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The Laplace differential operator appears in the equations of many important physical
phenomena such as gravitational potentials, heat, and waves across a uniform medium. One
of my primary interests is in studying the connections between this operator and geometry.

I first began studying these connections by considering the eigenvalues of the Laplace
operator and the geometry of a Riemannian manifold, an object which generalizes the idea
of a surface to higher dimensions. These eigenvalues have a physical interpretation, as they
model the frequencies which can resonate from an instrument constructed from a uniform
medium.

The relationship between eigenvalues and a geometric invariant related to the isoperimetric
problem, related to minimizing the ratio of surface area to volume, has been one focal point
in my work. This isoperimetric invariant, called the Cheeger constant, has appeared in my
work as both a geometric quantity to bound the Laplace eigenvalues and, in hyperbolic
surfaces (2D manifolds with constant Gaussian curvature equal to −1), as a quantity which
can be directly computed using other geometric information like the area of the surface and
lengths of shortest closed curves. This so-called Cheeger constant is defined as

h(M) = inf
Σ,A,B

Area(Σ)

min{Vol(A),Vol(B)}

where Σ is a smooth (codimension-1) hypersurface which divides M into 2-colorable regions
or sides A and B as illustrated in Figure 1. Independent work of Cheeger and Buser show
that the first positive eigenvalue of the Laplacian can be bounded from below and above,
respectively, by quadratics in the Cheeger constant [Che70, Bus82]. Specifically, for closed
Riemannian manifolds, I found an upper bound for each of the eigenvalues in terms of the
Cheeger constant [Ben15]. See Section 1 for more details.

Σ
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M

Figure 1. A visual illustration of the hypersurface Σ and the regions A and
B for the Cheeger constant.
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I also found opportunities to study related and analogous phenomena on discrete graphs.
One great feature of the Laplace eigenvalues and the Cheeger constant is that analogs of
these invariants can also be studied on discrete graphs. Further, versions of the inequal-
ities of Cheeger and Buser have also been shown to hold. For the Cheeger constant, the
(codimension-0) volume is given by the counting measure on the vertices, while the area of
the splitting is given by a subset of edges. With Prasad Tetali and Peter Ralli, I gave upper
bounds on eigenvalues of the graph in terms of both volume growth of the graph and the
Cheeger constant. A summary of one of the main theorems of this work is as follows: There
exists an explicit matrix whose entries depend only on pairs of volume growth bounds, one
from above and one from below, such that the eigenvalues of G are bounded above by the
Laplace eigenvalues of the matrix. This and other results from this project are summarized
in Section 1.

The Cheeger constant and the first positive eigenvalue can also be used to study hyperbolic
reflection groups. I worked with Grant Lakeland and Holger Then to explicitly compute
these invariants for specific examples of hyperbolic (orbi)surfaces, which was motivated by
an experimental approach to questions regarding the enumeration of maximal arithmetic
hyperbolic reflection groups. See Section 2 for a summary of our work.

Another way to study the Laplace operator on manifolds is by harmonic functions, i.e.
functions with Laplacian identically zero. The mean value property is an important property
for harmonic functions in Euclidean space, stating that the integral average of a harmonic
function on a metric ball is equal to the value of the function at the center of the ball.
While mean value sets for the Laplace operator in Euclidean space are always metric balls
[Kur72], the same is not true for Riemannian manifolds! So if mean value sets on Riemannian
manifolds are not metric balls, how can we describe their shape and geometry? It turns out
that the solution to an obstacle problem, where a Green’s function for the Laplacian is
the obstacle, provides a way to describe all mean values sets for Riemannian manifolds.
Specifically, the singularity of the Green’s function corresponds to the analog of the center
of the metric ball when constructing these mean value sets on the manifold. See Section 3
for more details on my work with Ivan Blank and Jeremy LeCrone in this direction.

The geometry of solutions to partial differential equations involving the Laplacian is also
area of interest. One related question is for convex domains, could the maxima of solutions
to semilinear Poisson equations be independent of the non-linearity? Although there is
no obvious reason why these points should have this independence, numerical evidence of
Cima and Derrick led to the conjecture that they are always the same [CD11]. While
working with Laugesen, Minion, and Siudeja, I found a counter-example to this conjecture
providing two equations whose solutions have distinct maxima on the right isosceles triangle
with hypotenuse having length 2 and on the half-disk of radius 1 [BLMS15]. However, the
maxima of these solutions to seemingly very different non-linearities do not differ until the
fourth decimal place! See Section 4 for additional details.

1. Eigenvalues and the Cheeger Constant on Riemannian Manifolds and
Graphs

Let M be a closed, connected Riemannian n-manifold. The Laplace-Beltrami (Laplacian)
operator on M is defined by ∆u := −div

(
grad(u)

)
. The eigenvalues of ∆ on M are the real

numbers λ such that ∆u = λu where u ∈ H2(M) (u : M → R in L2(M) and twice weakly
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differentiable). The eigenvalues of ∆ are discrete and indexed by

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · .
The set of eigenvalues with multiplicities is called the spectrum of ∆.

Cheeger [Che70] gave the initial motivation for h(M) by first proving

λ1 ≥
h(M)2

4
.

Buser [Bus82] later proved that if −(n− 1)δ2 is a lower bound on the Ricci curvature with
δ ≥ 0, then

λ1 ≤ 2δ(n− 1)h(M) + 10h(M)2.

Therefore, we may conclude that the eigenvalue λ1 is controlled by quadratics in h(M). More
recently, in unpublished work, Agol gave a quantitative improvement of Buser’s inequality
in terms of a parameter implicitly defined by a second order ODE with boundary conditions
[Ago].

How much information does the Cheeger constant give about the full Laplace spectrum of
M? Buser proved that for any h > 0, k ∈ N, and ε > 0, there exists M with h(M) = h and

such that λk ≤ h2

4
+ ε [Bus78]. This means that there is no analog of Cheeger’s inequality

for higher eigenvalues! On the other hand, it turns out that there is an analog of Buser’s
inequality for the higher eigenvalues, which depends on the same manifold invariants, namely
h,n, and δ:

Theorem 1. [Ben15] There exists an explicit Sturm-Liouville problem ω = ω(h, n, δ) such
that the eigenvalues µ of ω have the relationship:

λk ≤ µd k+1
2 e.

The Sturm-Liouville problem ω is defined on the interval (0, T ) with the following equation
and boundary conditions:

Lu = µu, u(0) = 0, u′(T ) = 0.

The operator L and the endpoint T depend on h, n, δ.
Examples of 2D tori with flat metrics show that the upper bound in Theorem 1 is asymp-

totically sharp. A qualitative conclusion from this work is that the Cheeger constant provides
some information about the higher eigenvalues, but the upper bound is not as asymptoti-
cally sharp as when one is able to refer to the volume of the manifold instead of the Cheeger
constant. However, work of Cheeger established that the volume cannot provide a lower
bound for eigenvalues of manifolds [Che70]. Thus, volume cannot provide upper and lower
bounds for eigenvalues in contrast to the Cheeger constant.

Recently, Peter Ralli, Prasad Tetali, and I found a number of analogues of Buser’s inequal-
ity on graphs. These inequalities use approaches related to my work on manifolds and use
the relationship between vertex growth of the graph and several different notions of graph
curvature. In addition, since previous versions of Buser’s inequality for graphs were proved
using heat kernel methods, our work provided a new proof of the classical Buser’s inequality
for graphs. Instead, our proofs focus on the volume growth of the graph.

Let G = (V,E) be a finite graph, where V is the vertex set and E is the edge set. Given a
vertex subset Σ ⊆ V and a natural number k, how many vertices of the graph are within k
edges of the vertices in Σ. This growth in the number of vertices as k increases is sometimes
referred to as the volume growth of the graph.
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More explicitly, assume that the vertex subset Σ ⊆ V has the property that deleting
vertices in Σ from V and, thereby, deleting incident edges from E, results in two subgraphs
G+ and G−. Define µ(i) and ν(i) for i ∈ Z such that

µ(i) ≤ |dist−1
Σ (i)| ≤ ν(i).

Here, we have denoted by distΣ(v) the signed distance function induced by counting the
least edges among paths from a vertex in Σ to a vertex v ∈ V. Further, to give the distance
function a sign, we count edges into G+ as positive and the edges into G− as negative.

To state the theorem summarized in the introduction with more precision, define by T+

to be the maximum integer such that |dist−1
Σ (T+)| > 0 and T− be the least integer such that

|dist−1
Σ (T−)| > 0.

Theorem 2. [BRTar] For a graph G and any k, l ∈ N with 1 ≤ k, l ≤ min{|T−| , T+} =: T,
then there exist explicit symmetric, tridiagonal matrices A+, indexed by {1, . . . , T+}, and
A−, indexed by {T−, T− + 1, . . . ,−2,−1}, whose entries depend only on µ and ν, such that

λk+l(G) ≤ 1

2
max

{
ρ+
k , ρ

−
l

}
where ρ+

k and ρ−l are the k-th and l-th non-trivial eigenvalues of the respective equations
A+g+ = ρ+g+ with g+ ∈ W+ and A−g− = ρ−g− with g− ∈ W−.

Combining the theorem above with volume growth bounds related to the Cheeger constant,
one can bound eigenvalues of the graph from above by the Cheeger constant or higher
dimensional analogues thereof. A representative example of such a Buser-type inequality is
as follows.

Theorem 3. [BRTar] Assume that ν(i) = 1 for all i ∈ [T−, T+]. If n ≥ 2 and hout(n) < 1,
then we have

λk(G) ≤ k2hout(n)2

(
27π2

16
+ o(1)

)
.

Here hout(n) is an analogue of the Cheeger constant for graphs. Specifically, we define

hout(n) = max
{
|∂oV1|
|V1| ,

|∂oV2|
|V2| , . . . ,

|∂oVn|
|Vn|

}
where the Vi are pairwise disjoint subsets of V with V = ∪iVi and ∂oVi is the set of vertices
v with v /∈ Vi having an edge between v and a vertex in Vi.

2. Computing the Cheeger Constant of Hyperbolic Surfaces

The Cheeger constant generates additional problems of a purely geometric nature. For
example, what can we say about sets whose isoperimetric ratio is equal to the Cheeger
constant and can we find and use such sets to compute the Cheeger constant? Independent
work of Hass-Morgan and Adams-Morgan provided a pathway for me to develop a theoretical
method to directly compute the Cheeger constant of surfaces having a hyperbolic (constant
curvature −1) metric and finite area [HM96, AM99]. My first initial motivation in pursuing
this direction were questions of Grant Lakeland, who was applying the Cheeger constant and
first eigenvalue of the Laplace operator to the enumeration of hyperbolic groups; specifically,
counting the number of maximal arithmetic reflection groups in dimension 2. In short, there
were a number of hyperbolic orbisurfaces (surfaces having cone point singularities in the
metric) for which it would be useful to directly compute their Cheeger constant or their first
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Figure 2. A domain for one of the non-congruence surfaces given by Lake-
land. In this picture, each arc ti is glued to t′i for i even and are glued to itself
for i odd.

Σ A

B

Figure 3. The splitting of the surface by Σ whose ratio |Σ|
|A| is equal to the

Cheeger constant.

positive eigenvalue. In joint work with Lakeland and Holger Then, we were able to produce
such computations for both the Cheeger constants and the first positive eigenvalues for each
of the non-compact examples related to Lakeland’s work[BLT19]. Figure 2 gives an example
of a presentation of the orbisurface (discovered by Lakeland [Lak12]) whose Cheeger constant
and first eigenvalue of the Laplacian is relevant to the study of maximal arithmetic reflection
groups in dimension 2. Figure 3, the curve (hypersurface) Σ and correpsonding regions A
and B which realize the Cheeger constant of the orbisurface are given explicitly.

Future Directions. In addition, the ability to directly compute the Cheeger constant of hy-
perbolic surfaces has the potential to add to our knowledge of the geometry of these surfaces.
Selberg conjectured that the first eigenvalues of principal congruence arithmetic surfaces are
bounded below by 1

4
, a question related to geometry and number theory which has remained

open for about fifty years [Sel65, Sar95]. It is a consequence of Buser’s inequality that
Selberg’s conjecture implies a lower bound on the Cheeger constants. In addition, work
of Brook-Zuk give an asymptotic upper bound for the Cheeger constant of these surfaces
[BZ02]. In contrast to the Brooks-Zuk result, Jeffrey Meyer and I are currently computing
the Cheeger constants of examples of principal congruence arithmetic surfaces. We are us-
ing these examples to develop ideas and techniques to make the process of computing the
Cheeger constants of hyperbolic surfaces as efficient as possible. An educational goal of our
work is to refine the algorithm to use as a tool to teach hyperbolic geometry and distance
to advanced undergraduate or graduate students.
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3. Mean Value Theorems for Riemannian Manifolds

Another interesting question related to the geometry of the Laplace operator in the setting
of Riemannian manifolds is on the geometry of mean value sets of the operator. In Euclidean
space, it is well-known that the integral average of a harmonic function f on a metric ball
Br(x0) of radius r > 0 centered at x0 is equal to the value of the function at the center; that
is

f(x0) =
1

µ(Br(x0))

∫
Br(x0)

f(x) dµ(x),

where µ is the Lebesgue measure.
In joint work with Ivan Blank and Jeremy LeCrone, we gave a characterization of mean

value sets for the Laplace operator on Riemannian manifolds [BBL19]. The original idea
for the approach is due to Cafarelli [Caf98], who recognized that one could characterize
mean value sets for general divergence form elliptic operators in Euclidean space using a free
boundary problem called the obstacle problem.

For each closed subset S ⊆ M and r > 0, we consider the following obstacle problem on
M :

(1)

{
∆u = −χ{u<G}r

−n in S,
u = G(·, x0) on ∂S,

where G is the Green’s function for ∆ on S.

Theorem 4. [BBL19] Let M be a Riemannian manifold which is non-compact or has non-
empty boundary. If u∗ solves the obstacle problem (1), then define

D(r, x0) = {x ∈ S : u∗(x) < G(x, x0)} ,

called the non-contact set of u∗. Then, if ∆f = 0 and D(r, x0) ⊂⊂ S, then

(2) f(x0) =
1

Vol(D(r, x0))

∫
D(r,x0)

f dV.

The above theorem also holds more generally for subharmonic (∆f ≥ 0) and super-
harmonic (∆f ≤ 0) assumptions, with equality in Equation (2) replaced with ≤ and ≥,
respectively.

Future Directions. In addition, a classical theorem of Kuran in Euclidean space implies
that if f is a harmonic function and D a domain in Euclidean space containing a point
x0, then if f(x0) is equal to the integral average of f over D, then D is a metric ball with
center x0 [Kur72]. For Riemannian manifolds which are non-compact or have boundary,
geodesic (metric) balls do not necessarily satisfy the mean value property; manifolds with
the property that, for every point, a geodesic ball of positive radius satisfies the mean value
property are sometimes referred to as harmonic manifolds.

While it is known that every harmonic manifold is Einstein (its Ricci tensor is a constant
multiple of its metric), a full characterization of all harmonic manifolds remains unknown
[Kre10]. One possible application of the mean value theorem for Riemannian manifolds is to
study harmonic manifolds. Recent work of Armstrong-Blank [AB19] makes progress towards
showing that every mean value set for the Laplace operator on a manifold must be of the
type characterized in Theorem 4.
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4. Maxima of Semilinear Poisson Equations

The geometry of solutions to partial differential equations is another area of interest. One
related question is for convex domains Ω in Euclidean space: Could the maxima of solutions
to semilinear Poisson equations of the form{

−∆u = f(u) in Ω,
u = 0 on ∂Ω

be independent of the non-linearity f(x)? Although there is no obvious reason why these
points should have this independence, numerical evidence of Cima and Derrick led to the
conjecture that they are always the same [CD11]. I worked with Laugesen, Minion, and
Siudeja to answer this question. We provided a counter-example to the conjecture, showing
that two equations whose solutions have distinct maxima on a half-disk of radius one and on
a right isosceles triangle with a hypotenuse of length two [BLMS15]. However, these maxima
do not differ until the fourth decimal place, with a difference of approximately 1.5 × 10−4.
The two equations which provide the counter-example correspond to the choices f(z) = 1
(the torsion function) and f(z) = λz (the ground state), where λ > 0 is the first Dirichlet
eigenvalue of the Laplacian on Ω. Figure 4 provides a plot of the level sets of the solutions
to these equations. Note how close the location of the maxima of the solutions u appear,
but how different these functions appear as they approach the boundary the triangle!

(A) (B)

Figure 4. On the right isosceles triangle, the level sets of the torsion function
(A) and the level sets of the first eigenfunction (B).
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