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Abstract. Let u be a solution to the Navier-Stokes equations with
viscosity ν in a bounded domain Ω in R

d, d ≥ 2, and let u be the
solution to the Euler equations in Ω. In 1983 Tosio Kato showed that
for sufficiently regular solutions, u → u in L∞([0, T ]; L2(Ω)) as ν → 0

if and only if ν ‖∇u‖2

X
→ 0 as ν → 0, where X = L2([0, T ] × Γcν), Γcν

being a layer of thickness cν near the boundary. We show that Kato’s
condition is equivalent to ν ‖ω(u)‖2

X
→ 0 as ν → 0, where ω(u) is the

vorticity (curl) of u, and is also equivalent to ν−1 ‖u‖2

X
→ 0 as ν → 0.

1. Kato’s Conditions for Vanishing Viscosity

The question of whether solutions of the Navier-Stokes equations converge
to a solution of the Euler equations as the viscosity goes to zero—the so-
called vanishing viscosity or inviscid limit—on a domain with boundary is
a long-open problem in mathematical fluid mechanics. The necessary and
sufficient conditions for the existence of this limit given by Tosio Kato in [1],
along with an extension of the conditions by Temam and Wang in [4] and
Wang in [5], probably represent the closest anyone has come to resolving
this question.

Kato’s key condition requires that the L2-norm of the gradient of the
velocity in a boundary layer of width proportional to the viscosity not blow
up too rapidly as the viscosity vanishes (condition (iii′) in Theorem 1.1).
Temam and Wang in [4] and [5] show that, at the expense of increasing the
size of the boundary layer slightly, one need only consider the tangential
derivatives of the tangential components of the velocity or the tangential
derivatives of the normal components of the velocity. We leave the size of
Kato’s boundary layer unchanged, and show that the gradient of the velocity
can be replaced by the vorticity in Kato’s condition. We also establish
another necessary and sufficient condition that the average energy in the
boundary layer vanish with the viscosity. Both of these conditions have
more immediate physical meaning than Kato’s, though they may well be
no easier to verify or refute. The necessity of our conditions follows easily
from Kato’s conditions; it is the sufficiency of the conditions that requires a
modification of Kato’s argument.

2000 Mathematics Subject Classification. Primary 76D05, 76B99, 76D99.
Key words and phrases. Inviscid limit, Vanishing viscosity limit, Navier-Stokes equa-

tions, Euler equations.

1



2 JAMES P. KELLIHER

We now describe in detail Kato’s result and our extension of it. Let Ω
be a bounded domain in R

d, d ≥ 2, with C2-boundary Γ, and let n be
the outward normal vector to Γ. A classical solution (u, p) to the Euler
equations satisfies,

(E)

{

∂tu+ u · ∇u+ ∇p = f and div u = 0 on [0, T ] × Ω,
u · n = 0 on [0, T ] × Γ, and u = u0 on {0} × Ω,

where div u0 = 0. These equations describe the motion of an incompressible
fluid of constant density and zero viscosity.

We assume that u0 is in Ck+ǫ(Ω), ǫ > 0, where k = 1 for two dimensions
and k = 2 for 3 and higher dimensions, and that f is in C1([0, t]×Ω) for all
t > 0. Then as shown in [2] (Theorem 1 and the remarks on p. 508-509),
there is some T > 0 for which there exists a unique solution

u in C1([0, T ];Ck+ǫ(Ω)). (1.1)

In two dimensions, T can be arbitrarily large, though it is only known that
some nonzero T exists in three and higher dimensions.

The Navier-Stokes equations describe the motion of an incompressible
fluid of constant density and positive viscosity ν. A classical solution to the
Navier-Stokes equations can be defined in analogy to (E) by

(NS)

{

∂tu+ u · ∇u+ ∇p = ν∆u+ f and div u = 0 on [0, T ] × Ω,
u = 0 on [0, T ] × Γ, and u = u0

ν on {0} × Ω.

We will work, however, with weak solutions to the Navier-Stokes equations.
(See, for instance, Chapter III of [3].) It follows, assuming that f is in
L1([0, T ];L2(Ω)), that for such solutions,

(u(t), φ(t)) − (u(0), φ(0))

=

∫ t

0
[(u, u · ∇φ) − ν(∇u,∇φ) + (f, φ) + (u, ∂tφ))] dt

(1.2)

for all φ in C1([0, T ]×Ω)∩C1([0, T ];V ). Here, (·, ·) is the L2-inner product
and V is the space of all divergence-free vector fields in H1

0 (Ω). We will also
need the related function space H of divergence-free vector fields v in L2(Ω)
with v · n = 0 on Γ in the sense of a trace.

The advantage of using weak solutions for (NS) is that existence is known
globally in time. Uniqueness, however, is only known to hold in two dimen-
sions, so in dimension 3 and higher when we say that u is a solution to (NS)
we mean that for each value of ν we choose one of possibly many solutions.

Theorem 1.1 is Theorem 1 of [1].

Theorem 1.1 (Kato). Assume that u0
ν is in H and that u0 is such that

(1.1) holds. In addition, assume that

(a) u0
ν → u0 in L2(Ω) as ν → 0,

(b) f is in L1([0, T ];L2(Ω)),
(c) ‖f − f‖L1([0,T ];L2(Ω)) → 0 as ν → 0.

Then the following conditions are equivalent:
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(i) u(t) → u(t) in L2(Ω) as ν → 0 uniformly over t in [0, T ],
(ii) u(t) → u(t) in L2(Ω) as ν → 0 weakly for all t in [0, T ],

(iii) ν

∫ T

0
‖∇u‖2

L2(Ω) dt→ 0 as ν → 0,

(iii′) ν

∫ T

0
‖∇u‖2

L2(Γcν) dt → 0 as ν → 0,

where Γcν is the boundary strip of width cν with c > 0 fixed but arbitrary.
If f = 0, then the four conditions above are also equivalent to

(iv) u(T ) → u(T ) in L2(Ω) as ν → 0 weakly .

It follows immediately from Lemma A.2 that ∇u can be replaced in con-
dition (iii) by the vorticity ω(u) of (A.1). The same cannot be said immedi-
ately of condition (iii′), however, because we have no control over the value
of u on the interior boundary of Γcν . Instead we reexamine Kato’s proof of
Theorem 1.1 to establish this, giving Theorem 1.2.

Theorem 1.2. The following condition is equivalent to those of Theo-
rem 1.1:

(iii′′) ν

∫ T

0
‖ω(u)‖2

L2(Γcν) dt → 0 as ν → 0.

If, in addition, the solution u is in C1([0, T ] × C2(Ω)) then condition (iii′)
and the conditions in Theorem 1.1 are equivalent to the following condition:

(iii′′′) ν−1

∫ T

0
‖u‖2

L2(Γcν) dt→ 0 as ν → 0.

Proof. That (iii′) ⇒ (iii′′) is trivial; in Section 4 we prove (iii′′) ⇒ (i). Ap-
plying Lemma A.1,

ν−1

∫ T

0
‖u‖2

L2(Γcν) ≤ ν−1

∫ T

0
Cν2 ‖∇u‖2

L2(Γcν) ,

so (iii′) ⇒ (iii′′′). We prove that (iii′′′) ⇒ (i) in Section 5, completing the
circle of implications. �

Observe that Kato’s conditions in Theorem 1.1 reduce the question of
whether the vanishing viscosity limit holds to properties of the Navier-Stokes
equations alone. Our improvement in (iii′′) of Theorem 1.2 shows that only
certain combinations of the derivatives of the velocity need be considered.
Condition (iii′′′) requires that the time integral of the energy in the boundary
layer decrease faster than linearly with the viscosity or, viewed another way,
that the average energy on [0, T ] × Γcν vanish with the viscosity.

2. A priori estimates

The classical energy inequalities are

‖u(t)‖2
L2(Ω) + 2ν

∫ t

0
|∇u|2 dt ≤ ‖u(0)‖2

L2(Ω) + 2

∫ t

0
(f, u) dt (2.1)
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for (NS) and

‖u(t)‖2
L2(Ω) ≤ ‖u(0)‖2

L2(Ω) + 2

∫ t

0
(f, u) dt (2.2)

for (E). From these assumptions and our assumptions on f and f it follows
easily that

‖u‖L∞([0,T ];L2(Ω)) ≤ C. (2.3)

It follows immediately from (2.1) that

ν ‖∇u‖2
L2([0,t];L2(Ω))

≤
1

2
‖u(0)‖2

L2(Ω) + ‖u‖L∞([0,T ];L2(Ω)) ‖f‖L1([0,T ];L2(Ω)) ≤ C,
(2.4)

and thus that

ν1/2 ‖∇u‖L1([0,T ];L2(Ω)) ≤ ν1/2 ‖1‖L2([0,T ]) ‖∇u‖L2([0,T ];L2(Ω))

= t1/2ν1/2 ‖∇u‖L2([0,T ];L2(Ω)) ≤ C.
(2.5)

3. Boundary layer

In [1], Kato constructs a boundary layer velocity: a time-varying velocity
field v that is nonzero only within a distance δ > 0 from Γ and that equals
u on Γ. He first shows that there exists a matrix-valued function a near the
boundary that is zero on Γ and such that

u = div a = ∂kajk on Γ,

where we use the implied summation convention. Kato’s construction of a
shows that a has no loss (though no gain) in regularity over u. He then
defines a function z in C∞(Ω) whose support lies in Γδ by

z(x) = ζ(ρ(x)/δ),

where ζ : [0,∞) → [0, 1] is a smooth cutoff function with ζ(0) = 1 and
ζ(r) = 0 for r ≥ 1, and ρ is the distance from x to Γ. Finally, he lets

v = div(za) = z div a+ a · ∇z.

Given the smoothness of a inherited from u, it follows that v lies in the
space C1([0, T ];Ck−1(Ω)), where k is as in (1.1). In dimensions 3 and higher,
v is in C1([0, T ]×Ω), which is sufficient to derive the following bounds (see
Equation (4.6) of [1]) with the help of Lemma A.1:

‖v‖L∞([0,T ];L2(Ω)) ≤ Cδ1/2, ‖∂tv‖L1([0,T ];L2(Ω)) ≤ Cδ1/2,

‖∇v‖L∞([0,T ];L2(Ω)) ≤ Cδ−1/2, ‖v‖L∞([0,T ]×Ω) ≤ C,

‖∇v‖L∞([0,T ]×Ω) ≤ Cδ−1.

(3.1)

Similarly, when we assume that u is in C1([0, T ];C2(Ω)), we have

‖∆v‖L∞([0,T ];L2(Ω)) ≤ Cδ−3/2. (3.2)
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In dimension 2 we must construct v differently so as to not lose regularity
over u. We do this by employing the stream function for u; that is, a
function ψ such that u = ∇⊥ψ = (−∂2ψ, ∂1ψ). Given ψ, we construct a
new boundary layer stream function ψ0 defined on Γδ by subtracting from
ψ its constant value on the nearest component of Γ, so ψ0 is zero on Γ and
u = ∇⊥ψ0 on Γδ. Finally, we define the boundary layer velocity v by

v = ∇⊥(zψ0) = z∇⊥ψ0 + ψ0∇
⊥z.

Because ψ0 has a gain in regularity over u of one derivative, v is in C1([0, T ]×
Ω) and the estimates in (3.1) follow in a similar manner.

4. Proving (iii′′) ⇒ (i)

We follow Kato’s approach in [1] to establish the energy inequality in (4.2),
departing from his approach only in bounding the terms in R(t). We give
the complete argument, however, for the sake of being self-contained.

We now let δ = cν. It follows from (2.1) and (2.2) that for all t in [0, T ],

‖u(t) − u(t)‖2
L2(Ω) = ‖u(t)‖2

L2(Ω) + ‖u(t)‖2
L2(Ω) − 2(u, u)

≤ ‖u(0)‖2
L2(Ω) + 2

∫ t

0
(f, u) dt + ‖u(0)‖2

L2(Ω) + 2

∫ t

0
(f, u) dt − 2(u, u)

= α1 + 2

∫ t

0
[(f, u) + (f, u)] dt + 2 ‖u(0)‖2

L2(Ω) − 2(u, u − v),

where

α1 = ‖u(0)‖2
L2(Ω) − ‖u(0)‖2

L2(Ω) − 2(u, v).

But

|(u, v)| ≤ ‖u‖L∞([0,T ];L2(Ω)) ‖v‖L∞([0,T ];L2(Ω)) ≤ Cδ1/2

by (2.3) and (3.1), so by assumption (a), α1 → 0 uniformly over [0, T ] as
ν → 0 since δ = cν.

To handle the term −2(u, u − v), we use φ = u − v as a test function in
(1.2). This gives

(u, u− v) − (u(0), u(0) − v(0))

=

∫ t

0
(u, u · ∇(u− v)) − ν(∇u,∇(u− v)) + (f, u− v) + (u, ∂t(u− v)) dt,

or after multiplying by −2,

−2(u, u− v) + 2 ‖u(0)‖2
L2(Ω) = α2 +

∫ t

0
[−2(u, u · ∇(u− v))

+ 2ν(∇u,∇(u− v)) − 2(f, u) − 2(u, ∂t(u− v))] dt.

(4.1)

Here,

α2 = 2(u(0), u(0)) − 2(u(0), u(0)) + 2(u(0), v(0)) + 2

∫ t

0
(f, v) dt,
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for which

|α2| ≤2 ‖u(0)‖L2(Ω) ‖u(0) − u(0)‖L2(Ω) + 2 ‖u(0)‖L2(Ω) ‖v(0)‖L2(Ω)

+ ‖f‖L1([0,T ];L2(Ω)) ‖v‖L∞([0,T ];L2(Ω)) .

This vanishes as ν → 0 uniformly over [0, T ] by assumptions (a) and (b) and
(3.1).

The last term in (4.1) is
∫ t

0
[−2(u, ∂t(u− v))] dt = −2

∫ t

0
(u, ∂tu) dt + 2

∫ t

0
(u, ∂tv) dt.

Because u is a solution to (E),
∫ t

0
(u, ∂tu) dt = −

∫ t

0
[(u, u · ∇u) + (u, f)] dt.

Also, by (2.3) and (3.1),
∣

∣

∣

∣

∫ t

0
(u, ∂tv)

∣

∣

∣

∣

≤

∫ t

0
‖u‖L2(Ω) ‖∂tv‖L2(Ω) ≤ Cν1/2.

We conclude that for all t in [0, T ],

‖u(t) − u(t)‖2
L2(Ω) ≤ α+ 2

∫ t

0
[(f − f, u− u) − (u, u · ∇(u− v))

+ (u, u · ∇u) + ν(∇u,∇(u− v))] dt,

where α→ 0 as ν → 0. But,

((u− u),(u− u) · ∇u)

= (u, u · ∇u) − (u, u · ∇u) − (u, u · ∇u) + (u, u · ∇u)

= (u, u · ∇u) − (u, u · ∇u).

The vanishing of the two terms above follows from Green’s theorem and the
high regularity of u. Thus,

‖u(t) − u(t)‖2
L2(Ω)

≤ α+ 2

∫ t

0
[(f − f, u− u) − ((u− u), (u− u) · ∇u)

+ (u, u · ∇v) + ν(∇u,∇(u− v))] dt

≤ α+

∫ t

0
R(t) dt + 2

∫ t

0

∫

Ω
|u− u|2 |∇u| dt,

(4.2)

where

R(t) = 2(f − f, u− u) + 2ν(∇u,∇(u− v)) + 2(u, u · ∇v). (4.3)

We can control all three terms in R(t). For the first term,
∣

∣(f − f, u− u)
∣

∣ ≤ ‖f − f‖L2(Ω) ‖u− u‖L2(Ω) ≤ C‖f − f‖L2(Ω),

so by assumption (c),
∫ t
0 (f − f, u− u) → 0 as ν → 0.
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For the second term in R(t) we have
∣

∣

∣

∣

ν

∫ t

0
(∇u,∇(u− v))

∣

∣

∣

∣

≤ ν

∣

∣

∣

∣

∫ t

0
(∇u,∇u)

∣

∣

∣

∣

+ ν

∣

∣

∣

∣

∫ t

0
(∇u,∇v)

∣

∣

∣

∣

= ν

∣

∣

∣

∣

∫ t

0
(∇u,∇u)

∣

∣

∣

∣

+ 2ν

∣

∣

∣

∣

∫ t

0
(ω(u), ω(v))

∣

∣

∣

∣

≤ ν

∫ t

0
‖∇u‖L2(Ω) ‖∇u‖L2(Ω) + 2ν

∫ t

0
‖ω(u)‖L2(Γδ) ‖∇v‖L2(Γδ)

≤ Cν ‖∇u‖L1([0,t];L2(Ω)) + Cνδ−1/2 ‖ω(u)‖L1([0,t];L2(Γδ)) .

Here we applied Lemma A.2 and (3.1). As ν → 0, the first term above
vanishes by (2.5). For the second term, since δ = cν,

νδ−1/2 ‖ω(u)‖L1([0,t];L2(Γδ)) = Cν1/2 ‖ω(u)‖L1([0,t];L2(Γcν))

≤ Cν1/2t1/2 ‖ω(u)‖L2([0,t];L2(Γcν))

= Ct1/2

(

ν

∫ t

0
‖ω(u)‖2

L2(Γcν)

)1/2

,

which vanishes by assumption (iii′′).
For the third term inR(t), we apply Lemma A.3, Lemma A.4, Lemma A.1,

(3.1), and (2.4), to obtain
∣

∣

∣

∣

∫ t

0
(u, u · ∇v)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0
(v, u · ∇u)

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∫ t

0
(v, u · ω(u))

∣

∣

∣

∣

≤ 2 ‖v‖L∞([0,T ]×Ω)

∫ t

0
‖u‖L2(Γδ) ‖ω(u)‖L2(Γδ)

≤ Cδ

∫ t

0
‖∇u‖L2(Γδ) ‖ω(u)‖L2(Γδ)

≤ Cδ1/2 ‖∇u‖L2([0,T ];L2(Γδ)) δ
1/2 ‖ω(u)‖L2([0,T ];L2(Γδ))

≤ C

(

δ

∫ t

0
‖ω(u)‖2

L2(Γδ)

)1/2

.

This also vanishes as ν → 0 by assumption (iii′′) since δ = cν.
Applying Gronwall’s lemma to (4.2) as in [1] gives condition (i).

5. Proving (iii′′′) ⇒ (i)

The only change that is required in the proof of (iii′′) ⇒ (i) in Section 4 is
the manner in which we bound the second and third term in R(t) of (4.3).

To bound the second term in R(t), we start as before with
∣

∣

∣

∣

ν

∫ t

0
(∇u,∇(u− v))

∣

∣

∣

∣

≤ ν

∣

∣

∣

∣

∫ t

0
(∇u,∇u)

∣

∣

∣

∣

+ ν

∣

∣

∣

∣

∫ t

0
(∇u,∇v)

∣

∣

∣

∣

.
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The first term vanishes as we showed in Section 4 without the use of any
of the conditions. For the second term, we apply Green’s theorem to give
(∇u,∇v) = −(u,∆v), which uses the vanishing of u on Γ. Then using (3.2),

ν

∣

∣

∣

∣

∫ t

0
(∇u,∇v)

∣

∣

∣

∣

= ν

∣

∣

∣

∣

∫ t

0
(u,∆v)

∣

∣

∣

∣

≤ Cν

∫ t

0
‖u‖L2(Γδ) ‖∆v‖L2(Γδ)

≤ Cν−1/2

∫ t

0
‖u‖L2(Γδ) ≤ Ct1/2

(

ν−1

∫ t

0
‖u‖2

L2(Γδ)

)1/2

,

so the second term in R(t) vanishes with ν by condition (iii′′′).
Using (3.1), we bound the third term in R(t) by

∣

∣

∣

∣

∫ t

0
(u, u · ∇v)

∣

∣

∣

∣

≤ ‖∇v‖L∞([0,T ]×Ω)

∫ t

0
‖u‖2

L2(Γδ) ≤
C

ν

∫ t

0
‖u‖2

L2(Γcν) ,

which also vanishes with ν by condition (iii′′′).

Appendix A. Appendix

Lemma A.1 is a version of Poincaré’s inequality.

Lemma A.1. Let ψ be in H1,p(Ω) for p in [1,∞] with ψ = 0 on Γ. There
exists a constant C independent of p such that for all sufficiently small δ

‖ψ‖Lp(Γδ) ≤ Cδ ‖∇ψ‖Lp(Γδ) .

We define the vorticity ω(v) to be the d× d antisymmetric matrix

ω(v) =
1

2

[

∇v − (∇v)T
]

. (A.1)

This gives the useful identity,

2ω(u) · ω(v) =
1

2
(∇u− (∇u)T ) · (∇v − (∇v)T )

= ∇u · ∇v −∇u · (∇v)T .
(A.2)

Lemma A.2. For all u and v in H1(Ω) with div v = 0 and such that
(u · ∇v) · n = 0 on Γ,

∫

Ω
∇u · ∇v = 2

∫

Ω
ω(u) · ω(v).

Proof. Since div v = 0, we have ∇u · (∇v)T = ∂ju
i∂iv

j = ∂j(u
i∂iv

j) =
div(u · ∇v), so if u and v are both in C∞(Ω) then

2

∫

Ω
ω(u) · ω(v) =

∫

Ω
∇u · ∇v −∇u · (∇v)T

=

∫

Ω
∇u · ∇v −

∫

Ω
div(u · ∇v) =

∫

Ω
∇u · ∇v −

∫

Γ
(u · ∇v) · n

=

∫

Ω
∇u · ∇v.

The result then follows by the density of C∞(Ω) in H1(Ω). �
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Lemma A.3. For all u in V and v in C1(Ω),

(u, u · ∇v) = −(v, u · ∇u).

Proof. First observe that both sides of this equality makes sense because of
the regularity of u and v. Then

(u, u · ∇v) =

∫

Ω
uiuj∂jv

i =

∫

Ω
uj∂j(v

iui) −

∫

Ω
ujvi∂ju

i

=

∫

Ω
u · ∇(u · v) −

∫

Ω
(u · ∇u) · v

= −

∫

Ω
(div u)u · v +

∫

Γ
(u · n)u · v −

∫

Ω
(u · ∇u) · v

= −

∫

Ω
(u · ∇u) · v.

In applying Green’s theorem above, all that we required was that u and
div u be in L2(Ω) and that u · v be in H1(Ω) (see, for instance, Theorem
I.1.2 of [3]). �

Lemma A.4. For all u in H1(Ω) and v in C1(Ω) with div v = 0 on Ω and
such that (v · n)u = 0 on Γ,

(v, u · ∇u) = 2(v, u · ω(u)).

Proof. Assume first that u is in C∞(Ω). Then
∫

Ω
(u · ω(u)) · v =

1

2

∫

Ω
(u · ∇u) · v −

1

2

∫

Ω
(u · (∇u)T ) · v.

But,

(u · (∇u)T ) · v = ui∂ju
ivj =

1

2
∂j(u

iui)vj =
1

2
v · ∇ |u|2

so
∫

Ω
(u·(∇u)T ) · v = −

1

2

∫

Ω
div v |u|2 +

1

2

∫

Γ
(v · n) |u|2 = 0,

which, with the density of C∞(Ω) in H1(Ω), gives the desired identity. �
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