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Abstract. Over 50 years ago, Rota posted the following celebrated “Research

Problem”: prove or disprove that the partial order of partitions on an n-set
(i.e., the refinement order) is Sperner for all n. A counterexample was eventu-

ally discovered by Canfield in 1978. However, Harper and Kim recently proved

that a closely related order — i.e., the refinement order on the symmetric group
— is not only Sperner, but strong Sperner. Equivalently, the well-known abso-

lute order on the symmetric group is strong Sperner. In this paper, we extend

these results by giving a concise, elegant proof that the absolute orders on the
Coxeter groups An and Bn are strong Sperner.

1. Introduction

In 1928, Sperner [8] proved that the poset of subsets of [n] = {1, 2, . . . , n} has
the property that none of its antichains (i.e., a collection of pairwise incomparable
vertices in the poset) has cardinality larger than the largest rank. In 1967, Rota
[7] famously conjectured that the refinement order Πn (i.e., the poset of partitions
of [n]) has this same property (which became known as the Sperner property) for
all n. In 1978, Canfield [2] discovered a counterexample to Rota’s conjecture for n
larger than Avogadro’s number. Although the refinement order Πn is not Sperner
for n sufficiently large, there is a closely related poset on the symmetric group Sn

(also called the refinement order) which Harper and Kim [5] recently proved is not
only Sperner for all n, but strong Sperner. The refinement order on Sn is anti-
isomorphic to a well-known (see, e.g., [1]) order on Sn called the absolute order ;
i.e., x ≤ y in the refinement order if and only if y ≤ x in the absolute order. Hence
an immediate corollary to [5] is that the absolute orders Sn are strong Sperner.

The main result in this paper is Theorem 5.1, which states that the absolute
orders on the Coxeter groups An and Bn are strong Sperner. The key to the proof
lies in showing that each of these absolute orders contain a product of “claws” as a
spanning subposet, which is strong Sperner by Harper’s Product Theorem [3].
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Figure 1. The refinement orders on S3 and Π3 respectively.
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2. The regular n-simplex and n-cube and their symmetries

A partial order, called an absolute order, can be defined on the symmetry group
of a regular polytope. The absolute orders of interest in this paper are associated
to the n-simplex and n-cube. We recall some basic facts about these polytopes and
their symmetries. The regular n-simplex ∆n is the convex hull of the standard basis
{e1, e2, . . . , en+1} for Rn+1. Each i-dimensional face (or i-face) of ∆n corresponds
with a subset of [n + 1] = {1, 2, . . . , n + 1} of size i + 1. Hence the vertices are
singletons and the facets (i.e., the (n − 1)-faces) are n-sets. The symmetry group
An of ∆n is the group of permutations of [n+ 1] (i.e., the symmetric group Sn+1).
The set of reflections in An consists of all transpositions (i j), i 6= j.

The n-cube �n is the convex hull in Rn of the Cartesian product {−1, 1}n ⊂ Rn.
The dual polytope to the n-cube is the n-cross-polytope ♦n, which is the convex
hull of {±e1,±e2, . . . ,±en} ⊂ Rn. Each i-face of ♦n corresponds to a subset
S ⊂ {±j}nj=1 of size i + 1 with the property that k ∈ S implies −k /∈ S. The
symmetry group Bn for each of the dual polytopes �n and ♦n is the group of signed
permutations; i.e., the permutations w of the set {±j}nj=1 with the property that
w(−i) = −w(i) for all i. Following [6], we denote the signed permutation with cycle
form (a1 a2 · · · ak)(−a1 − a2 · · · − ak) by ((a1, a2, . . . , ak)), and (a1 a2 · · · ak −
a1 − a2 · · · − ak) by [a1, a2, . . . , ak]. The set of reflections in Bn corresponds to
the union of {[i]}ni=1 and {((i, j)), ((i,−j))}1≤i<j≤n.

Lemma 2.1. For any pair (C,C ′) of distinct facets in ∆n (resp. �n), there is a
unique reflection in An (resp. Bn) mapping C to C ′.

Proof. Let C 6= C ′ be facets in ∆n. Since C 6= C ′ correspond to subsets of [n+ 1]
of size n, it follows that C−C ′ = {i} and C ′−C = {j} for some i 6= j. The unique
reflection mapping C to C ′ is (i j).

Now let C 6= C ′ be facets in �n. The facets of �n correspond to the vertices
of ♦n, which in turn correspond to elements of {±j}nj=1. Suppose without loss of
generality that C corresponds to 1. Either C ′ corresponds to −1, j for some j 6= 1,
or −j for some j 6= 1. In any case, there is a unique reflection in Bn mapping C to
C ′ (specifically, the reflections [1], ((1, j)), and ((1,−j)), respectively). �

Define a (complete) flag F = (Pi)
n
i=0 in an n-dimensional regular polytope P

to be a sequence of faces in P, ordered by containment, with dim(Pi) = i. The
action of An (resp. Bn) on ∆n (resp. �n) induces a simply transitive action on the
associated set of flags. Hence if we designate some flag in ∆n or �n — call it the
standard flag F std = (Pstd

i )ni=0 — then a correspondence between elements in the
polytope’s symmetry group and its set of flags can be defined via w 7→ w ·F std.
Note that, for all i ∈ [0, n], the i-faces for the n-simplex (resp. the n-cube) are
i-simplices (resp. i-cubes).

3. Posets, the Sperner property, and the absolute orders

Let P be a (finite graded) poset with rank decomposition P =
⊔r

i=0 Pi. A k-
family in P is a subset of P containing no chain of size k+1. The poset P is defined
to be k-Sperner if the union of the k largest rank levels Pi is a k-family of maximal
size; strong Sperner if P is k-Sperner for all k ∈ [1, r + 1]; and rank unimodal if
|P0| ≤ |P1| ≤ · · · ≤ |Pj−1| ≤ |Pj | ≥ |Pj+1| ≥ · · · ≥ |Pr| for some j. Note that the
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1-Sperner property is otherwise known as the Sperner property, and a 1-family is
otherwise known as an antichain.

Lemma 3.1. Suppose that P is a spanning subposet of P ′; i.e., suppose P has the
same vertex set and rank function as P ′. If P is rank unimodal and strong Sperner,
then so is P ′.

Proof. Since P is rank unimodal, its largest k rank levels can be chosen so that
their ranks are consecutive. Their union is a k-family in both P and P ′. Since P is
k-Sperner, this union is a k-family in P of maximal size, and therefore a k-family
in P ′ of maximal size. �

Define a k-claw Ck =
⊔1

l=0(Ck)l to be the graded poset with |(Ck)0| = 1,
|Ck| = k − 1, and whose underlying graph is complete bipartite. It is not the case
that a product of Sperner (or even strong Sperner) posets is necessarily Sperner.
However, there is a strengthening of the strong Sperner property called the normal-
ized flow property (abbreviated NFP) which is well-behaved under taking products
by Harper’s Product Theorem [3].

Lemma 3.2. Let {ki}ni=1 ⊂ Z+. The product poset
∏n

i=1 Cki
is strong Sperner.

Proof. Any k-claw Ck has the NFP by [4, note on p. 162]. If the capacity of each
vertex in each of the claws Cki

and Ckj
is defined to be 1, then it is clear that Cki

and Ckj satisfy the hypotheses of Harper’s Product Theorem [3]. Thus Cki × Ckj

has NFP. By induction,
∏n

i=1 Cki has the NFP, and is therefore strong Sperner. �

We briefly recall some generalities about absolute orders; see, e.g., [1] for details.
Let W be a finite Coxeter group with set of reflections T . The absolute length lT
on W is the word length with respect to T . The absolute order on W is defined by

π ≤ µ if and only if lT (µ) = lT (π) + lT (π−1µ)

for all π, µ ∈ W . Equivalently, the absolute order is the partial order on W gener-
ated by the covering relations w → tw, where w ∈ W , t ∈ T , and lT (w) < lT (tw).
This order is graded with rank function lT . The absolute length generating func-
tion PW (q) =

∑
w∈W qlT (w) satifies PW (q) =

∏n
i=1(1 + (di − 1)q), where (di)

n
i=1

is the degree sequence for W (and n = rank(W )) [1, p. 35]. It follows that

|T | = |l−1T (1)| =
∑n

i=1(di − 1). Moreover, the rank sequence
(
|l−1T (i)|

)n
i=0

for any

absolute order is strictly log-concave by [9, Theorem 4.5.2], and thus all of the
absolute orders are rank unimodal.

4. Factoring elements of An and Bn

In order to show that the absolute orders An and Bn contain a product of
claws as a spanning subposet, we first prove that any element of An or Bn can be
factored with respect to symmetries of a flag in the associated regular polytope.
For all that follows, P denotes the regular n-simplex or n-cube, and W denotes the
corresponding symmetry group. Note that if P equals ∆n or �n, each reflective
symmetry of an i-face Pi of P uniquely extends to a reflective symmetry of P.
Define TPi

to be the embedding of the set of reflections of Pi into W .

Lemma 4.1. Let P be the n-simplex or n-cube, and let W be the corresponding
group of symmetries with degree sequence (di)

n
i=1. Fix a standard flag (Pstd

i )ni=0 in
P, and set Ti = TPi

std . It follows that, for all i ∈ [1, n], |Ti − Ti−1| = di − 1.
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Proof. The n-simplex (resp. the n-cube) has the property that, for each i, each of
its i-faces is an i-simplex (resp. i-cube). Hence the symmetry group for any of its
i-faces is Ai (resp. Bi). If the degree sequence for the n-simplex (resp. n-cube) is
(dj)

n
j=1, then the degree sequence associated to an i-face is (dj)

i
j=1. It follows that

|Ti − Ti−1| = |Ti| − |Ti−1| =
∑i

j=1(dj − 1)−
∑i−1

j=1(dj − 1) = di − 1. �

It is easily verified that the relation between a regular polytope and the degree
sequence of its symmetry group described in Lemma 4.1 is satisfied by precisely the
n-simplices, n-cubes, and m-gons (and none of the other regular polytopes). For
ease of reference, we note here that the degree sequence (di)

n
i=1 for An is defined

by di = i+ 1, for Bn by di = 2i, and for I2(m) by d1 = 2 and d2 = m.

Proposition 4.2. Let P be the n-simplex or n-cube, and let W be the associated
symmetry group. Fix a standard flag F std = (Pstd

i )ni=0 in P, and set Ti = TPstd
i

.

(1) Any element w ∈W has a unique factorization of the form

w = rnrn−1 · · · r2r1
with ri ∈ (Ti − Ti−1) t {e} for each i, where e is the identity in W .

(2) Given such a factorization, the length can be computed via

lT

(
n−1∏
i=0

rn−i

)
= |{i : ri 6= e}|.

(3) Finally,
∏n−1

i=0 rn−i covers
∏n−1

i=0 r
′
n−i if there exists k such that rk 6= r′k = e

and rj = r′j for all j 6= k.

Proof. We begin by proving (1). The claim is clearly true for n = 1. Now let
n > 1 be arbitrary, and suppose the claim is true for n − 1. Let w ∈ W , with
corresponding flag F = (Pi)

n
i=0. If (Pi)

n−1
i=0 is a flag in the “standard facet” Pstd

n−1,

then the claim follows by the inductive hypothesis. Suppose instead that (Pi)
n−1
i=0

is a flag in some other facet C. Lemma 2.1 implies that there is a unique reflection
rn ∈ (Tn−Tn−1)−{e} mapping C to Pstd

n−1. By the inductive hypothesis, it follows

that rn ·F = (rn−1 · · · r2r1) ·F std with ri ∈ (Ti − Ti−1) t {e} for all i ∈ [1, n− 1].
Therefore w ·F std = F = rn(rn−1 · · · r2r1) ·F std, and the claim follows.

To prove (2), we first let P be the n-simplex and let W be its symmetry group.
Assume without loss of generality that F std = ([i+ 1])

n
i=0. Then Ti−Ti−1 consists

of all transpositions (j (i + 1)) with j ∈ [1, i]. If w is a product of elements in
Ti−1 t {e}, then w is a permutation of [i]. Hence lT (riw) > lT (w), which implies
that lT (riw) = lT (w) + 1. The claim follows from a straight-forward induction on
n. Now let P be the n-cube and W its symmetry group. Assume without loss of
generality F std = (Pstd

i )ni=0 is chosen so that the symmetries of Pstd
i correspond

to symmetries of {±1,±2, . . . ,±i}. Then Ti consists of all reflections of the form
[j], ((j, k)), and ((−j, k)) with j, k ∈ [1, i] and j 6= k, and Ti − Ti−1 consists of all
reflections of the form [i], ((j, i)), and ((−j, i)) with j ∈ [1, i− 1]. Similar to the case
above, the product riw of ri in Ti−Ti−1 with a product w of reflections in Ti−1 has
lT (riw) > lT (w). Hence lT (riw) = lT (w) + 1, and the claim follows by induction.

Finally, to prove (3), let w and w′ be elements of W with the property that their

expansions w =
∏n−1

i=0 ri and w′ =
∏n−1

i=0 r
′
i satisfy rk 6= r′k = e for some k and

rj = r′j for all j 6= k. By Proposition 4.2.2, it follows that lT (w′) + 1 = lT (w).

Set σ =
∏k−1

i=0 ri and τ =
∏n−1

i=k+1 ri, so that w = σrkτ and w′ = στ . Then
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Figure 2. The product of claws C3×C2 (left) can be viewed as a
spanning subposet of the absolute order on A3 (right).

lT ((w′)−1w) = lT (τ−1σ−1σrkτ) = lT (τ−1rkτ) = 1. Since lT (w′) + lT ((w′)−1w) =
lT (w), it follows that w covers w′. �

5. Main result

Theorem 5.1. The absolute orders on An and Bn are strong Sperner.

Proof. Let P be the n-simplex or n-cube, and let W be the associated symmetry
group. Fix a standard flag F std = (Pstd

i )ni=0 in P, and set Ti = TPstd
i

. Let (di)
n
i=1

be the degree sequence for W . Consider the product poset

n−1∏
i=0

Cdn−i
= Cdn

× · · · × Cd2
× Cd1

of claws Cdi
. For each i, define a bijective correspondence between the vertices of

the claw Cdi
and the elements of (Ti − Ti−1) t {e} by mapping the di − 1 vertices

in (Cdi)1 bijectively onto Ti − Ti−1 (such a bijection exists by Lemma 4.1) and the
rank 0 vertex in Cdi to e. These bijective correspondences between claws and sets of
reflections induce a bijective correspondence φ(rn, . . . , r2, r1) = rn · · · r2r1 between

the vertices of the product poset
∏n−1

i=0 Cdn−i
and the vertices of the absolute order

W by Proposition 4.2(1).

We claim that
∏n−1

i=0 Cdn−i can be viewed as a spanning subposet of W via the
above bijection between of the vertex sets. It suffices to prove that if y covers x
in
∏n−1

i=0 Cdn−i , then φ(y) covers φ(x) in W . Suppose that (rn, . . . , r2, r1) covers
(r′n, . . . , r

′
2, r
′
1) in the product of claws. Then there exists k for which rk 6= r′k = e

and rj = r′j for all j 6= k. By Proposition 4.2(3), the claim immediately follows.

By Lemma 3.2,
∏n−1

i=0 Cdn−i
is strong Sperner. Since

∏n−1
i=0 Cdn−i

is a spanning
subposet of W , it follows by Lemma 3.1 that W is strong Sperner. �

Remark 5.2. It is straight-forward to verify that Lemma 2.1, Lemma 4.1, and
Proposition 4.2 extend to the regular n-gons. Moreover, Theorem 5.1 extends to
the dihedral groups I2(m) for all m; i.e., the absolute order I2(m) contains Cm×C2

as a spanning subposet. Therefore, the dihedral groups are strong Sperner.
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