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JAMES P. KELLIHER

Abstract. Let u be a solution to the Navier-Stokes equations in the
unit disk with no-slip boundary conditions and viscosity ν > 0, and let u
be a smooth solution to the Euler equations. We say that the vanishing
viscosity limit holds on [0, T ] if u converges to u in L∞([0, T ];L2). We
show that a necessary and sufficient condition for the vanishing viscosity
limit to hold is the vanishing with the viscosity of the time-space average
of the energy of u in a boundary layer of width proportional to ν due to
the modes (eigenfunctions of the Stokes operator) whose frequencies in
the radial or the tangential direction lie between L(ν) and M(ν). Here,
L(ν) must be of order less than 1/ν and M(ν) must be of order greater
than 1/ν.

Active links added 12 Jan 2011; sign error in (4.3) corrected 18 Sept 2014

1. Introduction

In the presence of a boundary, the question of whether solutions of the
Navier-Stokes equations with no-slip boundary conditions converge to a so-
lution of the Euler equations as the viscosity vanishes—the so-called van-
ishing viscosity limit—is very difficult. The convergence of most interest is
of the velocities, uniformly over finite time and L2 in space. Except in the
very special case of radially symmetric initial vorticity in a disk, where con-
vergence is known to hold (see Theorem 6.1), the question of convergence
or the lack thereof is unresolved for nonzero initial velocity in a bounded
domain. (For a half-space with analytic initial data, the vanishing viscosity
limit is shown to hold in [14].)

Tosio Kato in [6] gave necessary and sufficient conditions on the velocity
u of the Navier-Stokes equations for the vanishing viscosity limit to hold.
The most interesting of these is that

ν

∫ T

0
‖∇u(t)‖2L2(Γcν) dt→ 0 as ν → 0,

where Γcν is the boundary strip of width cν with c > 0 fixed but arbitrary.
Making only a small change to Kato’s proof, it is possible to replace ∇u
with the vorticity ω = ω(u) = ∂1u

2 − ∂2u
1, giving Equation (2.3) (see [7]).

(The necessity of Equation (2.3) is immediate from Kato’s condition, but
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because we do not have a boundary condition on the inner boundary of Γcν
the sufficiency of the condition requires proof.)

Other necessary and sufficient conditions were established by Teman and
Wang in [16] and [17]. These are the conditions in Equation (2.5) and Equa-
tion (2.6) of Theorem 2.3, and involve only the derivatives in the directions
tangential to the boundary of either the tangential or normal components of
the velocity, though for a slightly larger boundary layer. Finally, a condition
that requires that the average energy density in the boundary layer of the
same width as Kato’s vanish with viscosity, Equation (2.7), is proven in [7].
All these conditions (which apply to a bounded domain in dimensions 2 and
higher) are summarized in Theorem 2.3.

We consider the issue of vanishing viscosity in the (unit) disk and look for
weaker necessary and sufficient conditions for the limit to hold. The reason
for working in the disk is that the simple geometry allows us to make quite
explicit calculations using the eigenfunctions of the Stokes operator, which
are composed of Bessel functions of the first kind. In a sense, this connects
the energy method with the geometry. What we find is that we need only
consider certain ranges of frequencies (or equivalently, length scales) in the
various conditions: this is Theorem 2.4. Although Theorem 2.4 is specific to
the disk, there is no hydrodynamical reason to expect the disk to be special
as regards the vanishing viscosity limit, so one would expect a version of
the theorem to apply to all sufficiently smooth bounded domains in R2, and
probably in higher dimensions as well. We discuss this issue more fully in
Remark (2.1).

In [3], Cheng and Wang obtain a result regarding vanishing viscosity in
two dimensions analogous to Equation (2.15) and Equation (2.16). Their
result applies to an approximating sequence to a solution of the Navier-
Stokes equations as the viscosity vanishes, whereas our result applies to
the necessary and sufficient condition for the vanishing viscosity limit to
hold. While for the other conditions in Theorem 2.4 we use very different
techniques than those in [3], our proof of the necessity and sufficiency of
Equation (2.15) and Equation (2.16) uses the key inequality in their paper.
Section 7 contains a brief comparison between the two results.

In [13], the authors consider the Stokes problem (linearized Navier-Stokes
equations) external to a disk with time-varying Dirichlet boundary condi-
tions, showing that the vanishing viscosity limit holds. In fact, they do
much more than this, giving an explicit construction of the solution to the
Stokes problem and showing that it can be decomposed into the sum of
the solution to the linearized Euler equations, the solution to the associated
Prantdl equations, and a small correction term. The symmetry of the ge-
ometry allows the authors of [13] to construct the solutions in an explicit
form (involving Bessel functions of the first and second kind). The nonlinear
term in the Navier-Stokes equations makes an explicit solution impossible
for us; however, we can expand the solution in terms of eigenfunctions of
the Stokes operator for which we have an explicit form (in terms of Bessel



ON VANISHING VISCOSITY IN A DISK 3

functions of the first kind) which we can use to obtain finer estimates on the
behavior of the Navier-Stokes equations in the boundary layer than would
be possible for a general domain.

A word on notation: We use C to represent an unspecified constant that
always has the same value on both sides of an equality but may have a
different value on each side of an inequality.

2. Definitions and Kato-type conditions

We now give definitions of the Euler and Navier-Stokes equations, and state
the results from [6], [7], [16], and [17] that we will need.

In Section 4 we will specialize to the unit disk, but for now we assume
only that Ω is a bounded domain in R2 with C2-boundary Γ, and we let n
be the outward normal vector to Γ.

A classical solution (u, p) to the Euler equations satisfies, for fixed T > 0,

(E)

{
∂tu+ u · ∇u+∇p = f and div u = 0 on [0, T ]× Ω,
u · n = 0 on [0, T ]× Γ, and u = u0 on {0} × Ω,

where div u0 = 0. These equations describe the motion of an incompressible
fluid of constant density and zero viscosity.

We assume that u0 is in Ck+ε(Ω), ε > 0, and that f is in Ck([0, t]×Ω) for
all t > 0, where k = 1 or 2. Then as shown in [8] (Theorem 1 and the remarks
on p. 508-509), there exists a unique solution u in C1

loc([0,∞);Ck+ε(Ω)).
The Navier-Stokes equations describe the motion of an incompressible

fluid of constant density and positive viscosity ν. A classical solution to the
Navier-Stokes equations can be defined in analogy with (E) by{

∂tu+ u · ∇u+∇p = ν∆u+ f and div u = 0 on [0, T ]× Ω,
u = 0 on [0, T ]× Γ, and u = u0

ν on {0} × Ω.

We will work, however, with weak solutions to the Navier-Stokes equations.

Definition 2.1 (Weak Navier-Stokes Solutions). Given T > 0, viscosity
ν > 0, and initial velocity u0

ν inH, u in L2([0, T ];V ) with ∂tu in L2([0, T ];V ′)
is a weak solution to the Navier-Stokes equations if u(0) = u0

ν and

(NS)

∫
Ω
∂tu · v +

∫
Ω

(u · ∇u) · v + ν

∫
Ω
∇u · ∇v =

∫
Ω
fv

for all v in V . (The spaces H and V are defined in Section 3.)

Definition 2.2. We say that the vanishing viscosity limit holds if

u→ u in L∞([0, T ];L2(Ω)) as ν → 0. (2.1)

Theorem 2.3 applies to a bounded domain with C2-boundary in Rd, d ≥ 2.
The conditions in Equation (2.2) and Equation (2.4) are due to Kato ([6]),
the conditions in Equation (2.3) and Equation (2.7) appear in [7], and the
conditions in Equation (2.5) and Equation (2.6) are due to Temam and
Wang ([16], [17]).
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Theorem 2.3. Let T > 0 and assume that u0
ν is in H and that u0 is in

Ck+ε(Ω), ε > 0 with k = 1 or 2. In addition, assume that

(a) u0
ν → u0 in L2(Ω) as ν → 0,

(b) f is in L1([0, T ];L2(Ω)),
(c) ‖f − f‖L1([0,T ];L2(Ω)) → 0 as ν → 0.

Let δ : [0,∞)→ [0,∞) be such that δ(ν) converges to 0 while δ(ν)/ν diverges
to ∞ as ν → 0. Then the the vanishing viscosity limit (Definition 2.2) holds
if and only if any of the following conditions holds:

ν

∫ T

0
‖ω(s)‖2L2(Ω) ds→ 0 as ν → 0, (2.2)

ν

∫ T

0
‖ω(s)‖2L2(Γcν) ds→ 0 as ν → 0, (2.3)

ν

∫ T

0
‖∇u(s)‖2L2(Γcν) ds→ 0 as ν → 0, (2.4)

ν

∫ T

0
‖∇τ uτ (s)‖2L2(Γδ(ν))

ds→ 0 as ν → 0, (2.5)

ν

∫ T

0
‖∇τ un(s)‖2L2(Γδ(ν))

ds→ 0 as ν → 0. (2.6)

Here ∇τ represents the derivatives in the boundary layer in the directions
tangential to the boundary, uτ is the projection of u in the direction tangen-
tial to the boundary, and un is the projection of u in the direction normal
to the boundary.

When k = 2, these conditions are also equivalent to

1

ν

∫ T

0
‖u(s)‖2L2(Γcν) ds→ 0 as ν → 0. (2.7)

The quantity in Equation (2.7) is proportional to the space-time average
of the energy in the boundary layer.

We show (see Remark (5.3)) that in Equation (2.2), Equation (2.4), and
Equation (2.7), contributions from the high frequency modes can be ignored.
This result applies to an arbitrary bounded domain in Rd, d ≥ 2, with a
C2-boundary.

Our main result is Theorem 2.4, which is an improvement of Theorem 2.3
in the special case of the unit disk. In what follows we decompose the
solution u in the form

u(t, x) =
∞∑

m=−∞

∞∑
j=1

gmj(t)umj(x),
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where (umj) are the eigenfunctions of the Stokes operator described in Sec-
tion 4, and let

uN (t, x) =

N∑
m=−N

N∑
j=1

gmj(t)umj(x) (2.8)

and

ũN (t, x) =
N∑

m=−N

∞∑
j=1

gmj(t)umj(x) (2.9)

with vorticities ωN (t, x) = ω(uN (t, x)) and ω̃N (t, x) = ω(ũN (t, x)).
As we will see in Section 4, the frequency of umk in the tangential direction

is m and the radial frequency of umk is, in effect, k. Thus, uN includes the
contributions from all modes with both frequencies less than N , while ũN

includes the contributions from all modes with tangential frequency less than
N .

Theorem 2.4. Assume that Ω is the unit disk and make the same assump-
tions on the initial data, forcing, and the function δ as in Theorem 2.3. Let
L and M be any functions mapping (0,∞) to Z+ with

νL(ν)→ 0, νM(ν)→∞ as ν → 0. (2.10)

Then the the vanishing viscosity limit (Definition 2.2) holds if and only
if any of the following conditions holds:

ν

∫ T

0
‖ω(s)M(ν) − ωL(ν)(s)‖2L2(Ω) ds→ 0 as ν → 0, (2.11)

ν

∫ T

0
‖ω(s)− ω̃L(ν)(s)‖2L2(Ω) ds→ 0 as ν → 0, (2.12)

ν

∫ T

0
‖ω(s)− ωL(ν)(s)‖2L2(Γcν) ds→ 0 as ν → 0, (2.13)

ν

∫ T

0
‖∇uM(ν)(s)−∇uL(ν)(s)‖2L2(Γcν) ds→ 0 as ν → 0, (2.14)

ν

∫ T

0
‖∇τ uτ (s)−∇τ ũL(δ)

τ (s)‖2L2(Γδ(ν))
ds→ 0 as ν → 0, (2.15)

ν

∫ T

0
‖∇τ un(s)−∇τ ũL(δ)

n (s)‖2L2(Γδ(ν))
ds→ 0 as ν → 0. (2.16)

When k = 2, these conditions are also equivalent to

1

ν

∫ T

0
‖uM(ν)(s)− uL(ν)(s)‖2L2(Γcν) ds→ 0 as ν → 0. (2.17)
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Observe, for instance, that uM(ν)−uL(ν) in Equation (2.17) represents the
contribution from all modes whose frequencies in the radial or the tangential
direction lie between L(ν) and M(ν).

Remark 2.1. By Lemma A.3 and Equation (4.7), uN is essentially the
contributions of all the modes with eigenvalues less than CN2. In fact,
suppose that we replace the definition of uN in Equation (2.8) with

uN (t, x) =
∑

{j:λj<N2}

gj(t)uj(x), (2.18)

the single subscripts in Equation (2.18) referring to the eigenfunctions and
eigenvalues of the Stokes operator on a general domain in Rd, d ≥ 2, defined
in Section 3. It follows easily from Theorem 2.4 that the conditions in Equa-
tion (2.11), Equation (2.13), Equation (2.14), and Equation (2.17) continue
to be equivalent to the vanishing viscosity limit. It is in this form that we
would expect Theorem 2.4 to generalize to fairly arbitrary smooth domains
in R2 and—with N2 in Equation (2.18) replaced by N raised to some other
power—to domains in Rd, d ≥ 3. The obstacle to establishing this gen-
eralization is the difficulty of obtaining the equivalents of Lemma A.8 and
Lemma A.9—along with an approximate form of Lemma A.10—for high
frequencies.

3. The Stokes operator in a bounded domain

Before specializing to the case of a disk, we discuss first some general prop-
erties related to the Stokes operator.

We define the function spaces H and V as follows (see Section I.1.4 of
[15] for more details). First let

V =
{
u ∈ (D(Ω))2 : div u = 0

}
be the space of vector-valued divergence-free distributions on Ω. We let H
be the closure of V in L2(Ω) and V be the closure of V in H1

0 (Ω). Alternate
characterizations of H and V are

H =
{
u ∈ (L2(Ω))2 : div u = 0 in Ω, u · n = 0 on Γ

}
,

V =
{
u ∈ (L2(Ω))2 : div u = 0 in Ω, u = 0 on Γ

}
,

the boundary conditions applying in terms of a trace.
By 〈·, ·〉 we mean the inner product in L2(Ω): 〈f, g〉 =

∫
Ω fg. (It will be

convenient to use complex-valued eigenfunctions, so the complex conjugate
is required in this definition. Our velocity fields and vorticities, however,
are real, so conjugation will not always appear in our calculations.) Then
〈u, v〉H = 〈u, v〉 and 〈u, v〉V = 〈∇u,∇v〉.

Although V is dense in H it is not dense in H∩H1(Ω) (with the H1-norm).
This is because if v is a vector in H ∩ H1(Ω) that does not vanish on the

boundary it cannot be approximated in the H1/2(Γ)-norm by a sequence of

vectors in V. By the continuity of the trace operator from H1(Ω) to H1/2(Γ),
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then, v cannot be approximated in the H1(Ω)-norm by any sequence of
vectors in V.

Informally, this is because each element of V is zero on Γ and so the limit
of a sequence of elements in V cannot become nonzero on the boundary
without the gradient near the boundary becoming indefinitely large. More
formally, we have Lemma 3.1.

Lemma 3.1. The space V is not dense in H ∩H1(Ω).

Proof. Let u be any element of V . Then its vorticity ω is in L2(Ω) ⊆ L1(Ω)
and must satisfy∫

Ω
ω =

∫
Ω

∆ψ =

∫
Ω

div∇ψ =

∫
Γ
∇ψ · n = −

∫
Γ
u⊥ · n = 0, (3.1)

where ψ is the stream function: u = ∇⊥ψ = (−∂2ψ, ∂1ψ) and ω = ∆ψ.
Because only u·n = 0 for u in H, the same cannot be said for u in H∩H1(Ω):
Let u in H ∩H1(Ω) have vorticity ω with nonzero total mass. Then for any
sequence {vj} in V,

‖ω − ω(vj)‖L2(Ω) ≥ C ‖ω − ω(vj)‖L1(Ω) ≥ C
∣∣∣∣∫

Ω
(ω − ω(vj))

∣∣∣∣
= C

∣∣∣∣∫
Ω
ω

∣∣∣∣ > 0,

so V cannot be dense in H ∩H1(Ω). �

We now briefly describe the properties we will need of the Stokes operator
A on Ω, referring the reader, for instance, to Section I.2 of [15] for more
details. One way to define A is that given u in V ∩H2(Ω), Au in H satisfies
Au = −∆u + ∇p for some harmonic scalar field p. We have D(A) = V ∩
H2(Ω) with A mapping D(A) onto H, and there exists a set of eigenfunctions
{uj} for A, complete in H and in V , with corresponding eigenvalues {λj},
0 < λ1 ≤ λ2 ≤ · · · , and each uj is in H2(Ω) since we are assuming that Γ is
C2. (When we specialize to the disk, the eigenfunctions will be in C∞(Ω).)
An eigenfunction uj of A satisfies Auj = λjuj or, equivalently,{

∆uj + λjuj = ∇pj , ∆pj = 0, div uj = 0 on Ω,
uj = 0 on Γ.

(3.2)

The eigenfunctions are orthogonal in both H and V . The usual convention
is to make the eigenvectors orthonormal in H, but we will find it more
convenient to normalize them to be orthonormal in V so that ‖∇uj‖2L2(Ω) =

‖ωj‖2L2(Ω) = 1 and

‖uj‖2L2(Ω) = 〈uj , uj〉 =
1

λj
〈uj , Auj〉 =

1

λj
〈∇uj ,∇uj〉 =

1

λj
. (3.3)

Moreover, we have Lemma 3.2.
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Lemma 3.2. If u is in V with ω = ω(u) then

u =

∞∑
j=1

〈ω, ωj〉uj , (3.4)

with the sum converging in both V and H.

Proof. Let u be in V and let un =
∑n

j=1(〈u, uj〉H / 〈uj , uj〉H)uj . Then un

converges in H to u because {uj} is complete in H. But,

〈u, uj〉H
〈uj , uj〉H

=
λj 〈u, uj〉
λj 〈uj , uj〉

=
〈u,Auj〉
〈uj , Auj〉

=
〈∇u,∇uj〉
〈∇uj ,∇uj〉

= 〈∇u,∇uj〉 = 〈ω, ωj〉 ,
so the expansion of u in V in terms of the eigenfunctions of A is the same as
the expansion of u in H (and the coefficients are as given in Equation (3.4)),
meaning that un converges in V to u as well. �

In the proof of Lemma 3.2 we used the identity 〈∇u,∇v〉 = 〈ω(u), ω(v)〉
for all u, v in V , which follows by integrating by parts. Were we to use
the definition of ω(u) as the antisymmetric matrix (∇u− (∇u)T )/2, which
is usual in higher dimensions, this would have introduced a factor of 2 into
Equation (3.4).

Corollary 3.3. If u is in V then

∇u =

∞∑
j=1

〈ω, ωj〉∇uj and ω =

∞∑
j=1

〈ω, ωj〉ωj ,

with the sums converging in L2(Ω).

Since the solution u to (NS) lies in V for all positive time, we can write

ω(t) =

∞∑
j=1

gj(t)ωj , u(t) =

∞∑
j=1

gj(t)uj ,

‖ω(t)‖2L2(Ω) =
∞∑
j=1

|gj(t)|2, ‖u(t)‖2L2(Ω) =
∞∑
j=1

|gj(t)|2

λj
,

(3.5)

where gj are functions of time. The expansion of u will converge for all t ≥ 0
and that of ω for t > 0—and also for t = 0 if and only if the initial velocity
is in V ; in general, we only assume that it is H. Because u(t)→ u0

ν in L2(Ω)
as t→ 0, each gj(t) is continuous at t = 0, though this does not mean that
ω(t) is continuous in L2(Ω) at t = 0. Also, note that gj(t) is complex-valued
since the eigenvectors are complex-valued, but u(t) and ω(t) are real-valued.
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4. Eigenfunctions of the Stokes operator in the unit disk

We now fix Ω to be the unit disk in R2 centered at the origin.
In [10], a complete set of eigenfunctions for the annulus is derived in terms

of Bessel functions of the first and second kind, Jn and Yn. By ignoring the
terms involving Yn and modifying somewhat the calculation of the eigenval-
ues, one can easily obtain the eigenfunctions for a disk. We will, however,
derive the vorticity of the eigenfunctions directly, as this is quite easy. In
determining the eigenvalues and the velocity of the eigenfunctions, which is
more difficult, we will rely on the results in [10].

Taking the curl of Equation (3.2) (with u = uj), we see that the vorticity
ω = ω(u) satisfies {

∆ω + λω = 0 on Ω,
u = 0 on Γ.

(4.1)

That is, ω is an eigenfunction of the negative Laplacian, but with boundary
conditions on the velocity u.

Ignoring for the moment the issue of boundary conditions, we use sepa-
ration of variables to look for a complete set of solutions to ∆ω + λω = 0
on Ω. Writing

ω(r, θ) = fn(r)einθ

in polar coordinates, n = 0, 1, 2, . . . , and using

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

gives (
d2fn
dr2

+
1

r

dfn
dr

+

(
λ− n2

r2

)
fn

)
einθ = 0. (4.2)

Since Jn, the Bessel function of the first kind of order n, is a solution of

d2Jn(s)

ds2
+

1

s

dJn(s)

ds
+

(
1− n2

s2

)
Jn(s) = 0, (4.3)

making the change of variables s = λ1/2r, we see that Equation (4.2) holds

with fn(r) = Jn(λ1/2r). Thus, the eigenfunctions have vorticity of the form

Jn(λ1/2r)einθ and it remains to determine the eigenvalues that satisfy u = 0
on the boundary.

The easiest way to do this is to use the expressions in [10]. For n = 0, we
drop the term involving Y1 in Equation (39) p. 406 of [10], giving

u0k(r, θ) = λ
−1/2
0k J1(λ

1/2
0k r)êθ,

where λ
1/2
0k , k = 1, 2, . . . , are the eigenvalues described below. For n ≥ 1,

dropping the terms involving the Bessel functions of the second kind from
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the last equation on p. (406) of [10], we have

unk(r, θ) =

(
in

λnkr
Jn(λ

1/2
nk r) +

Dnkin
2

λ2
nk

rn−1

)
einθêr

+

(
1

2λ
1/2
nk

(
Jn+1(λ

1/2
nk r)− Jn−1(λ

1/2
nk r)

)
− Dnkn

2

λ2
nk

rn−1

)
einθêθ,

the eigenvalues λnk, k = 1, 2, . . . , being described below and the Dnk being
undetermined constants. In both cases we scaled the eigenfunctions differ-
ently than in [10]. A direct calculation shows that

ωnk(r, θ) =
def
ω(unk)(r, θ) = CnkJn(λ

1/2
nk r)e

inθ,

where Cnk is a normalization constant. A direct calculation also shows that
div unk = 0.

For n = 0, λ
1/2
0k = j1k, where

jnk is the k-th positive root of Jn+1(x) = 0, (4.4)

as this gives u0k(1, θ) = 0. Setting unk(1, θ) = 0 we obtain two equations in
the two unknowns λnk and Dnk. We eliminate Dnk from the two equations to
obtain a single equation for λnk. Then using the identity in Equation (A.2)
we obtain the equation

λ
1/2
nk J

′
n(λ

1/2
nk )− nJn(λ

1/2
nk ) = 0.

Thus, λ
1/2
nk is the k-th positive root of

xJ ′n(x)− nJn(x) = −xJn+1(x) = 0, (4.5)

k = 1, 2, . . . , where we used Equation (A.4). That is, λ
1/2
nk = jn+1,k. It

follows then that

Dnk = −
λnkJn(λ

1/2
nk )

n
= −

j2
n+1,kJn(jn+1,k)

n
. (4.6)

Since we are normalizing the eigenfunctions so that 〈ωmj , ωnk〉 = δmnδjk,
we must choose Cnk so that

C−2
nk = ‖Jn(jn+1,kr)e

inθ‖2L2(Ω) = 2π

∫ 1

0
rJn(jn+1,kr)

2 dr

= 2π
r2

2

[
Jn(jn+1,kr)

2 − Jn−1(jn+1,kr)Jn+1(jn+1,kr)
]1
0

= πJn(jn+1,k)
2.

Here we used Equation (A.9).
Because J−n(x) = (−1)nJn(x) while einθ is linearly independent of e−inθ

for n = 1, 2, . . . , we must also include the eigenfunctions for negative inte-
gers n. This gives simple eigenvalues when n = 0 and double eigenvalues
corresponding to the pairs (n, k) and (−n, k) for n ≥ 1.
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To summarize, the vorticity of the eigenfunctions is given by

ωnk(r, θ) = CnkJn(λ
1/2
nk r)e

inθ,

with eigenvalue

λnk = j2
|n|+1,k, (4.7)

and where

Cnk =
1

π1/2|Jn(j|n|+1,k)|
,

for n ∈ Z and k ∈ N := {1, 2, . . .}. With our choice of normalization of the
eigenfunctions (Equation (3.3)), the velocity becomes

unk(r, θ) =
Jn(αr)− Jn(α)rn

π1/2α2 |Jn(α)| r
ineinθêr

+
α (Jn+1(αr)− Jn−1(αr)) + 2nJn(α)rn−1

2π1/2α2 |Jn(α)|
einθêθ,

(4.8)

where α = jn+1,k.

5. Proof of Theorem 2.4

From the fundamental energy equality for (NS) we have for all t in [0, T ],

ν

∫ t

0
‖∇u‖2L2(Ω) = ν

∫ t

0
‖ω‖2L2(Ω) ≤

1

2
‖u0

ν‖2H + 4 ‖f‖2L1([0,T ];L2(Ω)) .

It follows from Equation (3.5) and assumptions (a) and (b) of Theorem 2.3
that for all sufficiently small ν > 0,

ν

∫ t

0
‖ω‖2L2(Ω) = ν

∫ t

0

∞∑
m=−∞

∞∑
j=1

|gmj(s)|2 ds ≤ C. (5.1)

Remark 5.1. In Equation (5.1) and most of what follows we use the dou-
bly indexed expressions for the eigenfunctions and eigenvalues of Section 4,
though we will occasionally find it convenient to refer to the singly indexed
version of Section 3 instead.

Theorem 5.1. With the assumptions of Theorem 2.4,

lim
ν→0

ν

∫ t

0
‖ωL(ν)‖2L2(Γcν) = 0. (5.2)

Proof. Using Lemma A.10,

ν

∫ t

0
‖ωL(ν)‖2L2(Γcν)

= ν

∫ t

0

L(ν)∑
m=−L(ν)

L(ν)∑
j=1

L(ν)∑
n=−L(ν)

L(ν)∑
k=1

gmj(s)gnk(s) ds 〈ωmj , ωnk〉L2(Γcν)
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= ν

∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

L(ν)∑
k=1

gnj(s)gnk(s) ds 〈ωnj , ωnk〉L2(Γcν)

≤ ν
∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

L(ν)∑
k=1

|gnj(s)| |gnk(s)| ds ‖ωnj‖L2(Γcν) ‖ωnk‖L2(Γcν)

= ν

∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

|gnj(s)| ‖ωnj‖L2(Γcν)

2

ds

≤ ν
∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

|gnj(s)|2
L(ν)∑
j=1

‖ωnj‖2L2(Γcν) ds,

where we used the Cauchy-Schwarz inequality in the last step.
By Lemma A.3,

1/L(ν) < C/(L(ν) + 2) ≤ C/jL(ν)+1,1 = Cλ
−1/2
L(ν),1.

Since νL(ν)→ 0 as ν → 0, for all sufficiently small ν we have cν < C/L(ν) ≤
2πλ

−1/2
L(ν),1 ≤ 2πλ

−1/2
j,1 for all j ≤ L(ν). So by Lemma A.8,

L(ν)∑
j=1

‖ωnj‖2L2(Γcν) ≤ CνL(ν). (5.3)

Then using Equation (5.1),

ν

∫ t

0
‖ωL(ν)‖2L2(Γcν) ≤ CνL(ν)

ν ∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

|gnj(s)|2 ds

 ≤ CνL(ν),

which vanishes with ν by the condition in Equation (2.10), and Equa-
tion (5.2) therefore holds. �

Remark 5.2. We could try to improve Theorem 5.1 by using ω(ũN ) of
Equation (2.9) in place of ωN , thereby incorporating all of the frequencies
in the radial direction for a given angular frequency. Unfortunately, the
best bound that one can achieve on ‖ωnj‖2L2(Γδ)

for j > n is the extension

of Lemma A.8 described in Remark (A.1), and this is very much insufficient
to bound the terms with j > n.

Another possible approach is to try to incorporate the destructive interfer-
ence that occurs in the inner product of two eigenfunctions in the boundary
layer that the use of Hölder’s inequality in our proof of Theorem 5.1 ignored.
The best bound one can hope to obtain is that

| 〈ωnj , ωnk〉L2(Γδ)
| ≤ C

|k − j|
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for all δ in [0, 1] and without restriction on n, j, or k except that j 6= k.
We could then follow the obvious approach of decomposing the equivalent of
the first sum in the proof of Theorem 5.1 into four pieces: a diagonal term
where m = n and j = k and three terms containing low frequencies in j and
k, low frequencies in j and high frequencies in k, and high frequencies in
both j and k. If we do this, however, we will find that the factor of 1/ |k − j|
is just insufficient to obtain convergence.

Corollary 5.2. The conditions in Equation (2.1) and Equation (2.13) of
Theorem 2.4 are equivalent.

Proof. That Equation (2.1) implies Equation (2.13) follows directly from

Theorem 2.3. So assume that Equation (2.13) holds. Because ‖A+B‖2 ≤
2 ‖A‖2 + 2 ‖B‖2 for any norm,

ν

∫ t

0
‖ω‖2L2(Γcν) ≤ 2ν

∫ t

0
‖ωL(ν)‖2L2(Γcν) + 2ν

∫ t

0
‖ω − ωL(ν)‖2L2(Γcν).

This vanishes with ν by Theorem 5.1 and Equation (2.13), showing that
Equation (2.3) holds and hence by Theorem 2.3 that Equation (2.1) holds.

�

Theorem 5.3. With the assumptions of Theorem 2.4,

lim
ν→0

1

ν

∫ t

0
‖u(s)− uM(ν)(s)‖2L2(Γcν) ds = 0 (5.4)

and

lim
ν→0

1

ν

∫ t

0
‖uL(ν)(s)‖2L2(Γcν) ds = 0. (5.5)

Proof. We can write u(t)− uM(ν)(t) = A(t) +B(t), where

A(t) =

M(ν)∑
m=−M(ν)

∞∑
j=M(ν)+1

gmj(t)umj(x), B(t) =
∑

|m|>M(ν)

∞∑
j=1

gmj(t)umj(x)

and

‖u(t)− uM(ν)(t)‖2L2(Γcν) ≤ 2 ‖A(t)‖2L2(Γcν) + 2 ‖B(t)‖2L2(Γcν) .

Now,

‖A(t)‖2L2(Γcν) ≤ ‖A(t)‖2L2(Ω) =

M(ν)∑
m=−M(ν)

∞∑
j=M(ν)+1

|gmj(t)|2 ‖umj‖2L2(Ω)

=

M(ν)∑
m=−M(ν)

∞∑
j=M(ν)+1

|gmj(t)|2

λmj
≤ 1

λ1M(ν)

M(ν)∑
m=−M(ν)

∞∑
j=M(ν)+1

|gmj(t)|2

≤ 1

λ1M(ν)
‖ω(t)− ωM(ν)(t)‖2L2(Ω),
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where we used Equation (3.3). Similarly,

‖B(t)‖2L2(Γcν) ≤ ‖B(t)‖2L2(Ω) ≤
1

λM(ν)1
‖ω(t)− ωM(ν)(t)‖2L2(Ω).

By Equation (4.7) and Lemma A.3, λM(ν)1 and λ1M(ν) are both bounded

below (and above) by CM(ν)2, so

‖u(t)− uM(ν)(t)‖2L2(Γcν) ≤
C

M(ν)2
‖ω(t)− ωM(ν)(t)‖2L2(Ω).

Then,

1

ν

∫ t

0
‖u(s)− uM(ν)(s)‖2L2(Γcν) ds

≤ C

νM(ν)2

∫ t

0
‖ω(s)− ωM(ν)(s)‖2L2(Ω) ds

≤ C

νM(ν)2

∫ t

0
‖ω(s)‖2L2(Ω) ds

=
C

ν2M(ν)2
ν

∫ t

0
‖ω(s)‖2L2(Ω) ds ≤

C

ν2M(ν)2
,

where in the last inequality we used Equation (5.1). This vanishes with ν
by the assumption on M in Equation (2.10) giving Equation (5.4).

Arguing as in the proof of Theorem 5.1,

1

ν

∫ t

0
‖uL(s)‖2L2(Γcν) ds ≤

1

ν

∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

|gnj(s)|2
L(ν)∑
j=1

‖unj‖2L2(Γcν) ds

≤ CL(ν)ν3

ν

∫ t

0

L(ν)∑
n=−L(ν)

L(ν)∑
j=1

|gnj(s)|2 ds ≤ CL(ν)ν

for all sufficiently small ν. In the second inequality we used Lemma A.9 and
in the last inequality we used Equation (5.1). This integral also vanishes
with ν by the assumption on L in Equation (2.10) giving Equation (5.5). �

Corollary 5.4. The conditions in Equation (2.1), Equation (2.11), Equa-
tion (2.14), and Equation (2.17) of Theorem 2.4 are equivalent.

Proof. For sufficiently large ν, L(ν) ≤M(ν), and we have

‖u(s)‖2L2(Γcν) ≤ 3‖uM(ν)(s)− uL(ν)(s)‖2L2(Γcν)

+ 3‖uL(ν)(s)‖2L2(Γcν) + 3‖u(s)− uM(ν)(s)‖2L2(Γcν).

It follows from Theorem 5.3 that

lim sup
ν→0

1

ν

∫ t

0
‖u(s)‖2L2(Γcν) ≤ 3 lim sup

ν→0

1

ν

∫ t

0
‖uM(ν) − uL(ν)‖2L2(Γcν).

In particular, the first limsup is zero if and only if the second limsup is
zero (the reverse inequality without the factor of 3 being trivial). Then
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Equation (2.7) of Theorem 2.3 shows that Equation (2.17) holds if and only if
Equation (2.1) holds. The sufficiency of Equation (2.11) and Equation (2.14)
for Equation (2.1) to hold then follows from Poincaré’s inequality in the form

‖uM(ν)(s)− uL(ν)(s)‖2L2(Γcν) ≤ Cν
2‖∇uM(ν)(s)−∇uL(ν)(s)‖2L2(Γcν)

≤ Cν2‖∇uM(ν)(s)−∇uL(ν)(s)‖2L2(Ω)

= Cν2‖ωM(ν)(s)− ωL(ν)(s)‖2L2(Ω).

The necessity of Equation (2.11) and Equation (2.14) follow immediately
from Theorem 2.3. �

Remark 5.3. If we replace the definition of uN in Equation (2.8) with
that in Equation (2.18), then it is clear that Equation (5.4) continues to
hold in any bounded domain in R2 with a C2-boundary. It follows as in
Corollary 5.4 that the vanishing viscosity limit of Definition 2.2 holds if
and only if the condition in Equation (2.11), Equation (2.14), or (when

k = 2) Equation (2.17) holds with the term involving uL(ν) in each of these
conditions removed. A similar result would hold in any dimension for an
arbitrary bounded domain with a C2-boundary.

Theorem 5.5. With the assumptions of Theorem 2.4,

ν

∫ T

0
‖∇τ ũL(δ)

τ (s)‖2L2(Γδ(ν))
ds→ 0 as ν → 0 (5.6)

and

ν

∫ T

0
‖∇τ ũL(δ)

n (s)‖2L2(Γδ(ν))
ds→ 0 as ν → 0. (5.7)

Proof. In the unit disk, uτ = uθ and ∇τ = ∂σ, where σ is arc length along
the circle of radius r, in which r is held constant. Thus,

∇τ uτ =
∂uθ

∂σ
=

1

r

∂uθ

∂θ
and for any positive integer N it follows from Poincaré’s inequality that

‖∇τ ũNτ (s)‖2L2(Γδ)
=

∥∥∥∥1

r

∂

∂θ
(ũN (s))θ

∥∥∥∥2

L2(Γδ)

≤ 1

(1− δ)2

∥∥∥∥ ∂∂θ (ũN (s))θ
∥∥∥∥2

L2(Γδ)

≤ Cδ2

(1− δ)2

∥∥∥∥ ∂2

∂r∂θ
(ũN (s))θ

∥∥∥∥2

L2(Γδ)

≤ Cδ2

(1− δ)2

∥∥∥∥ ∂2

∂r∂θ
(ũN (s))θ

∥∥∥∥2

L2(Ω)

.

But,

∂2

∂r∂θ
(ũN (s))θ =

N∑
m=−N

∞∑
j=1

gmj(s)
∂2

∂r∂θ
umj(r, θ)

= i
N∑

m=−N
m
∞∑
j=1

gmj(s)
∂

∂r
umj(r, θ),
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the last equality following from the simple dependence of umj on θ in Equa-
tion (4.8). Thus,∥∥∥∥ ∂2

∂r∂θ
(ũN (s))θ

∥∥∥∥2

L2(Ω)

≤

∥∥∥∥∥∥i
N∑

m=−N
m

∞∑
j=1

gmj(s)∇umj(r, θ)

∥∥∥∥∥∥
2

L2(Ω)

=
N∑

m=−N
m2

∞∑
j=1

|gmj(s)|2 ≤ N2
N∑

m=−N

∞∑
j=1

|gmj(s)|2 ≤ N2‖∇u‖2L2(Ω),

where we used the orthonormality of the eigenfunctions in V .
Combining these two inequalities gives

‖∇τ ũNτ (s)‖2L2(Γδ)
≤ CN2δ2

(1− δ)2
‖∇u‖2L2(Ω).

Then using Equation (5.1),

ν

∫ T

0
‖∇τ ũL(δ)

τ (s)‖2L2(Γδ(ν))
≤ CL(δ)2δ2

(1− δ)2
ν

∫ T

0
‖∇u‖2L2(Ω) ≤

CL(δ)2δ2

(1− δ)2
.

This vanishes with δ by the assumption on L in Equation (2.10) and hence
vanishes with ν since δ vanishes with ν, giving Equation (5.6). The proof of
Equation (5.7) is entirely analogous. �

The technique used in the proof of Theorem 5.5 comes from the key
inequality following Equation (3.21) in [3].

Corollary 5.6. The conditions in Equation (2.1), Equation (2.12), Equa-
tion (2.15), and Equation (2.16) of Theorem 2.4 are equivalent.

Proof. This corollary can be proved much along the lines of the proofs of
Corollary 5.2 and Corollary 5.4. (It is here that we use the assumption that
δ(ν)/ν diverges to ∞ as ν → 0, which is needed in applying Theorem 2.3.)

�

Together, Corollary 5.2, Corollary 5.4, and Corollary 5.6 establish Theo-
rem 2.4.

6. Radially symmetric initial vorticity

It follows from Lemma 3.1 that if an initial velocity, no matter how smooth,
lies in H but not in V and has a vorticity whose total mass is nonzero, then
the velocity of the corresponding solution to (NS) will be discontinuous in
H1(Ω) at time zero. In the same way, the vanishing viscosity limit of the
vorticity cannot hold in L∞([0, T ];L2(Ω)) for such an initial velocity, since
the total mass of the vorticity for the solution to (E) is conserved over time.
This means that we might expect a different character to the vanishing
viscosity limit when the initial vorticity has zero total mass versus when it
has nonzero total mass.
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Indeed, this is what happens in the special case of radially symmetric ini-
tial vorticity where, when the initial velocity is in V (which is equivalent for
radially symmetric vorticity to the total mass of the vorticity being zero) we
obtain convergence in L∞([0, T ];L2(Ω)) of both the velocity and the vortic-
ity (see [1]), whereas for initial velocity in H we obtain only the convergence
of the velocity in this space, as in Theorem 6.1. Such convergence follows
immediately from the conditions in Equation (2.12), Equation (2.15), or
Equation (2.16) of Theorem 2.4. The convergence also follows from the suf-
ficiency of the conditions in Equation (2.5) and Equation (2.6) as established
in [16], since both conditions are satisfied (the gradients in the tangential di-
rection being zero) as pointed out in [17]. When the forcing is zero, however,
there is a simple proof that uses only Kato’s original conditions.

Theorem 6.1. Assume that u0
ν and u0 are as in Theorem 2.3 with (for

simplicity) u0
ν = u0, that f = f = 0, and that ω0 = ω(u0) is radially

symmetric. Then the vanishing viscosity limit of Equation (2.1) holds.

Proof. Because ω0 is radially symmetric, ω remains radially symmetric for all
time, so ω(u·∇u) = u·∇ω = 0. Then because Ω is simply connected, u·∇u =
∇q for some scalar field q, and the nonlinear term in (NS) disappears. Thus,
(NS) reduces to uν(0) = u0 and∫

Ω
∂tuν · v + ν

∫
Ω
∇uν · ∇v = 0 (6.1)

for all v in V . This is the heat equation in weak form, which is invariant
under the transformation (ν, t, x) 7→ (1, νt, x). That is, if u1 is a solution
to Equation (6.1) with ν = 1, then uν(t, x) = u1(νt, x) is a solution to
Equation (6.1) because uν(0) = u1(0) = u0 and∫

Ω

∂

∂t
u1(νt, x) · v(x) dx+ ν

∫
Ω
∇u1(νt, x) · ∇v(x) dx

= ν

[∫
Ω

(∂tu1)(νt, x) · v(x) dx+

∫
Ω
∇u1(νt, x) · ∇v(x) dx

]
= 0.

It follows that

ν

∫ t

0
‖ω(s)‖2L2(Ω) ds = ν

∫ t

0
‖ω1(νs)‖2L2(Ω) ds =

∫ νt

0
‖ω1(τ)‖2L2(Ω) dτ.

This vanishes as ν → 0 by the continuity of the integral, because u1 is in
L2([0, T ];V ). The limit in Equation (2.1) then follows from the condition in
Equation (2.2) of Theorem 2.3. �

The proof of of Theorem 6.1 does not yield a bound on the rate of conver-
gence in Equation (2.1). Also, without assuming that the initial vorticity is
radially symmetric, the argument in the proof of Theorem 6.1 can be applied
to solutions to the Stokes problem (the linearized Navier-Stokes equations)
to show that they converge in the vanishing viscosity limit to a solution
to the linearized Euler equations (which is just the steady state solution
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u = u0). This would be more interesting, though, if time-varying Dirichlet
boundary conditions, for instance, could be incorporated, as in [13].

In the simpler case of u0
ν also lying in V , the solution to (E), which

is steady state, is zero on the boundary. This eliminates the trouble-
some boundary term that appears in the direct energy argument bounding
‖u(t)− u(t)‖L2(Ω), giving an extremely simple proof of Equation (2.1). We

give, however, a longer proof of convergence using Theorem 2.3, because it
suggests how we might treat more general initial velocities. For convenience,
we assume zero forcing and more regularity on the initial velocity than is
strictly necessary.

Theorem 6.2. Assume that ω0
ν is radially symmetric, u0

ν = u0 is in H3(Ω)∩
V , and there is no forcing. Then the vanishing viscosity limit of Equa-
tion (2.1) holds.

Proof. Because u0 is in V ∩H3(Ω), u is in L∞loc([0,∞);V ∩H3(Ω)) (see, for
instance, Theorem III.3.6, Remark III.3.7, and Theorem III.3.10 of [15]).

As observed in the proof of Theorem 6.1, u · ∇u = ∇q for some scalar
field q. Then ∂tu+∇(p+ q) = ν∆u and taking the divergence of both sides
we conclude that ∆(p + q) = 0. Because of the radial symmetry, however,
p + q is constant on Γ and hence is constant on Ω. Thus, ∇(p + q) = 0
and ∂tu = ν∆u. But u = 0 on Γ so ∂tu = 0 on Γ, and it follows that
∆u = ν−1∂tu is in V .

Because u is in V at time zero, we can use the expansion for ω in Equa-
tion (3.5) for all time, including for time zero. Because ω remains radially
symmetric over time, the expansion reduces to

ω(t, r, θ) =

∞∑
k=1

g0k(t)ω0k(r) =

∞∑
k=1

g0k(t)C0kJ0(j1kr). (6.2)

Since ∆u is in V , it follows from Corollary 3.3 that ∆ω has an expansion
like that of Equation (6.2):

∆ω(t, r, θ) =
∞∑
k=1

h0k(t)C0kJ0(j1kr). (6.3)

(The analogous expansion of ∆ω including all the eigenvectors {ωnk} fails
to converge at t = 0 for non-radially symmetric solutions because ∆u is not,
in general, in V .)

Since ∆J0(j1kr) = −λ0kJ0(j1kr), it follows that h0k(t) = −λ0k(t)g0k(t)
and then by Equation (6.1) in strong vorticity form,

∂tω = ν∆ω, (6.4)

that g′0k(t) = −νλ0kg0k(t). Thus, g0k(t) = g0k(0)e−νλ0kt and

ω(t, r, θ) =

∞∑
k=1

C0kg0k(0)e−νλ0ktJ0(j1kr). (6.5)
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But then

‖ω(t)‖2L2(Ω) =

∞∑
k=1

C2
0kg0k(0)2e−2νλ0kt‖J0(j1kr)‖2L2(Ω)

≤
∞∑
k=1

g0k(0)2‖C0kJ0(j1kr)‖2L2(Ω) = ‖ω0‖2L2(Ω)

(6.6)

and convergence in the vanishing viscosity limit follows from the condition
in Equation (2.2) of Theorem 2.3. (Examining the argument in [6] shows

that the convergence rate in Equation (2.1) is bounded by C(νt)1/2.) �

We could have concluded the proof another, more indirect way, as follows.
From Equation (6.5) we see that ω(t) is continuous in the L2(Ω)-norm at
time zero. Thus, we can multiply Equation (6.4) by ω and integrate over
time to give

1

2

d

dt
‖ω(t)‖2L2(Ω) + ν ‖∇ω(t)‖2L2(Ω) = ν

∫
Γ
(∇ω · n)ω. (6.7)

But ∇ω = −(∆u)⊥ = 0 on Γ because ∆u is in V as we showed, and
we conclude by integrating over time that ω is in L∞([0,∞);L2(Ω)), and
Equation (2.1) follows from the condition in Equation (2.2) of Theorem 2.3.

This argument shows that whenever the vorticity is continuous at time
zero in the L2(Ω)-norm and ∆u(t) lies in V for all t > 0, Equation (2.1)
holds. The latter condition, however, is very special. In fact, for u0 with
regularity as in Theorem 6.2, ∂tu will always be in V , so ∆u = (∂tu + u ·
∇u +∇p)/ν is in V if and only if u · ∇u +∇p is in V . This, in turn, can
hold only if ∇p = −u · ∇u on Γ.

This suggests that for initial velocities for which ω(t) is continuous in
the L2(Ω)-norm at time zero we might attempt to make an argument using
Equation (6.7), though now without the right-hand side vanishing. This
would require either control on ∇ω, as we had above, or on ω itself. (For
solutions to (NS) with the boundary condition ω = u · n = 0 rather than
u = 0 this term would vanish and one can obtain the vanishing viscosity
limit easily—though not using Theorem 2.3, which one would need to show
applies to such solutions—as done, for instance, in [11] and [12].)

Another line of attack is also suggested by the proof of Theorem 6.2—
to gain control on the coefficients g(t) either by assumptions on the initial
velocity or on the solution. Unless bounds as remarkably strong as those
obtained in the proof of Theorem 6.2 are achieved, though, something more
sophisticated must be employed to obtain Equation (2.1).

7. Interpretation in terms of length scales

In [3], Cheng and Wang consider the vanishing viscosity limit in the setting
of a two-dimensional rectangular channel R, periodic in the x direction with
period L and with characteristic boundary conditions (which include no-slip



20 JAMES P. KELLIHER

boundary conditions as a special case). They decompose any vector u on

R of sufficient regularity as u =
∑∞

j=0 e
2πijx/Luj and define the projection

Pku =
∑k

j=0 e
2πijx/Luj onto the space spanned by the first k modes. This

in effect allows one to isolate successively finer-scale spatial variations in the
direction tangential to the boundary. They then construct an approxima-
tion sequence {vL} to u by letting vL be the solution to the equation that
results after projecting each term in (NS) using PN . (We have changed
their notation somewhat.) Their vL is the approximate-solution analog of
the exact solution truncation represented by ũL in Equation (2.9).

The main result in [3] is that vL(ν) converges to u in L∞([0, T ];L2(Ω))
as ν → 0. The requirement on L(ν) is the same as our condition on L in
Equation (2.10) (with the additional condition that L(ν)→∞ as ν → 0 as

one would expect), so convergence of vL(ν) to u occurs when only tangen-
tial length scales of order larger than ν are included in the approximations.
(All length scales in the normal direction, however, are included. See Re-
mark (5.2) concerning this issue in regards to the vorticity.)

The result in [3] makes an important observation about the difficulty of
determining numerically whether or not the vanishing viscosity limit holds.
Our method of decomposing the solution using the eigenfunctions of the
Stokes operator, on the other hand, says little about computation, since
approximating this decomposition numerically is probably as least as hard as
approximating the solution itself. Nonetheless, it more directly characterizes
the properties of the solution itself at different length scales.

The analog to the result in [3] is Theorem 5.5, which shows that Temam
and Wang’s conditions in Equation (2.5) and Equation (2.6), when applied
only to the modes with tangential wavelengths of CL(ν) or higher, holds
as long as the condition on N in Equation (2.10) hold. This does not,

however, imply that uL(ν) converges to u in the vanishing viscosity limit,
only that if the vanishing viscosity limit fails to hold, the failure originates
in the behavior of the tangential component of the gradient projected into
the space spanned by the modes with tangential frequencies of order L(ν)
or higher; that is, at length scales of order ν or lower.

The other conditions in Theorem 2.4 give alternative ways to measure
the behavior of the solution at different length scales or frequencies. They
show that we cannot simply say that if the vanishing viscosity fails to hold
then the failure lies in the behavior of the solution at any particular range
of length scales, but rather that the pertinent range of length scales varies
with the measure of behavior. Whether any of these conditions brings us
any closer to proving that the vanishing viscosity limit holds in general for
smooth initial data in a bounded domain or to proving that it fails to hold
in at least one instance remains completely unclear.
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Appendix A. Bounds on the Eigenfunctions

In Lemma A.1 we state the basic identities involving the Bessel functions
that we use. We then give a series of lemmas that lead to the bounds on
the velocity and vorticity of the eigenfunctions in the boundary layer that
we used in the proof of Theorem 2.4.

It is perhaps important to note that in the proofs that follow we avoid
the use of asymptotic formulas for the Bessel functions, even when such
formulas might appear to be useful. This is because we need to deal with
the relative values of Bessel functions of different orders near a zero of one
of the Bessel functions, and it is precisely in these situations that the errors
in the asymptotic formulas dominate. Also, most of the following lemmas
apply without change to their proofs with n being any nonnegative real
value.

Lemma A.1. For all nonnegative real numbers n and x,

2nJn(x)− xJn−1(x) = xJn+1(x), (A.1)

2J ′n(x) = Jn−1(x)− Jn+1(x), (A.2)

Jn−1(x) =
n

x
Jn(x) + J ′n(x), (A.3)

Jn+1(x) =
n

x
Jn(x)− J ′n(x), (A.4)

xnJn(αx)

α
=

∫
xnJn−1(αx) dx, (A.5)

Jn(αx)x−n = −α
∫
Jn+1(αx)x−n dx, (A.6)

(β2 − α2)

∫
xJn(αx)Jn(βx) dx = x

[
αJ ′n(αx)Jn(βx)− βJ ′n(βx)Jn(αx)

]
,

(A.7)∫
xJn(ax)2 dx =

1

2

[
x2J ′n(ax)2 +

(
x2 − n2

a2

)
Jn(ax)2

]
, (A.8)

∫
xJn(ax)2 dx =

x2

2

[
Jn(ax)2 − Jn−1(ax)Jn+1(ax)

]
. (A.9)

Proof. These are standard identities for Bessel functions. For instance, see
Equations (6.28), (6.29), (6.30), (6.31), (6.38), (6.39), (6.51), (6.52), and
(6.53) of [2]. �
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Lemma A.2. For all nonnegative integers n and all positive integers k,

1 < jn+1,k − jnk <
π

2
,

where jnk is defined in Equation (4.4).

Proof. Let jνk be the k-th positive zero of Jν , where we now allow ν to be
a real number in the interval [0,∞). It is shown in [4] and [5] that for all
k ≥ 1, jνk is strictly concave as a function of ν and that djνk/dν > 1 (see
also [9]). Thus, the function n 7→ jn+1,k − jnk is strictly decreasing as a
function of n. But by Equation (2.9) of [5], jn+1,k − jnk → 1 as n→∞, so
jn+1,k − jnk > 1.

The positive zeros of J0 lie in the intervals (mπ + 3
4π,mπ + 7

8π), m =

0, 1, . . . , and the positive zeros of J1 lie in the intervals (m′π + 1
8π,m

′π +
1
4π), m′ = 1, 2, . . . . That the zeros lie in only these intervals is shown in
Section 15.32 p. 489 and Section 15.34 p. 491 of [18] using an approach
of Schafheitlin’s. That each of these intervals contains at least one zero is
shown on p. 104 of [2]. But j1k−j0k > 1 as we showed above so each interval
contains precisely one zero. Because the zeros of J0 and J1 are interleaved
(see p. 106 of [2], for instance) we can then conclude that j1k−j0k < π

2 . But
as we observed above, the function n 7→ jn+1,k− jnk is strictly decreasing as
a function of n, so jn+1,k − jnk < π

2 holds for all n ≥ 0. �

Lemma A.3. For all n = 0, 1, . . . and k = 1, 2, . . . ,

n+ k < jnk < π(n/2 + k) ≤ π(n+ k).

Proof. By Lemma A.2, for all n and j,

jnk = j0k +

n∑
m=1

(jmk − jm−1,k) ≥ j0k + n > n+ k,

because j0k > k (which follows directly from Equation (4.3); see p. 485-486
of [18], for instance). By an observation in the proof of Lemma A.2 it follows
that j0k < πk, and a similar argument using the inequality jn+1,k − jnk < π

2
from Lemma A.2 gives the upper bound on jnk. �

Lemma A.4. Let α = jn+1,k and β = jnk. For n = 0, 1, 2, . . . and k =
1, 2, . . . , ∣∣∣∣Jn(αx)

Jn(α)

∣∣∣∣ ≤ 1 if
β

α
< x < 1.

Proof. Let g(x) = Jn(αx)/|Jn(α)|. From Equation (A.4), J ′n(α) = (n/α)Jn(α),
so J ′n(α) has the same sign as Jn(α). From this we conclude that |g| is in-
creasing in a left-neighborhood N of 1.

Between each zero of Jn there is exactly one zero of Jn+1 (see p. 106 of
[2], for instance). Between each zero of Jn there is also exactly one zero of
J ′n, because the maximum values of Jn are all positive and the minimum
values are all negative (see, for instance, p. 107 of [2]) and J ′n has no repeated
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positive roots (this follows from the defining equation Equation (4.3)). Thus,
the neighborhood N includes all x such that β < αx < α. Since |g(1)| = 1
it follows that |g(x)| ≤ 1 for all such x. �

Lemma A.5. Let α = jn+1,k and β = jnk. There exists a constant C such
that for all n = 0, 1, . . . and k = 1, 2 . . . n,∣∣∣∣Jn+1(αx)

Jn(α)

∣∣∣∣ ≤ Cn(1− x) if
β

α
< x < 1.

Proof. Since Jn+1(α) = 0, Equation (A.5) with n+ 1 in place of n gives

Jn+1(αx) = − α

xn+1

∫ 1

x
tn+1Jn(αt) dt.

As long as β < αx < α, Jn(αt) does not change sign on the interval (x, 1]
and has its maximum value on this interval at 1, as observed in the proof of
Lemma A.4. Thus,

|Jn+1(αx)| ≤ α

xn+1
|Jn(α)|

∫ 1

x
tn+1 dt ≤ α |Jn(α)|

(β/α)n+1
(1− x).

But by Lemma A.2 and Lemma A.3,

1− β

α
=
α− β
α
≤ π/2

n+ 2
=⇒ β

α
≥ 1− π

2n+ 4
so

(β/α)−(n+1) ≤
(

1− π

2n+ 4

)−(n+1)

≤ eπ/2,

the last inequality following from elementary calculus. We conclude that

|Jn+1(αx)| ≤ Cn |Jn(α)| (1− x), (A.10)

which completes the proof. �

Lemma A.6. Let α = jn+1,k and β = jnk. There exists a constant C such
that for all n = 0, 1, . . . and k = 1, 2 . . . , n,∣∣∣∣Jn−1(αx)

Jn(α)

∣∣∣∣ ≤ C if
β

α
< x < 1.

Proof. Because the positive zeros of Jn−1 are interlaced with those of Jn,
Jn−1 does not change sign on the interval [β, α]. From Equation (A.4) with
n− 1 in place of n, J ′n−1(β) = ((n− 1)/β)Jn−1(β), so J ′n−1(β) has the same
sign as Jn−1(β), and we conclude that Jn−1 reaches it maximum value on
the interval [β, α] at β. Therefore, for β/α < x < 1,∣∣∣∣Jn−1(αx)

Jn(α)

∣∣∣∣ ≤ ∣∣∣∣Jn−1(β)

Jn(α)

∣∣∣∣ .
But, by Equation (A.1), Jn+1(β) = 2(n/β)Jn(β)− Jn−1(β) = −Jn−1(β), so∣∣∣∣Jn−1(αx)

Jn(α)

∣∣∣∣ ≤ ∣∣∣∣Jn+1(β)

Jn(α)

∣∣∣∣ ≤ Cn(1− β/α) ≤ C,
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where we used Lemma A.5 and Lemma A.3. �

Lemma A.7. For all j in N, ‖ωj‖2L2(Γδ)
≤ 2δ when δ ≤ λ−1/2

j .

Proof. Let ωj = ωnk and α = jn+1,k = λ
1/2
j , where without loss of generality

we assume that n ≥ 0. Then

‖ωj‖2L2(Γδ)
= 2πC2

nk

∫ 1

1−δ
rJn(αr)2 dr = 2

∫ 1

1−δ
r
Jn(αr)2

Jn(α)2
dr.

In the integrals above, with β = jnk,

β/α = 1− (β − α)/α ≤ 1− 1/α = 1− λ−1/2
j ≤ 1− δ < r < 1,

where we used Lemma A.2, and the lemma follows from Lemma A.4. �

Employing Lemma A.7, we can extend its range of applicability, though
with a higher bound on the width of the boundary layer.

Lemma A.8. For all n in Z, k = 1, . . . , n, and all δ < 2πλ
−1/2
n1 ,

‖ωnk‖2L2(Γδ)
≤ 2δ.

Proof. Without loss of generality we assume that n ≥ 0. It follows from
Lemma A.3 that jn,n/jn,1 ≤ π(n+n)/(n+ 1) ≤ 2π; the lemma follows from
this inequality and Lemma A.7. �

Remark A.1. It is possible to extend Lemma A.8 to include all values of
k. The idea of the proof is that for k > n, ωnk passes through k complete
half-periods (annuli in the unit disk lying between successive nonnegative
zeroes of Jn(jn+1,kr)) and ends with a partial period. Since Jn(x) decays like

x1/2 and the spacing between consecutive zeros of Jn approaches a constant,
the L2-norms of ωnk on each of those half-periods converges to a constant,
and since the L2-norm of ωnk on the entire unit disk is 1, the square of the
L2-norm of ωnk on the last half-period is less than C/k (with C near 1).
But the last half-period has a width that is greater than C/k. Extending
this argument to m periods, what we have shown is that

‖ωnk‖2L2(ΓCm/k) ≤ m/k.

With the assumed bound on δ, we choose m so that m/k is of the same
order as δ, and the proof is essentially complete.

Lemma A.9. There exist positive constants C1 and C2 with C2 < 1 such
that for all n in Z and all k = 1, . . . , n,

‖unk‖2L2(Γδ)
≤ C1δ

3

when δ < C2λ
−1/2
n1 .
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Proof. In the proof that follows, we will often use Lemma A.3 without ex-
plicit mention. Also, without loss of generality we assume that n ≥ 0.

Let α = jn+1,k. We bound first the radial component of unk. We have,

Jn(αr)− Jn(α)rn

Jn(α)r
= rn−1gn(r),

where

gn(r) =
Jn(αr)r−n

Jn(α)
− 1 = − α

Jn(α)

∫ 1

r

Jn+1(αx)

xn
dx = −α

∫ 1

r

Bnk(x)

xn
dx,

and

Bnk(x) =
Jn+1(αx)

Jn(α)
.

To verify the second equality we use the identity in Equation (A.6), from
which it follows that the second expression for gn is

Jn(αr)r−n + C

Jn(α)

for some constant C. But all three expressions for gn are zero at r = 1, so
we have the correct limits of integration in the second expression. It follows
from Lemma A.5 and our third expression for gn that

|gn(r)| ≤ Cnα
∫ 1

r
x−n(1− x) dx ≤ Cn2

rn
(1− r)2

for all 1− r ≤ 1/α.
From Equation (4.8),

urnk(r, θ) =
g(r)rn−1

α2π1/2
ineinθêr,

so when δ ≤ 1/α we have

‖urnk‖
2
L2(Γδ)

= 2π

∫ 1

1−δ
r |urnk|

2 dr ≤ Cn6

α4

∫ 1

1−δ

(1− r)4

r2n−1
dr

≤ Cn2(1− δ)1−2nδ5 ≤ Cδ3.

In the last inequality we used

δ < C2λ
−1/2
n1 =

C2

jn+1,k
≤ C2

n+ 1
so

(1− δ)2n−1 ≥
(

1− C2

n+ 1

)2n−1

= (G(C2, n+ 1))2

(
1− C2

n+ 1

)−3

≥ (1− C2)2 (1− C2)−3 = (1− C2)−1 = C > 0,

where G is the function of Lemma A.11.
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For the angular component of unk, we write

αJn+1(αr)− αJn−1(αr) + 2nJn(α)rn−1

= [2nJn(αr)− αrJn−1(αr)] + αrJn−1(αr)− 2nJn(αr)

+ αJn+1(αr)− αJn−1(αr) + 2nJn(α)rn−1

= α(r + 1)Jn+1(αr) + 2n
[
Jn(α)rn−1 − Jn(αr)

]
+ αJn−1(αr)(r − 1).

From Equation (4.8) we then have

|uθnk|2 ≤ C
α2(r + 1)2

α4

Jn+1(αr)2

Jn(α)2
+ C

n2

α4

(
Jn(α)rn−1 − Jn(αr)

Jn(α)

)2

+ C
α2Jn−1(αr)2(1− r)2

α4Jn(α)2

≤ C(1− r)2 +
C

n2

(
rn−2gn−1(r)

)2
,

(A.11)

where we applied both Lemma A.5 and Lemma A.6.
The first term in Equation (A.11) contributes no more than

C

∫ 1

1−δ
r(1− r)2 dr ≤ C

∫ 1

1−δ
(1− r)2 dr ≤ Cδ3,

and the same is true of the second term in Equation (A.11) arguing as for
urnk, and this completes the proof. �

Lemma A.10. When m 6= n, 〈umj , unk〉L2(Γcν) = 〈ωmj , ωnk〉L2(Γcν) = 0.

Proof. We have,

〈ωmj , ωnk〉L2(Γcν) =

∫ 1

1−cν
rf(r)

∫ 2π

0
ei(m−n)θ dθ dr,

where f(r) is a product of two Bessel functions. When m 6= n, the inner
integral is zero. A similar argument gives 〈umj , unk〉L2(Γcν) = 0. �

Lemma A.11. Let α be in (0, 1) and define Gα : [1,∞)→ [0,∞) by

Gα(x) =
(

1− α

x

)x
.

Then for all x > 1,

1− α ≤ Gα(x) < e−α.

Proof. The proof is elementary. �
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