ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)| > ε}

)
= 0.

Prove that if fn converges to zero in measure then

lim
n→∞

∫
X

fn
1 + |fn|

dµ = 0.

(6) Prove or disprove this statement: if the functions fn : [0, 1]→ R are
continuous and for every x ∈ [0, 1] we have limn→∞ fn(x) = 0, then

lim
n→∞

∫ 1

0
fn(x) dx = 0.

1



Part II

Solve 3 out of the 5 problems below.

(1) State the Hölder and Minkowski inequalities. Use the former to
prove the later.

(2) Let f ∈ L1(Rn) and let

M(f) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

where B(x, r) is the ball of radius r centered at x. Prove that there
exists a constant C > 0 such that for all α > 0:

|{x : Mf(x) > α}| ≤ C

α

∫
|f(y)|dy.

You may use this fact: Let C be a collection of open balls in Rn

that covers a set U of finite measure. Then there exist finitely many
disjoint balls B1, . . . , Bk in C such that the sum of the volume of
these balls is greater than 3−na, where a is any number less than the
measure of U .

(3) (a) State the definition of weak and strong convergence of sequences
in a Banach space.

(b) Does weak convergence imply strong convergence? Explain why
it does or does not.

(c) Show that every weakly convergent sequence in a Banach space
is bounded with respect to the norm of the Banach space. (You may
assume the uniform boundedness principle.)

(4) Prove that a linear functional f on a normed vector space is bounded
if and only if f−1({0}) is a closed subspace of X.

(5) Show that the Banach space X = L1[0, 1] is not reflexive, namely X
is a proper subset of X∗∗.



Part III

Solve 3 out of the 5 problems below.

(1) Prove that every closed convex set in a Hilbert space has a unique
element of minimal norm.

(2) If f ∈ Lp ∩ L∞ for some p <∞ and f ∈ Lq for all q > p, then

‖f‖∞ = lim
q→∞

‖f‖q

(3) Let f(x) = 1
2 − x on the interval [0, 1). Extend f to be periodic

function on R. Use Fourier series of f to show that∑
k≥1

1

k2
=
π2

6
.

(4) If ψ ∈ C∞(R), show that

ψδ(k) =

k∑
j=0

(−1)j
k!

j!(k − j)!
ψ(j)(0)δ(k−j)

where δ(k) is the k-th derivative of delta function.

(5) Show that L∞[0, 1] is not separable, i.e., it does not have a countable
dense subset.



Part I

Solve one problem out of (1)–(2), one problem out of (3)–(4), and one prob-
lem out of (5)–(6).

(1) Prove or disprove this statement: the subset S ⊆ [0, 1] consisting
of numbers without a 7 in their decimal expansion is a Borel set
with Lebesgue measure zero. (If there is a choice, always use the
expansion without an infinite repeating sequence of 9’s.)

(2) Prove or disprove this statement: if (X,M, µ) is a measure space
and fn : X → R is a sequence of measurable functions such that
fn → f pointwise, then f is measurable.

(3) Prove or disprove this statement: if X is a metric space then the σ-
algebra of Borel subsets of X is generated by the collection of closed
balls in X.

(4) Prove or disprove this statement: the σ-algebra of Borel subsets of
R is generated by intervals of the form [a, a+ 1] for a ∈ R.

(5) Prove or disprove this statement: if fn : R→ R are integrable func-
tions with fn → 0 pointwise and

|fn(x)| ≤ 1

|x|+ 1

for all n, x, then

lim
n→∞

∫
R
fn dx = 0.

(6) Prove or disprove this statement: if fn : R→ R are integrable func-
tions such that fn → 0 in measure, then fn → 0 in L1.

1
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Part II

Solve one problem out of (1)–(2), one problem out of (3)–(5), and one prob-
lem out of (6)–(7).

(1) Let f(x) :=
∫ +∞
0 e−xt tx dt, for x > 0. Show that f is well defined

and C1 (continuously differentiable) on (0,+∞), and compute its
derivative.

(2) Let p1, p2 be such that 1 ≤ p1 ≤ p2 <∞ and let f ∈ LP1∩LP2 . Show
that the map p 7→ ‖f‖p is well defined and continuous on [p1, p2].
[Hint: first state and prove a suitable inequality involving |f |p.]

(3) Show that the sequence of functions

fn(x) :=

(
2

π

)1/2

· sin(nx), for n = 1, 2, 3, . . .

is an orthonormal basis of L2[0, π] but not of L2[0, 2π], even though
it is an orthonormal sequence in L2[0, 2π].

(4) Prove that if f : [0,+∞) → R is a continuous function tending to
zero at infinity and such that∫ +∞

0
f(x)e−nx dx = 0 for n = 0, 1, 2, . . . ,

then f is the zero function.

(5) State the duality theorem for Lp spaces and give a sketch of its
proof when 1 < p <∞. Briefly explain what happens when p = 1 or
p =∞.

(6) Show that a uniform limit of continuous functions on [0, 1] is contin-
uous on [0, 1]. Is this true if [0, 1] is replaced by any metric space?

(7) Let f : Rn → R be continuously differentiable. Show that df ≡ 0 if
and only if f is constant, and that df is constant if and only if f is
an affine function.



Part III

Solve one problem out of (1)–(2) and two problems out of (3)–(6).

(1) Prove that if f : [0, 2π]→ R is continuous, then

lim
n→∞

∫ 2π

0
f(x) sin(nx) dx = 0.

(2) What is the power series expansion of the function
∫ x
0 exp(−t2)dt?

Prove the power series converges to this function for all x ∈ R.

(3) State and prove Hölder’s inequality for functions on R.

(4) Let f be a smooth function on R with compact support. Show that
if the Fourier transform of f also has compact support, then f is
identically zero.

(5) Show that L1[0, 1] is not the dual of L∞[0, 1].

(6) Show that any normed vector space can be embedded into a Banach
space.



Part I

Choose 3 problems from the following; however, you are not allowed to
choose both (1) and (2). A measure space is always a general (X,M, µ). A
measure on R is Lebesgue measure, unless otherwise is specified.

(1) Show that [0, 1] is uncountable.

(2) Let fn be a sequence of measurable real valued functions on R. Show
that A = {x ∈ R| limn→∞ fn(x) exists} is measurable.

(3) Let f ∈ L1(R, dx) and F (x) =
∫ x
−∞ f(t)dt. Show that F (x) is uni-

formly continuous.

(4) Prove that the product of two measurable real valued functions on
R is measurable. (Hint: show that if f is measurable, then f2 is
measurable.)

(5) Evaluate
∫∞
0 e−sxx−1 sin2 x dx for s > 0 by integrating e−sx sin(2xy)

in a domain in R2. Exchange of iterated integrals needs to be justi-
fied.

1
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Part II

Solve any 3 out of the following 6 problems.

(1) Prove that for all 1 ≤ p <∞, the Lp norm and sup norm on C[0, 1]
are not equivalent, and also C[0, 1] is not complete in Lp[0, 1].

(2) Let (X, ‖ · ‖) be a normed space. A set E ⊂ X is called weakly
bounded if supx∈E ‖x‖∗ is finite. Here ‖x‖∗ is the weak norm. A set
E ⊂ X is called strongly bounded if supx∈E ‖x‖ is finite. Prove that
E is weakly bounded if and only if it is strongly bounded.

(3) Let X and Y be compact Hausdorff spaces. Show that the algebra
generated by functions of the form f(x, y) = g(x)h(y) where g ∈
C(X) and h ∈ C(Y ) is dense in C(X × Y ).

(4) Let f be integrable over (−∞,∞) and g ∈ L∞(−∞,∞). Prove:

lim
t→0

∫ ∞
−∞
|g(x)[f(x)− f(x+ t)]|dx = 0.

(5) Construct a function on [0, 1] which is continuous, monotone but not
absolutely continuous.

(6) Suppose f ∈ Lp([0, 1]) for all p > 0. Prove that

lim
p→0
‖f‖p = exp(

∫ 1

0
ln |f |).
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Part III

Solve any 3 out of the following 5 problems.

(1) Prove that if f ∈ Lp(R) and f ∈ Lq(R) with 1 ≤ p < q < ∞, then
f ∈ Lr(R) for all r with p ≤ r ≤ q.

(2) Starting from the definition of a Hilbert space, prove that if H is a
complex Hilbert space and v, w ∈ H, then

|〈v, w〉| ≤ ‖v‖ ‖w‖.

(3) Suppose f is in the Schwartz space S(R), and define the Fourier
transform of f by

f̂(k) =

∫ ∞
−∞

f(x)e−2πikx dx

Prove that
f̂ ′ (k) = −2πik f(k).

Note: passing derivatives through integrals needs to be rigorously
justified.

(4) Prove that there exists a nonzero polynomial in n variables, P : Rn →
R, such that if f : Rn → C is measurable and

|f(x)| ≤ 1

P (x)

for all x ∈ Rn, then f ∈ L1(Rn).

(5) Find a distribution T on R whose Fourier transform is the Dirac
delta supported at the number 2. Rigorously prove that

T̂ (k) = δ(k − 2).
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Real Analysis Qualifying Exam 13 November 2010

Instructions:

• Work problems 1 through 3 and 6 of the remaining 9 problems.
• Show all your work and always justify your answers.

Hint: The length of a problem has little to do with its difficulty.

(1) Let f : Rn → R be a continuous function. Show that f is uniformly
continuous on any compact set K ⊆ Rn.

(2) Let f : [0, 1] → R be the function defined by

f(x) =

{
1 if x ∈ Q,

0 otherwise.

Use the definition of the Riemann integral to show that f is not
Riemann integrable.

(3) (a) Let f : [0, 1] → R be continuous with the property that
∫ 1

0
f(x)xn dx = 0

for all n = 0, 1, 2, . . . . Show that f is identically zero.

(b) Let (X, d) be a compact metric space. Show that the metric
space, C(X), equipped with the sup norm, is separable.

Hint: think of the distance function.
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(4) (a) Let (X,A, µ) be a measure space. Let (fn)n∈N be a sequence of
nonnegative measurable functions. Use the Monotone Conver-
gence Theorem to prove that∫

X
(lim inf

n
fn)dµ ≤ lim inf

n

∫

X
fndµ.

(b) Give an example of a sequence of nonnegative Borel measurable
functions on the real line for which the inequality in Fatou’s
Lemma is strict—and prove that the inequality is strict.

(5) Let µ be a finite measure on B(R). The goal of this problem is to
show that µ is regular, that is for all A ∈ B(R) and all ǫ > 0, there
exists an open set O and a closed set F such that F ⊆ A ⊆ O and
µ(O\F ) ≤ ǫ. In order to do this we define the family,

C = {A ∈ B(R) :∀ ǫ > 0, ∃O open and F closed

for which F ⊆ A ⊆ O and µ(O\F ) ≤ ǫ}.

(a) Show that (a, b) ∈ C for all −∞ < a < b < +∞.

(b) Show that C is a σ-algebra.
Hint: The infinite union of closed set is not necessarily closed;
however, you can remedy this problem by using the fact that a
measure is continuous from above.

(c) Conclude from (a) and (b) that µ is regular.

(6) Let f be a positive function in L1 ∩ L∞(X,M, µ) with ‖f‖L∞ ≤ 1,
where µ is a finite measure. Show that

lim
t→0+

1

t

∫

X
(f t − 1) dµ =

∫

X
log f dµ

when log f is in L1(X,M, µ).

Hint: You may use, without proof, the inequality log x < x− 1 < 0
for all 0 < x < 1.

(7) (a) Prove the Cauchy-Schwarz inequality for a real Hilbert space.

(b) Let K = K(x, y) be a continuous function on [0, 1] × [0, 1] and
define T : L2([0, 1]) → L2([0, 1]) for almost all x in [0, 1] by

Tf(x) =

∫ 1

0
K(x, y)f(y) dy.

Show that T is well-defined and is a bounded linear operator
that satisfies

‖T‖ ≤ ‖K‖L2([0,1]×[0,1]).
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(8) Let (X,A, µ) be a measure space and set Lp = Lp(X,A, µ). Show
that given f ∈ L1 ∩ L2 we have the following properties:
(a) f ∈ Lp for each 1 ≤ p ≤ 2.

(b) lim
p→1+

‖f‖Lp = ‖f‖L1 .

Hint: In this problem, if you use a non-standard inequality, other
than the Holder or the Minkowski inequality, you must both state it
and then prove it.

(9) Let l∞ = l∞R be the space of all bounded sequences in R and

c = {x = (xn)
∞
n=1 ∈ l∞ : lim

n→∞
xn exists and is finite}.

Equip c with the supremum norm, ‖x‖c = ‖x‖l∞ = supn≥1|xn|.

(a) Show that c is a Banach space.
Hint: Prove that c is closed in l∞.

(b) Set

L(x) = lim
n→∞

xn

for any x ∈ c. Show that L is a bounded linear functional on c.

(c) Define p : l∞ → R by

p(x) = lim sup
n→∞

xn.

Show that p is a sublinear functional on l∞ and that p(x) = L(x)
for all x ∈ c.

(d) Show that L has a linear extension (still denoted by L) from c

to l∞ such that L(x) ≤ p(x) for all x ∈ l∞ and:
(i) lim inf

n→∞
xn ≤ L(x) ≤ lim sup

n→∞

xn for all x ∈ l∞.

(ii) L(x) ≥ 0 for all x in l∞ such that x ≥ 0.

(iii) L is bounded with ‖L‖ = 1.

(10) (a) Show that {(2π)−1/2einx}n∈Z is an orthonormal basis for L2([0, 2π])

(or, more precisely, for L2
C([0, 2π]), the space of all square-

integrable, complex-valued measurable functions on [0, 2π]).

(b) Show that for any 2π-periodic, square-integrable function, f , on
R, we have the Fourier series expansion,

f =
∑

n∈Z

cne
inx

having the property that

‖f‖2L2 =
∑

n∈Z

|cn|
2,

and calculate the Fourier coefficients, cn, in terms of f .
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(c) Find the Fourier expansion of the 2π-periodic function,

f(x) =

{
1 if 0 ≤ x < π

2 ,

0 if π
2 ≤ x < 2π.

(11) Let X be a locally compact Hausdorff space (LCH). Recall that a
Borel measure, µ, on X is a Radon measure if it is finite on all
compact sets, outer regular on all Borel sets, and inner regular on
all open sets.
(a) State one form of the Riesz representation theorem as it applies

to Radon measures.
(b) For each of the following, determine whether or not they are

Radon measures and explain why:
(i) The Dirac delta function (also called the Dirac measure)

on R.
(ii) Counting measure on Rn.
(iii) Lebesgue measure on Rn.

(12) Assume that f lies in L1(Rd) ∩ C1(Rd), d ≥ 1, and that ∇f lies

in L1(Rd). Let f̂ be the Fourier transform of f . Show that (1 +

|ξ|2)
1

2 f̂(ξ) lies in L2(Rd) if and only if both f and ∇f lie in L2(Rd).



Real Analysis Qualifying Exam, 2011

Name Score

Please show all work. Unsupported claims will not receive credit.

Part I.

Answer three of the following problems.

1. Let C be a collection of open sets of real numbers. Show that there is a countable
subcollection Oi of C such that ∪O∈CO = ∪∞i=1Oi.

2. If f ≥ 0,
∫
fdµ <∞, then prove that for every ε > 0 there exists a measurable

set E such that µ(E) <∞,
∫
E
fdµ >

∫
f − ε.

3. Suppose that νj is a sequence of positive measures. Prove the following. If
νj ⊥ µ,∀j, then

∑∞
j=1 νj ⊥ µ, and if ν∞j=1 � µ,∀j, then

∑∞
j=1 νj � µ.

4. Let E be a Lebesgue measurable set in R, whose measure is positive. Prove that
E contains a subset which is not Lebesgue measurable. You may use without
proof the standard non-measurable set in [0, 1]

5. Let f ∈ L1(dx) and F (x) =
∫ x
−∞ f(t)dt. Show that F (x) is continuous.

Part II.
Answer three of the following problems.

1. State and prove a version of the Vitali covering lemma on Rn.

2. State a version of the Fubini theorem on double integrals. Give a counter
example when the absolute value sign is dropped from the integrand in the
condition of the theorem.

3. Show that every weakly convergent sequence in a Banach space is bounded with
respect to the norm of the Banach space.

4. State the open mapping and closed graph theorem. Assuming the open mapping
theorem, prove the closed graph theorem.

5. Let H be an infinite dimensional Hilbert space. Show that the unit sphere
S = {x ∈ H|||x|| = 1} is weakly dense in the unit ball B = {x ∈ H|||x|| ≤ 1}.
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Part III.
Answer three of the following problems.

1. Show that set Σ := {f = Σn
1ajχEj

|n ∈ N, aj ∈ C,m(Ej) < ∞} is dense in Lp

for any p ∈ [1,∞).

2. State and prove Hölder’s inequality in R1.

3. Let f ∈ Lp(X) ∩ L∞(X). (recall that this means f ∈ Lq(X) for all q > p.)
Show that limq→∞ ||f ||q = ||f ||∞.

4. Let fn(x) = n
2
χ[−1/n,1/n]. Show (directly, instead of citing a theorem that im-

mediately implies this) that for any g ∈ L1(R), limn→∞ ||fn ? g||1 = 0.

5. (a) Compute the Fourier Transform of χ[−1,1].

(b) Compute the Fourier Transform of sin2 2πx
x2

.
(c) Are there any two non-zero elements f, g of L1(R) such that f ? g = 0 a.e.
? (Hint: τaĥ ?)
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Part I

Choose 3 problems from the following; however, you are not allowed to
choose both (1) and (2). A measure space is always a general (X,M, µ). A
measure on R is Lebesgue measure, unless otherwise is specified.

(1) Let X be a compact metric space. Show that if On is an open and
dense subset of X for n = 1, 2, . . . then O = ∩nOn is not empty.

Hint: Create a shrinking sequence of closed sets Fn so that Fn ⊂ On.

(2) Let {an} be a sequence in R and limn→∞ an = a. Show that

lim
n→∞

a1 + a2 + · · ·+ an

n
= a.

(3) Let f be a positive function in L1∩L∞(X,M, µ), where X is a finite
measure space and assume that ‖f‖L∞ ≤ 1. Show that

lim
t→0+

1
t

∫
X

(f t − 1) dµ =
∫

X
log f dµ

when log f is in L1(X,M, µ).

Hint: First show that log x < x− 1 < 0 for all x < 1.

(4) We know that there exist a non-measurable subset of [0, 1]. Prove
that E ⊂ [0, 1] with m∗(E) > 0 has a non-measurable subset.

(5) (a) Let f , g be measurable functions. Show that fg is also measur-
able. (Hint: show that f2 is measurable.)
(b) Let {fn} be a sequence of measurable functions and fn → f a.e.
as n →∞. Show that f is also measurable.

(6) For an integrable function, f , show that
∫
|f |dµ = 0 if and only if

f = 0 a.e.

1
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Part II

Solve any 3 out of the following 5 problems.

(1) Suppose 1 ≤ p < ∞. If fn, f ∈ Lp[0, 1] and fn → f a.e. in [0, 1],
prove:
‖fn − f‖p → 0 if and only if ‖fn‖ → ‖f‖p.
Give a counterexample if the condition ‖fn‖ → ‖f‖p is dropped.

(2) Let f : [0, 1] → R be an absolutely continuous function. Suppose
f ′(x) = 0 a.e. in [0, 1]. Prove f is a constant.

(3) State without proof a version of the Fubini-Tonelli theorem on double
integrals of nonnegative functions. Use a counterexample to show
that the nonnegativity is necessary.

(4) Let Y = C([0, 1]) and X = C1([0, 1]) both of which are equipped
with the L∞ norm. Show
(a) X is not complete.
(b) The map d

dx : X → Y is closed but not bounded.
(c) Is statement (b) a contradiction of the closed graph theorem?

Why?

(5) Prove that a linear functional f on a normed vector space X is
bounded if and only if f−1({0}) is closed.
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Part III

Solve any 3 out of the following 5 problems.

(1) Let f : X → R be µ-measurable on X with

(∗)
∫

supp f
e|f | dµ = 1.

Prove that for all f in Lp(X). For X = R and µ being Lebesgue
measure, give an example of f satisfying (∗) with f not lying in L∞.

(2) Let f lie in L2(R) and for any y > 0 define

gy(x) =
y

π

∫ ∞

−∞

1
(x− t)2 + y2

f(t) dt.

Show that:
(a) For each y > 0, gy lie in L2(R).
(b) For each y > 0, define the map, Ly, on L2(R) by Ly(f) = gy.

Show that Ly is a bounded linear operator from L2(R) to L2(R).
(c) As y → 0, gy → f in L2(R).

Hint: Think in terms of convolutions.

(3) Let f lie in L1(R) and recall that the Fourier transform of f is the
function f̂ : R → C defined by

f̂(y) =
∫

R
f(x)e−2πixy dx.

Prove that f̂ is uniformly continuous.

(4) Let f be in L2([0,∞)). Prove or (by producing a counterexample)
disprove each of the following:

(a) If f is also continuous then limx→∞ f(x) = 0.

(b) lim
n→∞

∫ n+1

n
|f(t)| dt = 0.

(5) Suppose that f lies in Lp([0,∞)) for 1 < p < ∞. Prove that

(a)
∣∣∣∣∫ x

0
f(t) dt

∣∣∣∣ ≤ ‖f‖Lp x
1− 1

p for all x > 0,

(b) lim
x→∞

x
1
p
−1

∫ x

0
f(t) dt = 0.
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