Complex Analysis – Qualifying Examination September 2019

Part A and B

Answer all questions. Provide as much details as you could.

Problem 1 Determine explicitly the largest disk about the origin where image under the mapping $f(z) = z^2 - 2z$ is one-to-one.Justify your answer.

Problem 2 Does there exist an analytic function $f: D \to D$ with $f(\frac{1}{2}) = \frac{3}{4}$ and $f'(\frac{1}{2}) = \frac{2}{3}$? Here D is the open unit disk.

Problem 3 Let G be a region and $a \in G$. Suppose that f is continuous on G and analytic on $G \setminus \{a\}$. Prove that f is analytic at a.

Problem 4 Given a Möbius transformation $T(z) = \frac{az+b}{cz+d}$, determine necessary and sufficient conditions on a, b, c, d so that T map the domain $D = \{z : \operatorname{Re} z > 0\}$ onto $G = \{z : \operatorname{Re} z < 0\}$.

Problem 5 Prove Vitali's Theorem: H(G) is the set of holomorphic functions on G. If G is a region and $f_n \in H(G)$ is locally bounded and $f \in H(G)$ has the property that $A = \{z \in G : \lim_n f_n(z) = f(z)\}$ has a limit point in G, then f_n converges in f in H(G).

Problem 6 Let G be a region and u a non-constant harmonic functions on G. Show that u is an open map.

Part C

Answer all questions. Provide as much details as you could.

Problem 7 (a) Show that any compact Riemann surface admits a branched cover over the Riemann sphere S^2 . (b) Let M be a compact Riemann surface of genus 5. Suppose F is a branched cover from M to S^2 . Prove that R = 2(4+r), where R=the total ramification index of F, r=number of sheets of the cover.

Problem 8 Prove that the Dolbeault cohomolgy group $H^{1,1}(X) = \frac{\Omega^{1,1}}{\overline{\partial}\Omega^{1,0}}$ is isomorphic to \mathbb{C} for any compact Riemann surface X, and \mathbb{C} = complex number field.

Problem 9 Prove that the sum of residues of all the poles of a meromorphic one-form on a compact Riemann surface is equal to zero.

END