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Abstract. In [4] the authors consider the two dimensional Navier-Stokes equations in
the exterior of an obstacle shrinking to a point and determine the limit velocity. Here we
consider the same problem in the three dimensional case, proving that the limit velocity
is a solution of the Navier-Stokes equations in the full space.

1. Introduction

The investigation of small obstacle limits in an incompressible fluid was initiated in [3].
In that paper, the authors consider the Euler equations in the exterior of a two-dimensional
obstacle that shrinks homothetically (that is, by dilation) to a point. It is assumed that the
initial vorticity is the restriction to the exterior of the obstacle of a smooth vorticity field
compactly supported in R2 \ {0}, and that the circulation of the velocity on the boundary
of the obstacle is independent of the size of the obstacle. It is then proved in [3] that the
limit velocity is a solution of a PDE that looks like an Euler equation that embeds the
Dirac mass of the point the obstacle shrinks to. The vorticity also acquires a Dirac mass at
this point. The case of several obstacles was treated in [5] and the two-dimensional viscous
case in [4], where it is proved that the limit equation is also Navier-Stokes but there is still
formation of an additional Dirac mass in the limit vorticity. This is due to the circulation
of the velocity on the boundary of the obstacle not vanishing.

Here we consider the same problem in the three-dimensional case: pass to the limit in the
Navier-Stokes equations in the exterior of an obstacle that shrinks to a point. In contrast
to the two-dimensional case, we do not have to prescribe the circulation of the velocity on
the boundary since the domain is simply connected. We prove that the limit equation is
the Navier-Stokes equation in the full space and that the vorticity of the limit velocity at
time t = 0 is simply the initial vorticity that we give for the obstacle-dependent problem.
Therefore, there is no formation of additional vorticity as in the case of R2. We are also
able to consider more general obstacles than in [4]: Instead of assuming that the obstacle
homothetically shrinks to a point we assume only that the diameter of the obstacle goes
to zero.

More precisely, let Πε = R3 \Ωε be a simply connected exterior domain with C∞ bound-
ary such that Ωε ⊂ B(0,Mε), where the constant M is independent of ε. We assume that
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the initial vorticity ω0 is smooth, divergence-free, and compactly supported in R3. Since
the domain Πε is simply connected, there exists a unique square-integrable, divergence-free
velocity field uε0 in Πε tangent to the boundary of Πε and whose curl is ω0|Πε

(see Proposi-
tion 6 below). We also denote by u0 the velocity defined on R3 which is associated to the
vorticity ω0:

(1) u0(x) = −
∫

R3

x− y
4π|x− y|3

× ω0(y) dy,

where × denotes the standard cross product of vectors in R3.
Let uε = uε(t, x) be a weak Leray solution of the Navier-Stokes equations in Πε with

initial velocity uε0 and homogeneous Dirichlet boundary conditions:
∂tu

ε − ν4uε + uε · ∇uε = −∇pε in Πε × (0,∞),
div uε = 0 in Πε × [0,∞),
uε = 0 on ∂Πε × (0,∞),
uε(0, ·) = uε0 in Πε.

(2)

Such a weak solution is well-known to exist, see for example [2]. The aim of this paper is
to prove the following theorem.

Theorem 1. Let u0, ω0, and uε0 be as defined above. Let uε be a weak Leray solution of
the Navier-Stokes equations on Πε with initial velocity uε0 and denote by ũε the extension
of uε to R3 with values 0 on Ωε. There exists a subsequence of ũε that converges strongly in
L2
loc([0,∞)×R3) to a weak Leray solution of the Navier-Stokes equations in R3 with initial

velocity u0.

The proof of this result consists of two parts. We prove first that uε0 converges to u0

strongly in L2—see Proposition 6 below. We then conclude by showing in Theorem 7 that
strong convergence in L2 for the initial velocity implies convergence of solutions in the
vanishing obstacle limit.

The regularity of the initial vorticity can be lowered considerably and still obtain con-
vergence as in Theorem 1. We briefly discuss this in Section 4.

2. Notation and preliminary results

For a function f defined on Πε, we denote by f̃ the function defined on R3 which vanishes
on Ωε and equals f on Πε. If f is regular enough and vanishes on ∂Ωε, then one has that

∇f̃ = ∇̃f in R3. If v is a regular enough vector field defined on Πε and tangent to ∂Ωε,

then one has that div ṽ = d̃iv v in R3. In particular, we have that div ũε0 = 0 in R3. We
denote by Hε the space of square-integrable vector fields on Πε which are divergence-free
and tangent to the boundary. We will also use the classical Sobolev space Hm and the
space Cm

b of bounded functions having bounded derivates up to the order m.

Definition 2. We say that uε is a weak Leray solution of (2) if

uε ∈ C0
w

(
[0,∞);Hε)

)
∩ L∞

(
[0,∞);Hε

)
∩ L2

loc

(
[0,∞);H1

0 (Πε)
)
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verifies the equation in the sense of distributions, i.e.

(3) −
∫ ∞

0

∫
Πε

uε · ∂tϕ+ ν

∫ ∞
0

∫
Πε

∇uε · ∇ϕ+

∫ ∞
0

∫
Πε

uε · ∇uε · ϕ =

∫
Πε

uε0 · ϕ(0)

for every divergence-free vector field ϕ ∈ C∞0 ([0,∞) × Πε), and moreover uε verifies the
following energy inequality:

(4) ‖uε(t)‖2
L2(Πε) + 2ν

∫ t

0

‖∇uε‖2
L2(Πε) ≤ ‖uε0‖2

L2(Πε) ∀t ≥ 0.

Above C0
w denotes the space of weakly continuous functions. We will use a similar

definition for weak Leray solutions on R3.
For a vector field ϕ in R3 we define a stream function ψ = Tϕ by

ψ(x) = (Tϕ)(x) = (Sϕ)(x)− (Sϕ)(0), (Sϕ)(x) = −
∫

R3

x− y
4π|x− y|3

× ϕ(y) dy.

We will use the following properties of the operator T .

Lemma 3. Suppose that ϕ is a vector field belonging to L2(R3) ∩ L4(R3). Then Tϕ ∈
C0
b (R3) and ‖Tϕ‖L∞(R3) ≤ C‖ϕ‖L2∩L4. Moreover, if divϕ = 0 then curlTϕ = ϕ. Finally,

for all m ≥ 1, the operator T is bounded from Hm(R3) into Cm−1
b (R3).

Proof. We decompose

(Sϕ)(x) = −
∫

R3

x− y
4π|x− y|3

× ϕ(y) dy =

∫
|x−y|≤1

· · ·+
∫
|x−y|>1

· · · ≡ I1(x) + I2(x).

One has that x
|x|3χ|x|≤1 ∈ L4/3(R3) and x

|x|3χ|x|>1 ∈ L2(R3) so we obtain from Young’s

inequality that

‖I1‖L∞(R3) ≤ C‖ x

|x|3
χ|x|≤1‖L4/3(R3)‖ϕ‖L4(R3) ≤ C‖ϕ‖L4(R3)

and

‖I2‖L∞(R3) ≤ C‖ x

|x|3
χ|x|>1‖L2(R3)‖ϕ‖L2(R3) ≤ C‖ϕ‖L2(R3)

together with the continuity of I1 and I2. Since ‖Tϕ‖L∞(R3) ≤ 2‖Sϕ‖L∞(R3) we obtain the
desired continuity and uniform bound for Tϕ.

Suppose now that ϕ ∈ Hm(R3). For any multiindex α of order 0 < |α| ≤ m− 1 we have
∂αTϕ = S∂αϕ and ∂αϕ ∈ H1(R3) ↪→ L2 ∩ L4. From the first part of the proof, we deduce
that S∂αϕ ∈ C0

b , that is Tϕ ∈ Cm−1(R3) together with the desired bound.
Finally, assume that ϕ is divergence-free. If ϕ is compactly supported, then clearly

Sϕ = curlF where F = 1
4π|x| ∗ ϕ. One has that divF = 1

4π|x| ∗ divϕ = 0. Then

curlTϕ = curlSϕ = curl curlF = −4F +∇ divF = −4(
1

4π|x|
) ∗ ϕ = δ ∗ ϕ = ϕ.
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If ϕ is not compactly supported, then there exists a sequence of divergence free compactly
supported vector field ϕn → ϕ in L2 ∩ L4. Passing to the limit n → ∞ in curlTϕn = ϕn
implies that curlTϕ = ϕ. This completes the proof of Lemma 3. �

We will use in Section 3 the following approximation of smooth compactly supported
divergence-free vector fields. Let ϕ be a vector field and η ∈ C∞(R3) be such that η ≡ 0
on B(0,M) and η ≡ 1 on R3 \ B(0, 2M). We define ηε(x) = η(x/ε) and ϕε = curl(ηεψ)
with ψ = Tϕ as before. We collect in the following lemma several properties relating ϕε
to ϕ.

Lemma 4. Let ϕ ∈ C∞0 (R3) be a divergence-free vector field and define ϕε as above. Then

(i) ϕε is smooth, compactly supported, divergence-free, and vanishes in a neighborhood
of the obstacle Ωε;

(ii) ϕε → ϕ strongly in H1(R3);
(iii) there exists a constant C independent of ε such that ‖ϕε‖L∞(R3) + ‖ϕε‖H1(R3) ≤

C‖ϕ‖H3(R3);
(iv) one can decompose ∇ϕε = ξε + Ξε with ξε ⇀ ∇ϕ weak∗ in L∞(R3) and Ξε → 0

strongly in L2(R3) and there exists a compact set L independent of ε such that
supp ξε, supp Ξε ⊂ L for all ε ≤ 1.

Remark 5. It will be clear from the proof below that we can allow a time dependence in
ϕ. The results of this lemma hold true uniformly with respect to the time variable.

Proof. We will repeatedly use in this proof that ψ(0) = 0 so

(5) ‖ψ‖L∞(B(0,2εM)) ≤ 2εM‖∇ψ‖L∞(R3) ≤ Cε‖ϕ‖H2 .

Part (i) follows immediately from the localization properties of ηε and from Lemma 3.

To prove (ii) we observe from the explicit expression for ηε that ηε− 1 and ∇ηε converge

to 0 in L2 and ‖∇2ηε‖L2(R3) = ε−
1
2‖∇2η‖L2(R3). Since ϕε = ηεϕ+∇ηε × ψ we have that

‖ϕε − ϕ‖L2(R3) ≤ ‖(ηε − 1)ϕ‖L2(R3) + ‖∇ηε × ψ‖L2(R3)

≤ ‖ηε − 1‖L2(R3)‖ϕ‖L∞(R3) + ‖∇ηε‖L2(R3)‖ψ‖L∞(R3)
ε→0−→ 0,

and similarly,

‖∇(ϕε − ϕ)‖L2(R3) ≤ ‖ηε − 1‖L2(R3)‖∇ϕ‖L∞(R3) +C‖∇ηε‖L2(R3)(‖ϕ‖L∞(R3) +‖∇ψ‖L∞(R3))

+ C‖∇2ηε‖L2(R3)‖ψ‖L∞(B(0,2εM))
ε→0−→ 0.

The H1 bound in part (iii) follows from the estimates above while the uniform bound is
an immediate consequence of (5) and of the decomposition ϕε = ηεϕ+∇ηε × ψ.

To prove (iv) we set ξε = ηε∇ϕ and Ξε = ∇ϕε − ηε∇ϕ so that supp ξε ⊂ suppϕ. The
term Ξε is similar to the expressions estimated above, so it can be proved in the same way
that it converges to 0 in L2 as ε→ 0. The sequence ξε is bounded in L∞ and converges to
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∇ϕ in L2. Since ξε → ∇ϕ in L2 we deduce first that
∫

(ξε−∇ϕ)·h→ 0 for all h ∈ C∞0 (R3)9.
Since ξε is bounded in L∞ and C∞0 is dense in L1 we infer that

∫
(ξε −∇ϕ) · h→ 0 for all

h ∈ L1(R3)9, i.e. ξε ⇀ ∇ϕ weak∗ in L∞. Finally, the condition on the supports is trivially
verified by construction. This completes the proof of the lemma. �

We prove next a convergence result for the initial velocities.

Proposition 6. Let ω0 be a divergence-free vector field in C∞0 (R3) with u0 given by Equa-
tion (1). For all ε > 0 there exists exactly one vector field uε0 ∈ Hε such that curluε0 = ω0|Πε

and there exists a constant C independent of ε such that ‖ũε0 − u0‖L2(R3) ≤ Cε
3
2 .

Proof. By the Leray-Helmholtz-Weyl decomposition there exists uε0 inHε and p in Ḣ1(Πε) =
{p ∈ L2

loc(Πε) ; ∇p ∈ L2(Πε)} such that u0|Πε
= uε0 +∇p on Πε with uε0 and ∇p unique in

these spaces (see, for instance, Theorem 1.1 p. 107 of [1]). Since the curl of a gradient is
zero, curluε0 = curlu0|Πε

= ω0|Πε
in Πε.

Now let w be any vector field in Hε with curlw = ω0|Πε
in Πε. Then w − uε0 is in Hε

with curl(w−uε0) = 0, so since Πε is simply connected, w−uε0 = ∇q for some q in Ḣ1(Πε).
Also, ∆q = divw−div uε0 = 0 on Πε and ∇q ·n = w ·n = 0 on ∂Πε, where n is the outward
unit normal to the boundary. By the uniqueness of the solution to the Neumann problem,
q is a constant, so ∇q = 0 and uε0 = w, giving the uniqueness of uε0.

Noting that uε0 is the L2-orthogonal projection of u0|Πε
on Hε, we have

(6) ‖uε0 − u0|Πε
‖L2(Πε) ≤ ‖wε − u0|Πε

‖L2(Πε) for all wε ∈ Hε.

Making the particular choice,

wε = curl(ηεψ) = ηεu0 +∇ηε × ψ, ψ = Tu0,

we see that wε vanishes on ∂Πε and since wε is a curl it is also divergence-free. Equation (6)
with Lemma 3 then yield

‖ũε0 − u0‖L2(R3) ≤ ‖uε0 − u0|Πε
‖L2(Πε) + ‖u0‖L2(Ωε)

≤ ‖∇ηε × ψ‖L2(Πε) + ‖(1− ηε)u0‖L2(Πε) + ‖u0‖L2(Ωε)

≤ ‖∇ηε‖L2‖ψ‖L∞(B(0,2Mε)) + 2‖u0‖L2(B(0,2Mε))

≤ Cε3/2‖∇ψ‖L∞(R3) + Cε3/2 ‖u0‖L∞(R3)

≤ Cε3/2‖ω0‖H3(R3).

(7)

We used above that ψ(0) = 0. �

3. Proof of the convergence of solutions

The aim of this section is to prove a general convergence result: strong convergence in L2

for the initial data implies convergence of weak Leray solutions in the vanishing obstacle
limit. Such a convergence result is classical on a fixed domain; the difficulty here is to
deal with the singularity induced by the obstacle that shrinks to a point. Throughout this
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section we drop the previous assumptions on the initial vorticity and the special forms of
the initial velocities uε0 and u0. We will prove the following independent result.

Theorem 7. Suppose that uε0 ∈ Hε and u0 ∈ L2(R3) is a divergence-free vector field such
that ũε0 → u0 strongly in L2(R3). Let uε be a weak Leray solution of the Navier-Stokes
equations on Πε with initial velocity uε0. There exists a subsequence of ũε that converges
strongly in L2

loc([0,∞)×R3) to a weak Leray solution of the Navier-Stokes equations in R3

with initial velocity u0.

We proceed now with the proof of this theorem. We will use the notation introduced
in Section 2. Since uε is a weak Leray solution and uε0 is bounded in L2(Πε), the energy
inequality (4) implies that uε is bounded in L∞(R+;L2(Πε)) ∩ L2

loc([0,∞);H1(Πε)). We
require now some temporal estimates for uε.

3.1. Temporal estimates. Let φ ∈ C∞0 (R3) be a divergence-free vector field. We con-
struct φε as in Section 2. It follows from Definition 2, using a standard approximation
argument for the test function φε and taking advantage of the weak continuity in time of
u in L2(Πε), that∣∣〈uε(t), φε〉 − 〈uε(s), φε〉∣∣ =

∣∣∣ν ∫ t

s

∫
Πε

∇uε · ∇φε +

∫ t

s

∫
Πε

uε · ∇uε · φε
∣∣∣

≤ ν

∫ t

s

‖∇uε‖L2(Πε)‖∇φε‖L2(R3) +

∫ t

s

‖uε‖L2(Πε)‖∇uε‖L2(Πε)‖φε‖L∞(R3)

≤ C(t− s)
1
2‖φ‖H3(R3)‖∇uε‖L2(R+×Πε)

(
1 + ‖uε‖L∞(R+;L2(Πε))

)
≤ C(t− s)

1
2‖φ‖H3(R3)‖uε0‖L2(Πε)(1 + ‖uε0‖L2(Πε))

(8)

where we used (4), Lemma 4 (iii) and the constant C is independent of ε, s and t (though
it depends on ν). For t ∈ R+ let us define Fε(t) ∈ D′(R3) by means of

C∞0 (R3)3 3 h 7−→ 〈Fε(t), h〉 = 〈ũε(t),∇ηε × Th〉.
We deduce from (4) and (5) that

|〈Fε(t), h〉| ≤ ‖uε(t)‖L2(Πε)‖∇ηε‖L2(R3)‖Th‖L∞(B(0,2εM)) ≤ Cε
3
2‖uε0‖L2(Πε)‖h‖H2(R3).

Remembering that uε ∈ C0
w

(
[0,∞);Hε)

)
we infer that Fε belongs to C0

w([0,∞);H−2(R3))

and is bounded by Cε
3
2 in L∞(R+;H−2(R3)). From (8) one has that

|〈ηεũε(t) + Fε(t)− ηεũε(s)− Fε(s), φ〉| ≤ C(t− s)
1
2‖φ‖H3(R3)

so

‖P[ηεũ
ε(t) + Fε(t)− ηεũε(s)− Fε(s)]‖H−3(R3) ≤ C(t− s)

1
2 ,

where P denotes the usual Leray projector in R3, i.e. the L2 orthogonal projection on
the subspace of divergence-free vector fields. We conclude that the set P(ηεũ

ε + Fε) is
equicontinuous (in time) in C0([0,∞);H−3(R3)).
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Next, we observe that div ũε = 0 so P(ũε) = ũε. Therefore

P(ηεũ
ε + Fε) = ũε + P[(ηε − 1)ũε + Fε] ≡ ũε + vε.

We argue now that

(9) ‖vε‖L∞(R+;H−3(R3)) ≤ Cε
3
2 .

Indeed, we know that P is bounded in any Hs so

‖PFε‖L∞(R+;H−3(R3)) ≤ C‖Fε‖L∞(R+;H−3(R3)) ≤ Cε
3
2 .

and

‖P[(ηε − 1)ũε]‖H−3(R3) ≤ ‖(ηε − 1)ũε‖H−3(R3) ≤ C‖(ηε − 1)ũε‖L1(R3)

≤ C‖ηε − 1‖L2(R3)‖ũε‖L2(R3) ≤ Cε
3
2‖uε0‖L2(R3)

uniformly with respect to t.

3.2. Passing to the limit. Given the bounds (4) and by the Ascoli theorem, we can
extract from the sequence ũε a subsequence ũεk such that

ũεk ⇀ u in L∞(R+;L2(R3)) weak∗(10)

ũεk ⇀ u in L2
loc([0,∞);H1(R3)) weakly(11)

P(ηεk
ũεk + Fεk

) = ũεk + vεk
→ w in C0([0,∞);H−4

loc (R3)) strongly(12)

for some limit vector fields u and w

u ∈ L∞(R+;L2(R3)) ∩ L2
loc([0,∞);H1(R3)), w ∈ C0([0,∞);H−4

loc (R3)).

Since div ũεk = 0 we necessarily have that div u = 0. Next, from (9) and (12) we infer
that

ũεk → w in L∞loc([0,∞);H−4
loc (R3)) strongly.

Next, using that ũεk is bounded in L2
loc([0,∞);H1(R3)) and the interpolation inequality

‖ · ‖L2(W ) ≤ ‖ · ‖
1
5

H−4(W )‖ · ‖
4
5

H1(W ) that holds true for every bounded open set W , we

conclude that ũεk → w strongly in L2
loc(R+ × R3). By uniqueness of limits in the sense of

distributions, we infer that u = w and therefore

(13) ũεk → u in L2
loc(R+ × R3) strongly.

With these pieces of information, it is easy to pass to the limit in the equation of uεk

and obtain that u is a weak solution of the Navier-Stokes equations in R3. Indeed, let
ϕ ∈ C∞0 ([0,∞)× R3) be a divergence-free test vector field and define ϕεk

as in Section 2.
Equation (3) with ϕεk

instead of ϕ gives
(14)

−
∫ ∞

0

∫
R3

ũεk · ∂tϕεk
+ ν

∫ ∞
0

∫
R3

∇ũεk ·∇ϕεk
−
∫ ∞

0

∫
R3

(ũεk ⊗ ũεk) ·∇ϕεk
=

∫
R3

ũεk
0 ·ϕεk

(0).
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From Lemma 4 applied to ∂tϕ (see also Remark 5) we know that ∂tϕεk
→ ∂tϕ strongly in

L1(R+;L2(R3)), that ϕεk
(0) → ϕ(0) strongly in L2(R3) and that ∇ϕεk

→ ∇ϕ strongly in
L2(R+ × R3). Given (10), (11) and the convergence of the initial velocity (note that only
weak convergence in L2 is required at this point for ũεk

0 ), we deduce that the right-hand
side and the first two terms on the left-hand side of (14) converge to the expected limit.
Using the decomposition ∇ϕεk

= ξεk
+ Ξεk

given in Lemma 4 (iv), we write∫ ∞
0

∫
R3

(ũεk ⊗ ũεk) · ∇ϕεk
=

∫ ∞
0

∫
R3

(ũεk ⊗ ũεk) · ξεk
+

∫ ∞
0

∫
R3

(ũεk ⊗ ũεk) · Ξεk
.

Given (13) and that ξεk
⇀ ∇ϕ weak∗ in L∞(R+×R3) with supports contained in a compact

set independent of εk, one has that∫ ∞
0

∫
R3

(ũεk ⊗ ũεk) · ξεk

εk→0−→
∫ ∞

0

∫
R3

(u⊗ u) · ∇ϕ.

Next, we use the Sobolev embedding H1 ↪→ L6 and a Hölder inequality to write∣∣∣∫ ∞
0

∫
R3

(ũεk ⊗ ũεk) · Ξεk

∣∣∣ ≤ C

∫ T
0

‖ũεk‖2
L6(R3)‖Ξεk

‖
L

3
2 (R3)

≤ C‖ũεk‖2
L2((0,T );H1)‖Ξεk

‖
L∞((0,T );L

3
2 )

εk→0−→ 0,

where T is such that suppϕ ⊂ [0, T ]× R3.
We conclude that sending εk → 0 in (14) results in

−
∫ ∞

0

∫
R3

u · ∂tϕ+ ν

∫ ∞
0

∫
R3

∇u · ∇ϕ−
∫ ∞

0

∫
R3

(u⊗ u) · ∇ϕ =

∫
R3

u0 · ϕ(0),

which is the weak formulation of the Navier-Stokes equations in R3.
To finish the proof of Theorem 7, it remains to prove that the solution u is weakly

continuous in time with values in L2 and that it verifies the energy inequality.
We show first that u(t) ∈ L2 for all t ≥ 0. Recall that u ∈ C0([0,∞);H−4

loc ) so that
u(t) is defined for all t ≥ 0. For fixed t, by the energy inequality (4) the sequence ũεk(t)
is bounded in L2(R3). Moreover, ũεk(t) → u(t) in H−4

loc so the limit u(t) must belong to
L2(R3).

Next, using again that ũεk(t) → u(t) in H−4
loc we have that

∫
[ũεk(t) − u(t)] · h → 0 for

all h ∈ C∞0 (R3)3. On the other hand, C∞0 (R3) is dense in L2(R3) and ũεk(t) is bounded in
L2, so

∫
[ũεk(t) − u(t)] · h → 0 for all h ∈ L2(R3)3. Therefore, for all t ≥ 0 one has that

ũεk(t) ⇀ u(t) in L2 weakly. One can prove in a similar manner that ∇ũεk ⇀ ∇u weakly in
L2
(
(0, t)×R3

)
for all t ≥ 0 and also that u is weakly continuous in time with values in L2.

We prove now that the energy inequality holds true for u. This is done by means of the
following classical liminf argument. We apply the lim inf

εk→0
to (4) to obtain

(15) lim inf
εk→0

‖ũεk(t)‖2
L2(R3) + 2ν lim inf

εk→0

∫ t

0

‖∇ũεk‖2
L2(R3) ≤ ‖u0‖2

L2(R3) ∀t ≥ 0.
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Since ũεk(t) ⇀ u(t) in L2 weakly and ∇ũεk ⇀ ∇u weakly in L2
(
(0, t)×R3

)
we have that

(16) ‖u(t)‖L2(R3) ≤ lim inf
εk→0

‖ũεk(t)‖L2(R3).

and

(17) ‖∇u(t)‖L2((0,t)×R3) ≤ lim inf
εk→0

‖∇ũεk(t)‖L2((0,t)×R3).

The energy inequality for u now follows from Equations (15), (16) and (17). The proof of
Theorem 7 is completed.

Remark 8. It is clear from the proof that if we assume that the initial velocities uεk
0

converge only weakly to u0, then we can still prove convergence of uεk to some solution u of
the Navier-Stokes equation in the sense of Definition 2 but without the energy inequality.
The strong convergence of uεk

0 to u0 is required only to prove the energy inequality.

4. Lower regularity of the initial velocity

The main issue in this work is to prove convergence of the solutions, and not to consider the
weakest possible regularity of the initial vorticity. As we are dealing with weak solutions,
however, it is natural to ask that the initial vorticity have only enough regularity to obtain
existence of the weak solutions while still obtaining convergence. We give next just an
example of how one can improve these regularity assumptions if the support of ω0 excludes
the origin.

Proposition 9. Let ω0 be a divergence-free vector field in L1(R3)∩ Ḣ−1(R3) with compact
support contained in R3 \ {0} and let u0 be the unique square-integrable divergence free
vector field in R3 whose curl is ω0. For sufficiently small ε there exists exactly one vector
field uε0 ∈ Hε such that curluε0 = ω0 and there exists a constant C independent of ε such

that ‖ũε0 − u0‖L2(R3) ≤ Cε
3
2 .

Proof. The operator that associates to every divergence free ω0 the unique divergence free
vector field u0 of curl ω0 is the Fourier multiplier −∇×4−1. This operator clearly sends
Ḣ−1(R3) into L2(R3). Therefore, for every divergence free ω0 ∈ Ḣ−1(R3) there exists a
unique divergence free u0 ∈ L2(R3) such that curlu0 = ω0. Moreover, ‖u0‖L2 ≤ C‖ω0‖Ḣ−1 .

Next, let ε be sufficiently small such that suppω0 ⊂ Πε. We observe that the existence
and uniqueness of uε0 follows exactly as in the proof of Proposition 6. Indeed, in that part
of the proof the only assumption that was used is that u0 ∈ L2.

We prove now the bound on ‖ũε0 − u0‖L2(R3). We consider first the case when ω0 is
smooth. More precisely, we show that for any δ > 0 there exists ε0 = ε0(δ,M) and
K = K(δ,M) such that for any divergence free ω0 ∈ C∞0 (R3 \B(0, δ)) and ε ≤ ε0, one has

that ‖ũε0 − u0‖L2(R3) ≤ Kε
3
2 ‖ω0‖L1 .

In this case, relation (1) holds true and the proof is the same as that of Proposition 6
except that instead of ψ = Tu0 we use ψ = E ∗ ω0 − E ∗ ω0(0), where E = 1

4π|x| . This

is a valid replacement because relation (1) immediately implies that curlψ = u0. In fact,
9



this definition of ψ is equivalent to that of Proposition 6, but we don’t need to prove this.
Because the support of ω0 excludes B(0, δ), ∇ψ = (χB(0,δ/2)c∇E) ∗ ω0 on B(0, 2Mε) for
all ε < δ/(4M). Here, χB(0,δ/2)c denotes the characteristic function of R3 \ B(0, δ/2). But
then

‖∇ψ‖L∞(B(0,2Mε)) ≤
∥∥(χB(0,δ/2)c∇E) ∗ ω0

∥∥
L∞(R3)

≤
∥∥χB(0,δ/2)c∇E

∥∥
L∞
‖ω0‖L1 =

1

πδ2
‖ω0‖L1 .

Similarly, under the same condition ε < δ/(4M) one can use (1) to bound

‖u0‖L∞(B(0,2Mε)) =
∥∥∥∫
|x−y|>δ/2

x− y
4π|x− y|3

× ω0(y) dy
∥∥∥
L∞(B(0,2Mε))

≤ 1

πδ2
‖ω0‖L1 .

With these bounds, Equation (7) can be rewritten as follows

‖ũε0 − u0‖L2(R3) ≤ ‖∇ηε‖L2‖ψ‖L∞(B(0,2Mε)) + 2‖u0‖L2(B(0,2Mε))

≤ Cε3/2‖∇ψ‖L∞(B(0,2Mε)) + Cε3/2‖u0‖L∞(B(0,2Mε))

≤ C
ε3/2

δ2
‖ω0‖L1 .

This completes the proof when ω0 is smooth. The general case classically follows by
approximation. Let ω0 ∈ L1 ∩ Ḣ−1 and δ be such that suppω0 ∩ B(0, 2δ) = ∅. Let ρ be
a standard mollifying kernel and let us mollify ω0 in a classical manner: ω0,n = ρ1/n ∗ ω0.

One has that ω0,n → ω0 in L1 ∩ Ḣ−1 and ω0,n ∈ C∞0 (R3 \ B(0, δ)) for n sufficiently large.
Denoting by u0,n and uε0,n the velocities associated to the vorticity ω0,n, we observe that

u0,n = ρ1/n ∗ u0 so u0,n → u0 in L2. Suppose that ε ≤ min(ε0, δ). Applying the previous
part of the proof to ω0,n − ω0,m we get that

‖uε0,n − uε0,m‖L2(Πε) ≤ ‖ũε0,n − u0,n − ũε0,m + u0,m‖L2(R3) + ‖u0,n − u0,m‖L2(R3)

≤ Kε
3
2 ‖ω0,n − ω0,m‖L1(R3) + ‖u0,n − u0,m‖L2(R3) → 0 as m,n→∞.

Therefore, uε0,n is a Cauchy sequence in Hε so it converges in Hε. Moreover, curl lim
n→∞

uε0,n =

lim
n→∞

curluε0,n = lim
n→∞

ω0,n = ω0 in the sense of distributions. By uniqueness of u0
ε, we

conclude that uε0,n → uε0 in Hε. We apply now the previous part of the proof to ω0,n to

deduce that ‖ũε0,n − u0,n‖L2(R3) ≤ Kε
3
2 ‖ω0,n‖L1 . Letting n → ∞ we finally deduce that

‖ũε0 − u0‖L2(R3) ≤ Kε
3
2 ‖ω0‖L1 . �

Using Proposition 9 in place of Proposition 6 gives the convergence in Theorem 1 for
initial vorticity in L1(R3) ∩ Ḣ−1(R3) compactly supported in R3 \ {0}.

Acknowledgments: D.I. would like to thank Lorenzo Brandolese, Grzegorz Karch, Milton Lopes Filho
and Helena Nussenzveig Lopes for several interesting discussions on the subject of this paper. Part of this
work was done during the Special Semester in Fluid Mechanics at the Centre Interfacultaire Bernoulli,
EPFL; D.I. wishes to express his gratitude for the hospitality received. J.P.K. was supported in part by
NSF grant DMS-0705586 during the period of this work.

10



References

[1] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, vol-
ume 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1994. 5
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