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1. Introduction

1.1. Motivation. Representation theory is a branch of mathematics that involves studying ab-
stract algebraic structures by representing their elements as matrices. For example, a representa-
tion of a group is a concrete realization of the elements of the group as invertible matrices, with
the group operation corresponding to matrix multiplication. Representation theory has a pervasive
influence throughout mathematics. It also plays an important role in physics, chemistry, and other
sciences as it provides a precise language to study the effects of symmetry in a physical system.

My research is based on the application of representation theory to the study of differential
equations (or DE’s). A fundamental problem in the theory of DE’s is the classification of first-
order singular linear differential operators up to certain “symmetries” described by a group. For
example, consider a first-order system of linear DE’s defined in some connected open set U in the
Riemann sphere P1 = C∪{∞}. It is well-known that a set of linearly independent solutions to the
DE in U can be analytically continued along loops in P1 to get a new set of linearly independent
solutions. These new solutions are potentially distinct when the loop is not contractible; i.e.,
the loop “runs around a singularity” y ∈ P1. The datum encoding this change is known as the
monodromy group My (in Greek, mono = “single” and dromos = “running”). Hence, there is a

map from singular first-order systems of DE’s with singularities {yi}ki=1 ⊂ P1 to sets of monodromy

groups {Myi}ki=1.

Consider an inverse problem: when can a given set of groups {Myi}ki=1 be realized as the set of
monodromy groups for a differential equation? This is (roughly) the Riemann–Hilbert Problem.
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A modern, algebro-geometric variant of this problem involves the study of meromorphic G-connections
(or, equivalently, flat G-bundles, for G a complex reductive algebraic group) on P1 with specified lo-
cal isomorphism classes. Much research has concentrated on GLn-connections with regular singular-
ities; for example, Deligne [10] proved a Riemann–Hilbert correspondence in this case. Meromorphic
G-connections with irregular singularities are less understood, but have been studied extensively
in recent years due to their role in a collection of influential conjectures known as the geometric
Langlands program (see, e.g., §1 in [6] for details). My research focuses on the construction of
moduli spaces (i.e., geometric objects encoding a classification) of meromorphic GSp2n-connections
on P1 with irregular singularities and specified local isomorphism classes.

1.2. Outline of statement. My main contributions are as follows:

• I make concrete the abstract theory of formal G-connections [4] for the case that G is the
general symplectic group GSp2n. I conjecture that much of this concrete theory should
translate to other classical groups.
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• I construct symplectic moduli spaces of both framed and framable GSp2n-connections with
specified formal isomorphism classes, and I construct Poisson moduli spaces of GSp2n-
connections with specified fixed combinatorics.

The outline of this research statement is as follows. In Section 2, I give some background on
the classical leading term analysis of formal connections, and I discuss limitations of this classical
theory. In Section 3, I describe how these limitations are overcome by a more general, Lie-theoretic
analysis of regular strata [4]. Moreover, I discuss my concrete realization of this theory for formal
GSp2n-connections. Section 4 contains statements of my main results — the explicit constructions
of moduli spaces of meromorphic GSp2n-connections on P1 with specified local isomorphism classes
— generalizing the construction in [6] for GLn-connections. To conclude, a list of potential future
projects is given in Section 5, followed by a list of citations.

2. Background: Meromorphic connections and their localizations

2.1. Global objects: meromorphic connections. Let O be the structure sheaf on P1, and let
K be its function field (i.e., meromorphic functions). A meromorphic (GLn)-connection (V,∇)
on P1 is a rank n trivializable vector bundle V equipped with a C-derivation ∇ : V → V ⊗O Ω1

K/C.

After fixing a global trivialization φ : V
∼−→ V triv, a connection can be expressed in matrix form

∇ = d+ [∇]φ, where [∇]φ ∈ gln(Ω1
K/C) is the connection matrix of ∇ with respect to φ. This

is analogous to expressing a linear map as a matrix after fixing an ordered basis. Alternatively,
a connection may be expressed in terms of an ordinary K-entried matrix by contracting with the
Euler vector field τ = z d

dz ; i.e., by taking ∇τ := ιτ (∇). The resulting contracted matrix form is

∇τ = τ + [∇τ ]φ

with [∇τ ]φ ∈ gln(K). It is easily seen that a horizontal section of ∇τ corresponds to a solution of
a first-order system of linear algebraic differential equations, symbolically denoted as:

{Meromorphic connections} ←→ {1st-order system of linear DE’s}

horizontal section ∇z d
dz

(v) = 0 ←→ solution z
d

dz
(v) = −[∇τ ]φ(v)

More generally, a meromorphic G-connection, for G a reductive group, is a flat structure ∇
on a principal G-bundle (see §2.4 in [3] for more details). In this case, the connection matrices are
elements of g(K).

2.2. Local objects: formal connections. A global meromorphic G-connection induces a formal
connection at each singularity yi ∈ P1 by taking Laurent series expansions. Let o := C[[z]] be
the ring of formal power series and let F := C((z)) be the fraction field of Laurent series. A

formal GLn-connection (V, ∇̂) is an n-dimensional F -vector space V equipped with a C-derivation

∇̂ : V → V ⊗F Ω1
F/C. Similar to the global case, contracting with τ = z d

dz and fixing a local

trivialization φ : V
∼−→ Fn produces a local matrix form

∇̂τ = τ + [∇̂τ ]φ

with [∇̂τ ]φ ∈ gln(F ). More generally, the localizations of meromorphic G-connections, known as
formal G-connections, have connection matrices in g(F ).

It is well-known that there is a simply transitive action of GLn(C) on the space of ordered
bases for the vector space Cn, and that this action corresponds to the conjugation action on
matrices. Analogously, there is a simply transitive action of G(F ) on the space of trivializations of
V . The corresponding action of G(F ) on connection matrices is the local gauge change action

g · [∇̂τ ]φ := [∇̂τ ]g·φ, given by the formula

g · [∇̂τ ]φ = Ad(g)([∇̂τ ]φ)− τ(g)g−1.
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2.3. Formal types. For classification theorems involving spaces of linear maps, it is often de-
sirable to have explicit normal forms for similarity classes (e.g., the Jordan canonical form). In
[2], Boalch constructed moduli spaces of meromorphic GLn-connections with formal gauge classes
having diagonal normal forms referred to as formal types. The existence of a diagonal formal type
for a formal gauge class is determined by an analysis of leading terms.

Suppose a connection matrix is expanded with respect to the näıve degree filtration on gln(F ):

[∇̂τ ] =
(
M−rz

−r +M−r+1z
−r+1 + . . .

)
for Mi ∈ gln(C). If the leading term M−r is regular semisimple, then there exists a local gauge
change g ∈ GLn(o) that simultaneously diagonalizes terms of all degrees in the connection matrix;
i.e.,

g · [∇̂τ ] =
(
D−rz

−r + . . . +D0

)
for Di diagonal (see, e.g., [19]). A diagonalized connection matrix of this form is referred to as a

formal type for ∇̂, and it is unique up to an action by the affine Weyl group Ŵ for GLn.

2.4. Limitations of the classical theory. Many connections of interest do not have regular
semisimple leading terms. For example, in [20], Witten considered generalized Airy connections,
which have connection matrices(

0 z−(s+1)

z−s 0

)
=

[(
0 1
0 0

)
z−(s+1) +

(
0 0
1 0

)
z−s
]

.

When s = 0, this is the GL2-version of the Frenkel–Gross rigid flat G-bundle on P1 with the roles
of 0 and ∞ reversed [11]. For these connections, not only does the leading term fail to be regular
semisimple, but it is nilpotent; hence, leading term analysis fails to provide an explicit normal form
for this connection. Recently, Bremer and Sage [3, 4, 5, 6] have developed a powerful theory of
fundamental strata which generalizes the classical theory of leading terms. Moreover, they extended
the notion of formal types to a much larger class of gauge classes, including the gauge classes of
generalized Airy connections.

3. Strata

Fundamental strata were originally developed by Bushnell and Frölich [7, 8] to study supercus-
pidal representations of GLn over p-adic fields. As mentioned in Section 2.4, Bremer and Sage
have pioneered a geometric theory of fundamental strata [3, 4, 5, 6] which generalizes the classical
leading term theory for formal GLn-connections. The key idea underlying this approach is to con-
sider connection matrices in terms of a class of Lie-theoretically defined filtrations on gln(F ), rather
than solely considering the näıve degree filtration. This allows for the definition of formal types for
more general connections. Moreover, since this approach is purely Lie-theoretic, it can be adapted
to study meromorphic G-connections for G a reductive group [4]. One of my main contributions
involves the concrete realization of this theory of fundamental strata for GSp2n-connections; see
Proposition 1 in Section 3.4.

The general symplectic group GSp2n(C) is a central extension of Sp2n(C) consisting of linear
transformations of C2n preserving a symplectic form 〈, 〉 up to an invertible scalar. It is convenient
to express vectors in C2n and elements of GSp2n with respect to the ordered symplectic basis
(e1, e2, . . . , en, fn, fn−1, . . . , f1) where 〈ei, fj〉 = δi,j , so that the standard Borel subalgebra b and
Borel subgroup B are upper triangular.

3.1. Moy–Prasad filtrations. A Bruhat–Tits building is a polysimplicial structure defined for
reductive groups over fields with discrete valuations (such as GSp2n(F )). There is a correspondence
between facets in the Bruhat–Tits building B(G) and parahoric subgroups in G(F ) that is analogous
to the correspondence between simplices in the spherical building (associated to the complex group
G(C)) and parabolic subgroups in G(C). Given any point x in B(G), Moy and Prasad [14, 15] have
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defined a decreasing R-filtration (ĝx,r)r on ĝ := g(F ) with a discrete collection of steps, referred to
as the critical numbers for x. For example, the filtration (ĝsp2)x,r, for x the origin in B(GSp2),
is the usual degree filtration on ĝsp2 with critical numbers Z (note that GSp2

∼= GL2). On the other
hand, the Iwahori filtration (ir)r := (ĝsp2)x,r, for x the barycenter of the fundamental alcove in
B(GSp2), has critical numbers 1

2 Z:

i−
3
2 i−1 i−

1
2 i0 i

1
2

. . . )
(
z−1o z−2o
z−1o z−1o

)
)
(
z−1o z−1o
o z−1o

)
)
(

o z−1o
o o

)
)
(

o o
zo o

)
)
(
zo o
zo zo

)
) . . .

There are corresponding R≥0-filtrations (ĜSp2n)x,r on the parahoric subgroups (ĜSp2n)x. In

particular, (ĜSp2n)x+ is the pro-unipotent radical of (ĜSp2n)x (see §2.1 in [4] for general defini-
tions).

3.2. Fundamental strata. Given x ∈ B(GSp2n) and r a nonnegative integer, a GSp2n-stratum
of depth r is a triple (x, r, β) with β a functional on the successive quotient (ĝsp2n)x,r/(ĝsp2n)x,r+
(see [3] for a general definition). The stratum is fundamental if β satisfies a certain degeneracy

condition. A formal GSp2n-connection ∇̂ contains (x, r, β) if [∇̂τ ] ∈ (ĝsp2n)x,−r and β is induced

by [∇̂τ ]. The basic idea is that β roughly plays the role of a nonnilpotent “leading term” of the
connection matrix with respect to the Moy–Prasad filtration at x. For example, the generalized
Airy connection in Section 2.4 (viewed as a GSp2-connection) contains the fundamental stratum
(x, 2s+ 1, β) with x the barycenter of the fundamental alcove and β the functional induced by the

nonnilpotent matrix
(

0 z−s+1

z−s 0

)
.

While it is not the case that every formal GSp2n-connection has a nonnilpotent leading term, it
is the case that every GSp2n-connection contains a fundamental stratum (x, r, β). The depth of a

fundamental stratum detects the “irregularity” of a singularity; for example, ∇̂ is irregular singular
if and only if r > 0, and is regular otherwise.

3.3. Regular strata and formal types. The analogues of nonnilpotent leading terms are funda-
mental strata (as discussed in Section 3.2), and the analogues of regular semisimple leading terms
are S-regular strata. These are fundamental strata that are centralized in a graded sense by a
(possibly nonsplit) maximal torus S ⊂ GSp2n(F ). The following GSp2n-variant of the classical re-

sult in Section 2.3 is a consequence of [4, Theorem 5.1]: If ∇̂ contains an S-regular stratum (x, r, β),

then [∇̂τ ] is (ĜSp2n)x+-gauge equivalent to a regular semisimple element in s−r/s1. The functional
A corresponding to this “diagonalized” matrix, referred to as an S-formal type, is unique up to

an action by the relative affine Weyl group ŴS . Hence the ŴS-orbit space of S-formal types of
depth r is isomorphic to the moduli space for the category C (S, r) of formal connections containing
S-regular strata of depth r.

3.4. Regular maximal tori and points supporting regular strata. It is not the case that
every torus in GSp2n(F ) centralizes a regular stratum. To elaborate, it is well-known that there
is a correspondence between conjugacy classes in the Weyl group W for a reductive group G and

conjugacy classes of maximal tori in Ĝ (see, e.g., [12, Lemma 2]). Bremer and Sage [4, Corollary
4.10] proved that S-regular strata exist if and only if S is a regular maximal torus; i.e., S
corresponds to a regular conjugacy class in W . These regular Weyl group classes were classified by
Springer [18].

It is also not the case that every point x ∈ B supports an S-regular stratum; for example, there
is a certain compatibility necessary between the natural filtration on the Cartan subalgebra s and
the Moy–Prasad filtration at x. On the other hand, for the computations involved in constructing
moduli spaces, it is preferable to choose points x giving a “best possible” filtration to support a given
regular stratum. One of my contributions has been the statement of an explicit correspondence
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between regular maximal tori S and well-behaved points in the Bruhat–Tits building that support
S-regular strata, as described in Proposition 1 below.

Proposition 1. (L., in preparation) There is an explicit correspondence between regular maximal
tori S in GSp2n(F ) and certain barycenters of facets in B(GSp2n) that support S-regular strata.
Furthermore, there are explicit normal forms for formal GSp2n-connections containing regular strata
that are suitable for the construction of moduli spaces.

4. Global theory and main results

Boalch [2] constructed moduli spaces of “framable” and “framed” GLn-connections with a spec-
ified set of irregular singularities and corresponding formal isomorphism classes determined by
S-formal types A =

{
A1, . . . , Ak

}
for S the split diagonal torus (see §5.1 in [6] for details on

framable and framed connections). Bremer and Sage [6] generalized these constructions for GLn-
connections with specified formal types each corresponding to arbitrary regular maximal tori in
GLn(F ). In each of these cases, the moduli spaces are realized as symplectic reductions of products
of symplectic manifolds — which Boalch [2] referred to as “extended orbits” — encoding the local
data (see §5.1 [6] for more on extended orbits).

I use a similar approach in Theorem 1 (my first main result) to construct explicit symplectic
moduli spaces of both framable and framed GSp2n-connections with specified formal types A that
correspond to a collection of irregular singularities. I give an explicit construction of the extended
orbits as symplectic manifolds in Proposition 2. Finally, I construct explicit Poisson moduli spaces
of GSp2n-connections with specified sets of “fixed combinatorics” that correspond to a collection
of irregular singularities in Theorem 2 (my second main result).

4.1. Extended orbits. Roughly, a “framable extended orbit” M (A) contains information re-
garding both a formal isomorphism class and framing data. Extended orbits can be realized as
symplectic reductions. To elaborate, let M (A) be the extended orbit of the S-formal type A. By

Proposition 1, S corresponds to a point x in the fundamental alcove. Define O to be the (ĜSp2n)x-
coadjoint orbit of A. Extended orbits can be constructed as explicit symplectic manifolds, as
described in my result below.

Proposition 2. (L., in preparation) The framable extended orbit M (A) is a symplectic manifold

that is isomorphic to (T ∗GSp2n(o)× O) �0 (ĜSp2n)x, and has a Hamiltonian action by the global

gauge group GSp2n(C). There is a similar construction for “framed extended orbits” M̃ (A).

4.2. Moduli spaces of framed and framable connections. Let A be a collection of formal

types with corresponding extended orbits
{
M (Ai)

}k
i=1

. There is a Hamiltonian action of the global

gauge group GSp2n(C) on the product
∏
i M (Ai) given by the diagonal action of GSp2n(C) on each

of the factors. The corresponding moment map µ :
∏
i Mi → (gsp2n(C))∨ maps an element of the

product of extended orbits to the sum of its residue terms. By the Residue Theorem (see, e.g.,
§II in [17]), the condition required for an element of the product to correspond to a meromorphic
connection is satisfied precisely when it maps to 0 through the moment map. This fact allows for
the construction of moduli spaces as symplectic reductions, as described in Theorem 1 below (my
first main result).

Theorem 1. (L., in preparation)

(1) The moduli space M ∗(A) is a symplectic reduction of the product of local pieces:

M ∗(A) ∼=

(∏
i

M (Ai)

)
�0 GSp2n(C).
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(2) The moduli space M̃ ∗(A) of framed GSp2n-connections is constructed similarly. It is a

smooth manifold. Moreover, M ∗(A) is a symplectic reduction of M̃ ∗(A) by a torus action.

The constructions in (1) and (2) can each be extended to include connections with additional regular
singularities.

4.3. Moduli spaces of connections with fixed combinatorics. Let S = {Si}ki=1 be a collec-

tion of regular maximal tori and let r = {ri}ki=1 be a collection of designated depths. Bremer and

Sage [5] defined a moduli space M̃ ∗(S, r) of meromorphic GLn-connections with specified fixed
combinatorics (S, r) corresponding to a set of irregular singularities. Furthermore, they have real-
ized this moduli space as an explicit Poisson manifold. This type of construction is of particular
interest in the study of isomonodromic deformations (see, e.g., [2, 5]). I have further generalized

the construction M̃ ∗(S, r) for GSp2n-connections, as described in Theorem 2 below (my second
main result).

Theorem 2. (L., in preparation) The moduli space M̃ ∗(S, r) is a Poisson reduction of its corre-
sponding local pieces. The symplectic leaves of this Poisson manifold are the connected components

of the framed extended orbits M̃ (A).

5. Future directions

The seminal papers of Boalch, Bremer, and Sage established a foundation for a remarkably
rich area of mathematics. Now further work needs to be done to expand the theory from that
foundation. A few next-step projects are listed below.

(1) A first project involves the extension of Theorems 1 and 2 to flat G-bundles on P1 for
arbitrary reductive groups G. I anticipate that much of my work with GSp2n-connections
should generalize directly.

(2) A second project involves the study of the isomonodromy equations for meromorphic G-
connections. I anticipate that these equations can be explicitly computed as integrable
systems in the Poisson moduli space of connections with fixed combinatorics, further ex-
tending the work of Bremer and Sage [5].

(3) As a third project, the geometries of extended orbits and moduli spaces merit further study.
For example, the Deligne–Simpson Problem (see, e.g., [13]) is the determination of necessary
and sufficient conditions for which the moduli space is nonempty. Another problem is the
determination of necessary and sufficient conditions for which the moduli space is rigid; i.e.,
reduced to a singleton. Other geometric features (e.g., smoothness of framable extended
orbits M (A)) also merit more thorough exploration.

(4) Boalch [1] has recently realized certain moduli spaces as quiver varieties. A fourth project
involves investigating whether this can be done for moduli spaces of G-connections with
nonsplit S-formal types.
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