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Abstract

We use a variant of a method of Goncharov, Kontsevich and Zhao [5, 16] to meromorph-
ically continue the multiple Hurwitz zeta function

ζd(s; θ) =
∑

0<n1<···<nd

(n1 + θ1)
−s1 · · · (nd + θd)

−sd , θk ∈ [0, 1),

to C
d , to locate the hyperplanes containing its possible poles and to compute the residues at

the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

1. Introduction and statements of results

Let θk , k = 1, . . . , d, be real numbers in [0, 1). The multiple Hurwitz zeta function is
defined by

ζd(s; θ) =
∑

0<n1<···<nd

(n1 + θ1)
−s1 · · · (nd + θd)

−sd , (1·1)

which is absolutely convergent and analytic in the region

Re(sk + · · · + sd) > d − k + 1 for k = 1, . . . , d.

When θk = 0, k = 1, . . . , d, the multiple Hurwitz zeta function equals the multiple zeta
function ζd(s), which was defined by D. Zagier in [14] and has been the focus of intense
study in recent years, appearing in connection with arithmetic and hyperbolic geometry,
moduli spaces, number theory, and quantum physics (see for example [2, 4, 8, 9, 13, 15]).
The many interesting algebraic and combinatorial aspects of the multiple Hurwitz zeta func-
tion have been studied in [3] and [11].

In this paper we will use a variant of a method of Goncharov, Kontsevich and Zhao [5, 16]
to give a proof of the meromorphic continuation of ζd(s; θ), and to locate the hyperplanes
containing its possible poles.
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THEOREM 1·1. The multiple Hurwitz zeta function ζd(s; θ) meromorphically continues
to C

d with the following possible poles:

(i) a simple pole along the hyperplane sd = 1;
(ii) a simple pole along the hyperplane sk + · · · + sd − d + k − 1 = n for all integers

n � 0 for k = 1, . . . , d − 1.

Remark 1·2. In Theorem 1·1 we are using the definition given in [7, p. 168] of a pole as
a holomorphic subvariety of dimension d − 1.

To prove Theorem 1·1 we use a d-dimensional Mellin transform to show that ζd(s; θ)

equals, in its region of absolute convergence, a meromorphic distribution applied to a test
function. This gives an explicit continuation of ζd(s; θ) to C

d , the poles being the same as
those of the distribution.

The meromorphic distribution is

�(x1, . . . , xd; s1, . . . , sd) = �(u1) · · ·�(ud−1)

sd − 1
ψ(x1, . . . , xd; s1, . . . , sd), (1·2)

where

uk = sk + · · · + sd − d + k − 1 (1·3)

and

ψ(x1, . . . , xd; s1, . . . , sd) = (x1)
u1−1
+

�(u1)

d∏
k=2

(1 − xk)
sk−1−1
+ (xk)

uk−1
+

�(sk−1)�(uk)
, (1·4)

where t+ ..= t1(0,∞). This is a regular distribution in the domain of C
d defined by Re(s1)

> 0, . . . , Re(sd−1) > 0 and Re(u1) > 0, . . . , Re(ud) > 0. In Lemma 3·1 we show that ψ

continues to an entire distribution. Thus, the poles of � arise from the other factors in
(1.2).

The test function is defined on

R = (0, ∞) × (0, 1)d−1 (1·5)

by

h(x) = ν(x)g(x),

where

ν(x) = ν(x1, . . . , xd) = e−θ1x1(1−x2) · · · e−θd−1x1···xd−1(1−xd )e−θd x1···xd

and

g(x) = g(x1, . . . , xd) = xd
1 xd−1

2 · · · xd

(ex1 − 1) · · · (ex1···xd − 1)
.

Let S(�) be the space of Schwartz class functions on an open subset � of R
d (see

Section 2 for the definition). Since � is zero for x outside of R, the value of the pairing
(�, h) does not depend on the value of h outside of R. Nonetheless, to complete the con-
tinuation argument it is essential that h extend to a test function on all of R

d . To prove that
h extends we show in Lemma 3·3 that g (and hence h) is in S(R), and then construct in
Theorem 3·4 a continuous linear extension operator E from S(R) to S(Rd).



Analytic continuation of multiple Hurwitz zeta functions 3

The meromorphic continuation of ζd(s; θ) to C
d has also been accomplished by Akiyama

and Ishikawa [1] using the Euler–Maclaurin summation formula, and by Murty and Sinha
[10] using the binomial theorem and Hartog’s theorem. The main advantage of our proof is
that we are able to use the pairing (�, h) and some combinatorial analysis to compute the
residues at the poles of ζd(s; θ) (see also [5, section 2] and [16, section 4]). This in turn
provides a way to locate trivial zeros of ζd(s; θ) (see the discussion below).

THEOREM 1·3. The residue of the multiple Hurwitz zeta function ζd(s; θ) on the hyper-
plane sd = 1 is

Ressd=1ζd(s1, . . . , sd; θ1, . . . , θd) =
{

1, if d = 1,

ζd−1(s1, . . . , sd−1; θ1, . . . , θd−1), if d > 1.

THEOREM 1·4. For d � 2 and any integers 1 � k � d − 1 and n � 1, the residue of the
multiple Hurwitz zeta function ζd(s; θ) on the hyperplane

sd(k) = d − k + 2 − n

is equal to (using the convention ζ0(s0; θ0) = 1)

ζk−1(s1, . . . , sk−1; θ1, . . . , θk−1)
∑

ad (k+1)=n−1
ak+1,...,ad�0

⎧⎨⎩
d∏

j=k+1

Ba j (θ j−1 − θ j )�(ad( j) + u j )

a j !�(ad( j + 1) + u j + 1)

⎫⎬⎭ ,

where

Ba j (x) =
a j∑

k=0

(
a j

k

)
Bk xa j −k

is the a j th Bernoulli polynomial (here Bk is the kth Bernoulli number), and we have set
sd(k) = sk + · · · + sd , ad( j) = a j + · · · + ad, ad(d + 1) = 0, and

u j = sd( j) − d + j − 1.

Example 1·5. The residue of the double Hurwitz zeta function ζ2(s; θ) on the hyperplane

s1 + s2 = 3 − n, n � 1,

equals

Bn−1(θ1 − θ2)�(s2 + n − 2)

(n − 1)!�(s2)
.

Example 1·6. The residue of the triple Hurwitz zeta function ζ3(s; θ) on the hyperplane

s1 + s2 + s3 = 4 − n, n � 1,

equals ∑
a2+a3=n−1

a2,a3�0

Ba2(θ1 − θ2)Ba3(θ2 − θ3)�(a2 + a3 + s2 + s3 − 2)�(a3 + s3 − 1)

a2!a3!�(a3 + s2 + s3 − 1)�(s3)
,

and the residue on the hyperplane

s2 + s3 = 3 − n, n � 1,
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equals

ζ1(s1; θ1)
∑

a3=n−1
a3�0

Ba3(θ2 − θ3)�(a3 + s3 − 1)

a3!�(s3)
.

As mentioned, the formula for the residues in Theorem 1·4 can be used to locate trivial
zeros of ζd(s; θ). For example, the following sets of points (s1, s2) in C

2 are trivial zeros of
the double Hurwitz zeta function ζ2(s; θ):

(s1, s2) = (0, −k), k ∈ Z�0;
(s1, s2) = (−1, 1 − k), k ∈ Z�1;
(s1, s2) = (−2 j, 1 − k), ( j, k) ∈ Z�0 × Z�1;
(s1, s2) = (−2 j − 1, 2 − k), ( j, k) ∈ Z�0 × Z�2.

To prove these are zeros, choose n � 1 so that (s1, s2) lies on the hyperplane s1 +s2 = 3−n,
and then verify that the residue

Bn−1(θ1 − θ2)�(s2 + n − 2)

(n − 1)!�(s2)

is zero. This method can be used, along with properties of the Bernoulli polynomials, to
locate other trivial zeros of ζd(s; θ) in dimensions d � 2 (see also [16, section 5]).

2. Analytic continuation of tempered distributions

In this section we give a brief overview of the analytic continuation of tempered distri-
butions. Let � be an open subset of R

d . Then S(�), the Schwartz-class functions on �, are
defined to be the set of all complex-valued C∞–functions f on � such that

ρα,β( f ) ..= sup
x∈�

|xα Dβ f (x)| < ∞

for all (d-dimensional) multi-indices α and β. A multi-index α is an ordered pair of d non-
negative integers (α1, . . . , αd), xα ..= xα1

1 · · · xαd
d , and

Dα f ..= ∂ |α| f

∂xα1
1 · · · ∂xαd

d

,

where |α| = α1 + · · · + αd .
Endowed with the sufficient family of semi-norms, {ρα,β}, S(Rd) is a Fréchet space.
A (tempered) distribution is an element of S′(Rd), the dual space of S(Rd); that is, the

set of all continuous linear functionals on S(Rd), continuity being with respect to all the
semi-norms ρα,β separately. A distribution ψ applied to a test function ϕ in S(Rd) is written
as (ψ, ϕ), the operation (·, ·) or, more explicitly, (·, ·)S ′(Rd ),S(Rd ), defining a pairing of S′(Rd)

and S(Rd). If, for some locally integrable function ψ , (ψ, ϕ) = ∫
Rd ψϕ for all ϕ in S(Rd),

then the distribution is called a regular distribution, and ψ and ψ are normally identified.
A distribution ψ is analytic (meromorphic) if for any test function ϕ in S(Rd), (ψ, ϕ)

is analytic (meromorphic) in some domain in C
d . If ψ is regular and analytic on some

domain of C
d and, for any test function ϕ in S(Rd), (ψ, ϕ) analytically continues to an

analytic or meromorphic function, then ψ is said to analytically continue to an analytic or
meromorphic distribution. A region on which ψ is regular and analytic is called a region of
absolute convergence of ψ .
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We will also have a need for the tensor product of distributions, which we define as fol-
lows. Let ψ1 and ψ2 be distributions in S′(Rd1) and S′(Rd2), and let ϕ be in S(Rd1+d2). Then
the functions

ϕ1(x1) = (ψ2(·), ϕ(x1, ·))S ′(Rd2 ),S(Rd2 ), ϕ2(x2) = (ψ1(·), ϕ(·, x2))S ′(Rd1 ),S(Rd1 )

are in S(Rd1), S(Rd2), respectively: this follows from the general fact that for any fixed f
in S′(Rd2) and ϕ in S(Rd1+d2), x �→ ( f (·), ϕ(x, ·)) lies in S(Rd1), along with the symmetric
relation with the order of the variables transposed. Then we define ψ1 ⊗ ψ2 by

(ψ1 ⊗ ψ2, ϕ)S ′(Rd1+d2 ),S(Rd1+d2 ) ..= (ψ1, ϕ1)S ′(Rd1 ),S(Rd1 ) = (ψ2, ϕ2)S ′(Rd2 ),S(Rd2 ),

which we can write more concisely as

(ψ1 ⊗ ψ2, ϕ) = (ψ1, (ψ2, ϕ)) = (ψ2, (ψ1, ϕ)). (2·1)

To show that this definition is consistent, we must show that equality holds in the last two
expressions in (2.1). So suppose first that ϕ = ϕ1 ⊗ ϕ2. Then

(ψ1, (ψ2, ϕ))=(ψ1, (ψ2, ϕ1 ⊗ ϕ2))=(ψ1, ϕ1(ψ2, ϕ2))=(ψ2, ϕ2)(ψ1, ϕ1)=(ψ2, (ψ1, ϕ)),

where in the second and third equalities we used the linearity of the pairings involved, and
in the final equality we used the symmetric equality with the order of ψ1 and ψ2 transposed.
This shows that (2·1) is well-defined for test functions that are product-form and hence by
linearity for all test functions in S(Rd1)⊗S(Rd2). But S(Rd1)⊗S(Rd2) is dense1in S(Rd1+d2)

so the definition is, in fact, well-defined for all distributions in S(Rd1+d2).
Equation (2·1) can also be seen as the analog of Fubini’s theorem for tempered distribu-

tions. In fact, it follows for regular distributions by an application of Fubini’s theorem, and
hence is a natural definition of the tensor product of two distributions.

3. Analytic preliminaries

In this section we establish some analytic results to be used in the proof of Theorem 1·1.

LEMMA 3·1. The distribution ψ of (1.4) is absolutely convergent on Re(uk) > 0, k = 1,

. . . , d, and Re(sk) > 0, k = 1, . . . , d − 1, and continues to an entire distribution.

Proof. We leave the proof of absolute convergence to the reader. To prove that ψ contin-
ues to an entire distribution, we may assume that d = 2, the proof being entirely analogous
for d > 2. The distribution ψ1 is analytic on Reu1 > 0 and continues to an entire distribution
on u1 by [16, lemma 3], and ψ2 is analytic on Res1 > 0, Reu2 > 0 and continues to an entire
distribution on (s1, u2) by [16, lemma 4]. Then ψ = ψ1 ⊗ ψ2, and we can write, for any ϕ

in S(R2),

(ψ, ϕ) = (ψ1, (ψ2, ϕ)) = (ψ2, (ψ1, ϕ)).

Since (ψ, ϕ) = (ψ1, (ψ2, ϕ)), it is entire in u1; since (ψ, ϕ) = (ψ2, (ψ1, ϕ)) it is entire in
s1 and u2 as well. But a complex-valued function that is entire in each variable separately is
entire: this follows from Hartog’s theorem (for instance, see [6, theorem B·6, p. 15]). Hence,
(ψ, ϕ) is entire in (u1, s1, u2) and so is entire on the subvariety defined by s1 = u1 − u2 + 1,
which, with the change of variables s1 = s1, s2 = u2 + 1, means that (ψ, ϕ) is entire when

1 This fact, which we do not prove, is nonetheless key, because it is where the real machinery of analysis
is being used.
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viewed as a function of (s1, s2). (These relations come from solving for s1 and s2 in (1·3).)
Since this is true for all ϕ in S(R2), the distribution ψ is entire.

LEMMA 3·2. Let y = y(x) be the transformation

yk = yk(x) = x1 · · · xk, k = 1, . . . , d,

and let R be defined as in (1.5). If f is in S(y(R)), then f ◦ y is in S(R).

Proof. Let f be in S(y(R)) and let f = f ◦ y. Applying the chain rule, we can see that
for any multi-index β,

Dβ f (x) =
N∑

j=1

C j x
γ j (

Dγ j

f
)
(y(x))

for some positive integers N and (C j ) and multi-indices (γ j ) with each γ j � β. It follows
that for any multi-indices α and β,

sup
x∈R

|xα Dβ f (x)| �
N∑

j=1

C j sup
x∈R

∣∣xα+γ j (
Dγ j

f
)
(y(x))

∣∣
�

N∑
j=1

C j sup
x∈R

∣∣xα1+γ
j

1
1

(
Dγ j

f
)
(y(x))

∣∣
=

N∑
j=1

C j sup
y∈y(R)

∣∣yα1+γ
j

1
1 Dγ j

f (y)
∣∣,

where we used the fact that |xk | < 1 for all k = 2, . . . , d. But this is finite because f is in
S(y(R)), and we conclude that f is in S(R).

LEMMA 3·3. The function

g(x) = g(x1, . . . , xd) = y1(x) · · · yd(x)

(ey1(x) − 1) · · · (eyd (x) − 1)

is in S(R).

Proof. To prove this we view g as a function of y = y(x). The function g(y) then
factors into a product, each factor of which is in S((0, ∞)). Hence g(y) is in S((0, ∞)d) ⊂
S(y(R)), which by Lemma 3·2 implies that g is in S(R).

THEOREM 3·4. There exists a continuous linear extension operator E that maps S(R) to
S(Rd).

Proof. For simplicity of notation, we give the proof for d = 2; nothing significant changes
for d > 2. Also, the proof for d = 1 is an obvious simplification of the argument for d = 2.

Let f be in S(R). We prove the existence of the extension f̃ .. = E f in three steps, as
follows:

Step 1: we extend f to a function u in C∞(R2) much as in the proof of [12, theorem 5’,
chapter VI], though we do so explicitly so we can more easily make the calculations required
to establish Schwartz decay.
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Because f is in C∞(R), we can extend f continuously to the boundary of R. We then
define u on (−∞, 0] × (0, 1) as in [12, equation (24), p. 182] by

u(x, y) =
∫ ∞

1
f (x − λx, y)ψ(λ) dλ (3·1)

and on R by u(x, y) = f (x, y). Here, ψ is as in [12, lemma 1, p. 182].

Because f is in S(R), u and all its derivatives are continuous, as we can verify directly
from (3.1) hence, u is in C∞((−∞, ∞) × (0, 1)).

Next we extend u to R
2 as follows. Let {φ−, φ+} be a partition of unity of R defined

so that φ+ equals 1 on the set {(x, y) ∈ R : 3/4 � y < 1}, φ− equals 1 on the set
{(x, y) ∈ R : 0 < y � 1/4}, and both are constant along horizontal lines. Then define u−
and u+ in C∞(R2) by

u−(x, y) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

1
(uφ−)(x, y − λy)ψ(λ) dλ, y � 0,

u(x, y)φ−(x, y), 0 < y < 1,

0, y � 1,

u+(x, y) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

1
(uφ+)(x, y + λ(y − 1))ψ(λ) dλ, y � 1,

u(x, y)φ+(x, y), 0 < y < 1,

0, y � 0.

In both integrals above we treat u as being zero whenever φ− or φ+ is zero (the value we
choose for u does not matter).

Finally, define u in C∞(R2) by

u(x, y) = u−(x, y) + u+(x, y),

and observe that u is an extension of f to all of R
2, and u is in C∞(R2) by the same reasoning

as before.

Step 2: let ϕh and ϕv in C∞(R2) assume values in [0, 1] and be such that ϕh ≡ 1 on
[0, ∞), ϕh ≡ 0 on (−∞, −1], ϕv ≡ 1 on [0, 1], and ϕv ≡ 0 on [2, ∞) and on (−∞, −1].
Then ϕ ..= ϕhϕv is in C∞(R2) and assumes values in [0, 1], is identically 1 on R, and is
identically 0 on the complement in R

2 of (−1, ∞) × (−1, 2).

Define f̃ in C∞(R2) by

f̃ = ϕu.

Step 3: the function f̃ has Schwartz decay in all directions except possibly along the positive
x-axis when y is in [1, 2) or in (−1, 0], because in all other directions, f̃ either equals f ,
which has Schwartz decay, or becomes zero after a finite distance. So we need only show
that |xm yn∂ j

x ∂k
y f̃ (x, y)| is bounded for all nonnegative integers m, n, j , and k on two subsets

of R
d : R1 = (0, ∞) × (−1, 0) and R2 = (0, ∞) × (1, 2).
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First we consider only partial derivatives of x . Assume that (x, y) is in R1, and that
m, n, and j are nonnegative integers. Then, since ϕ is constant along horizontal rays
in R1, ∣∣xm yn∂ j

x f̃ (x, y)
∣∣ = ∣∣ϕ(x, y)xm yn∂ j

x u(x, y)
∣∣

�
∣∣xm yn∂ j

x u(x, y)
∣∣

= ∣∣xm yn∂ j
x u−(x, y)

∣∣
=

∣∣∣∣xm yn∂ j
x

∫ ∞

1
( f φ−)(x, y − λy)ψ(λ) dλ

∣∣∣∣
=

∣∣∣∣∫ ∞

1

(
xm yn∂ j

x f (x, y − λy)
)
φ−(x, y − λy)ψ(λ) dλ

∣∣∣∣
� sup |ψ | sup

y′∈(0,1)

∣∣xm yn∂ j
x f (x, y′)

∣∣ ∣∣∣∣∫ ∞

1
φ−(x, y − λy)

∣∣∣∣
� sup |ψ | sup

y′∈(0,1)

∣∣xm yn∂ j
x f (x, y′)

∣∣ .
The second and third equalities follow from the definitions of u and u− (and u becomes f
in the integral because x > 0). The fourth equality uses the constancy of φ− along horizontal
lines. The last inequality follows by a change of variables and the observation that φ− is
supported in a strip of vertical width less than 1.

Thus,

sup
(x,y)∈R1

∣∣xm yn∂ j
x f̃ (x, y)

∣∣ � sup |ψ | sup
x>0

sup
y′∈(0,1)

∣∣xm yn∂ j
x f (x, y′)

∣∣
= sup |ψ | sup

(x,y′)∈R

∣∣xm yn∂ j
x f (x, y′)

∣∣ ,
which is finite by the assumption that f is in S(R). The bound on R2 is obtained similarly.

Bounding |xm yn∂ j
x ∂k

y f̃ (x, y)| is more tedious, because both ϕ and φ− have nonzero partial
derivatives in the y-direction. If we write this as |xm yn∂k

y∂
j

x f̃ (x, y)|, we can start with the
calculation above then perform the partial derivatives in y. This will result in a sum of
terms including partial derivatives of ϕ, φ−, and f . Each term, however, will be just as
above, with ϕ and φ− replaced by partial derivatives of these functions, and with partial
derivatives in both x and y. Since all the partial derivatives of ϕ and φ− are bounded, this
does not change the argument for each term, and we see that |xm yn∂ j

x ∂k
y f̃ (x, y)| is bounded

as well.

The linearity of the extension operator E f = f̃ is clear from the definition of f̃ , and its
continuity follows from the bounds we established above.

4. Proof of Theorem 1·1
From (1·1) and the identity

�(s) =
∫ ∞

0
ws−1e−wdw
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we have

ζd(s; θ)

d∏
j=1

�(s j )

=
∫ ∞

0
· · ·

∫ ∞

0

∑
0<n1···<nd

(n1 + θ1)
−s1 · · · (nd + θd)

−sd w
s1−1
1 e−w1 · · ·wsd−1

d e−wd dw1 · · · dwd .

Make the change of variables wk = (nk + θk)tk ,

(nk + θk)
−sk w

sk−1
k e−wk dwk = (nk + θk)

−sk (nk + θk)
sk−1t sk−1

k e−(nk+θk )tk (nk + θk)dtk

= t sk−1
k e−(nk+θk )tk dtk,

to obtain

ζd(s; θ)

d∏
j=1

�(s j )

=
∫ ∞

0
· · ·

∫ ∞

0

∑
0<n1<···<nd

t s1−1
1 e−(n1+θ1)t1 · · · t sd−1

d e−(nd+θd )td dt1 · · · dtd

=
∫ ∞

0
· · ·

∫ ∞

0

∞∑
n1=1

· · ·
∞∑

nd=1

t s1−1
1 e−(n1+θ1)t1 · · · t sd−1

d e−(n1+···+nd+θd )td dt1 · · · dtd

=
∫ ∞

0
· · ·

∫ ∞

0
t s1−1
1 · · · t sd−1

d e−θ1t1 · · · e−θd td φ(t1, . . . , td)dt1 · · · dtd, (4·1)

where

φ(t1, . . . , td) =
∞∑

n1=1

· · ·
∞∑

nd=1

e−n1(t1+···+td ) · · · e−nd td .

Set xd+1 = 0 and define the change of variables

x1 · · · xk = tk + · · · + td if and only if tk = x1 · · · xk(1 − xk+1) (4·2)

for 1 � k � d. Notice that tk � 0 for 1 � k � d if and only if 0 � x1 < ∞ and 0 � xk � 1
for 2 � k � d. The k, �th entry of the Jacobian of the transformation defined by (4·2) is

∂tk

∂x�

(x1, . . . , xd) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 · · · x�−1x�+1 · · · xk(1 − xk+1), if � < k;
x1 · · · xk−1(1 − xk+1), if � = k;
−x1 · · · xk, if � = k + 1;
0, if � > k + 1.

It can be shown that the determinant of the Jacobian is∣∣∣∣( ∂tk

∂x�

(x1, . . . , xd)

)∣∣∣∣ = xd−1
1 · · · xd−1.
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Make the change of variables defined by (4·2) in (4·1) and use the functional equation
�(s) = (s − 1)�(s − 1) to obtain

ζd(s; θ)
sd − 1

�(u1) · · ·�(ud−1)

=
∫ 1

0
· · ·

∫ 1

0

∫ ∞

0

xu1−1
1

�(u1)

d∏
k=2

(1 − xk)
sk−1−1xuk−1

k

�(sk−1)�(uk)
h(x1, . . . , xd)dx1 · · · dxd

=
∫ 1

0
· · ·

∫ 1

0

∫ ∞

0
ψ(x1, . . . , xd; s1, . . . , sd)h(x1, . . . , xd)dx1 · · · dxd, (4·3)

where

h(x1, . . . , xd) = ν(x1, . . . , xd)g(x1, . . . , xd),

ν(x1, . . . , xd) = e−θ1x1(1−x2) · · · e−θd−1x1···xd−1(1−xd )e−θd x1···xd

and

g(x1, . . . , xd) = xd
1 xd−1

2 · · · xd

∞∑
n1=1

· · ·
∞∑

nd=1

e−n1x1 · · · e−nd x1···xd

= xd
1 xd−1

2 · · · xd

(ex1 − 1) · · · (ex1···xd − 1)
.

By Lemma 3·3 we know that g is in S(R). Since ν is a bounded, C∞ function on R, all
of whose derivatives are bounded on R, and S(R) is closed under multiplication by such
functions, it follows that h is in S(R). Therefore, by Theorem 3·4 there exists an extension
f = E(h) of h to S(Rd). Solve for ζd(s; θ) in (4·3) to obtain

ζd(s; θ) = �(u1) · · ·�(ud−1)

sd − 1
(ψ(·, s1, . . . , sd), f (·)). (4·4)

Finally, by Lemma 3·1 we see that (4·4) gives an explicit expression for the continuation of
ζd(s; θ) with the possible poles along the stated hyperplanes.

5. Proof of Theorem 1·3
The case d = 1 is a classical result. Assume that d > 1. By (4·4),

Ressd=1ζd(s; θ) = �(s1 + · · · + sd−1 − (d − 1)) · · ·�(sd−2 + sd−1 − 2)�(sd−1 − 1)

× lim
sd→1

(ψ(·, s1, . . . , sd), h(·)).

Now, a straightforward calculation yields

lim
sd→1

(ψ(·, s1, . . . , sd), h(·))

= lim
sd→1

∫ 1

0
· · ·

∫ 1

0

∫ ∞

0

xs1+···+sd−1−d
1

�(s1 + · · · + sd−1 − (d − 1))
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×
d−1∏
k=2

(1 − xk)
sk−1−1xsk+···+sd−1−(d−1)+k−2

k

�(sk−1)�(sk + · · · + sd−1 − (d − 1) + k − 1)

× e−θ1x1(1−x2) · · · e−θd−1x1···xd−1
xd−1

1 xd−1
2 · · · xd−1

(ex1 − 1) · · · (ex1···xd−1 − 1)

× 1

(sd−1 − 1)�(sd−1 − 1)

(1 − xd)
sd−1−1xsd−2

d

�(sd − 1)
e−(θd−θd−1)x1···xd

x1 · · · xd

ex1···xd − 1
dx1 · · · dxd,

where we have used the functional equation �(s) = (s − 1)�(s − 1). From (4·4) we see that
it suffices to show that

lim
sd→1

∫ 1

0

(1 − xd)
sd−1−1xsd−2

d

�(sd − 1)
e−(θd−θd−1)x1···xd

x1 · · · xd

ex1···xd − 1
dxd = 1.

This follows from a calculation similar to that in the proof of [16, lemma 4].

6. Proof of Theorem 1·4
First, assume that k � 2. Using (4·3) we may express the multiple Hurwitz zeta function

ζd(s; θ) as

ζd(s; θ)

=
∫ 1

0
· · ·

∫ 1

0

∫ ∞

0

k−1∏
j=1

xsk−1( j)+uk−1
j

eθ j x1···x j (1−x j+1)(ex1···x j − 1)

×
k−1∏
j=2

(1 − x j )
s j−1−1 f (x1, . . . , xk−1; s)∏d

j=1 �(s j )
dx1 · · · dxk−1, (6·1)

where

f (x1, . . . , xk−1; s)

=
∫ 1

0
· · ·

∫ 1

0

d∏
j=k

x
u j −1
j (1 − x j )

s j−1−1 x1 · · · x j e(θ j−1−θ j )x1···x j

ex1···x j − 1
dxk · · · dxd

(here we have set x j+1 = 0 for j + 1 � i). We want to compute the residue of f (x1, . . . ,

xk−1; s) on the hyperplane

sd(k) = d − k + 2 − n.

Recall that the Bernoulli polynomial generating function is

xetx

ex − 1
=

∞∑
a=0

Ba(t)
xa

a! .

Therefore
d∏

j=k

x1 · · · x j e(θ j−1−θ j )x1···x j

ex1···x j − 1

=
∑

ak ,...,ad�0

{
(x1 · · · xk−1)

ad (k)

d∏
j=k

Ba j (θ j−1 − θ j )

a j ! xad ( j)
k

}
. (6·2)
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Substitute (6·2) into f (x1, . . . , xk−1; s) and use the identity

u j + s j−1 = u j−1 + 1

and the beta integral ∫ 1

0
xα−1(1 − x)β−1dx = �(α)�(β)

�(α + β)

to obtain

f (x1, . . . , xk−1; s)

=
∑

ak ,...,ad�0

{
(x1 · · · xk−1)

ad (k)

d∏
j=k

Ba j (θ j−1 − θ j )

a j !
�(ad( j) + u j )�(s j−1)

�(ad( j) + u j + s j−1)

}

=
∑

ak ,...,ad�0

{
(x1 · · · xk−1)

ad (k) Bak (θk−1 − θk)

ak !
�(ad(k) + uk)

�(ad(k + 1) + uk + 1)

× 1

�(ad(k) + uk + sk−1)

d∏
j=k+1

Ba j (θ j−1 − θ j )

a j !
�(ad( j) + u j )

�(ad( j + 1) + u j + 1)

d∏
j=k−1

�(s j )

}
.

(6·3)

Observe that in (6·3) only the terms with ad(k) = n − 1 contribute to the residue on the
hyperplane sd(k) = d −k +2−n. Furthermore, for every such term with ak > 0 the function

�(ad(k) + uk)

�(ad(k + 1) + uk + 1)
=

ak−1∏
�=1

(ad(k) + uk − �)

has no poles. Using these facts we obtain the residue in the statement of the theorem.
Next, assume that k = 1. The proof in this case is essentially the same as for k � 2. One

simply needs to set k = 2 in (6·1) and use

lim
u→1

(u − 1)

∫ ∞

0

xu−1

eθ1x(ex − 1)
dx = 1.

To calculate this limit we use the Mellin transform of the classical one-dimensional Hurwitz
zeta function

ζ(s; q) =
∞∑

n=0

(n + q)−s = 1

�(s)

∫ ∞

0

xs−1

eqx(1 − e−x)
dx

and the fact that ζ(s; q) has a meromorphic continuation to C with a simple pole at s = 1
with residue 1. In particular,∫ ∞

0

xu−1

eθ1x(ex − 1)
=

∫ ∞

0

xu−1

e(θ1+1)x(1 − e−x)
,

so that

lim
u→1

(u − 1)

∫ ∞

0

xu−1

eθ1x(ex − 1)
dx = lim

u→1
(u − 1)�(u)ζ(u; θ1 + 1) = 1.
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