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Abstract. We develop the concept of an infinite-energy statistical so-
lution to the Navier-Stokes and Euler equations in the whole plane. We
use a velocity formulation with enough generality to encompass initial
velocities having bounded vorticity, which includes the important spe-
cial case of vortex patch initial data. Our approach is to use well-studied
properties of statistical solutions in a ball of radius R to construct, in the
limit as R goes to infinity, an infinite-energy solution to the Navier-Stokes
equations. We then construct an infinite-energy statistical solution to
the Euler equations by making a vanishing viscosity argument.
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1. Introduction

We develop the concept of a statistical solution to the Navier-Stokes
(SSNS) or Euler equations (SSE) in the plane for an important class of
velocity fields having sufficient decay of the vorticity at infinity to recover
uniquely the velocity field from the vorticity. In particular, this class of ve-
locity fields includes the important case of a vortex patch: a velocity field
whose initial vorticity is the characteristic function of a bounded domain.

Our starting point is the velocity formulation of a SSNS on a bounded
domain given by Foias in [5]. (A highly accessible account of the theory of
SSNSs is given in [6], to which we refer often.) We adapt this formulation
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slightly, of necessity changing the energy equality and using the same class
of test functions as for homogeneous solutions in the plane (Section 6). Our
definition of an infinite-energy SSE is the same with the viscosity set to
zero. We construct our infinite-energy SSNS by showing that it is the limit,
in a special sense, of a sequence of statistical solutions on balls of radius
R as R → ∞. At the core of our approach is the expanding domain limit
for deterministic solutions to the Navier-Stokes equations established in [9],
extended to handle infinite-energy solutions. We then construct our infinite-
energy SSE by making a vanishing viscosity argument.

In the deterministic setting, the infinite-energy solutions that we consider
correspond to an initial velocity lying in the space Em of [2] and [3]. A
vector v belongs to Em if it is divergence-free and can be written in the form
v = σ+v′, where v′ is in L2(R2) and where σ is a smooth stationary solution
to the Euler equations whose vorticity is radially symmetric and compactly
supported. (See Section 2 for more details.) A unique global solution to the
Navier-Stokes equations exists and remains in the space Em for all time as
long as the forcing has finite energy. The same can be said of solutions to
the Euler equations if one imposes restrictions on the initial vorticity; for
instance, that it lie in L1 ∩ L∞. This encompasses the case of a classical
vortex patch—initial vorticity that equals the characteristic function of a
bounded domain. (See also Corollary 2.3.)

A key parameter of any vortex patch is the total mass of its vorticity,

m =

∫

R2

ω.

Only when m = 0 will the velocity field have finite energy (lie in L2), which
excludes the case of a classical vortex patch. In a sense, m measures how
infinite the energy is.

When working with statistical solutions one would like to allow m to take
on different values, because classical vortex patches that are nearly identical
will typically have different values of m. Thus, we need to consider the
spaces Em for all values of m simultaneously.

We give a velocity rather than a vorticity formulation of our statistical
solutions for several reasons. First, a vorticity formulation would require
imposing higher regularity on the initial vorticity than required for solu-
tions to the Navier-Stokes equations: it would be technically quite difficult
to assume anything weaker than the initial vorticity lying in L1, as in [1].
Second, it would be hard to obtain convergence of the vorticity in the van-
ishing viscosity limit, even with higher regularity of the initial data, without
knowing that the velocity decays at infinity, and this does not come from the
Biot-Savart law. Third, a start in this direction has already been made in
[4] for time-independent solutions to damped and driven Navier-Stokes and
Euler equations in the vorticity formulation.

Constantin and Ramos do not specifically address infinite-energy solutions
in [4]; however, their definition of such a solution requires no change at all to
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encompass infinite-energy solutions and neither does their proof of the van-
ishing viscosity limit. Their construction of a stationary statistical solution
to the Navier-Stokes equations as a long-time average of a deterministic so-
lution to the damped and driven Navier-Stokes equations does assume finite
energy. Nothing deep need be done, however, to extend their construction
to allow infinite energy solutions (and so allow initial vortex patch data):
one need only assume infinite-energy forcing.

This paper is organized as follows: In Section 2, we define the function
spaces in which we will work. We characterize the projection operator we
will use to construct the initial velocities in ΩR in Section 3. In Section 4, we
define weak deterministic solutions to the Navier-Stokes and Euler equations
and give the basic well-posedness and regularity results for such solutions.
The deterministic expanding domain limit of [9] is established for infinite-
energy solutions in Section 5. We give the definition of a statistical solution
to the Navier-Stokes equations in velocity form, for finite as well as infinite
energy, in Section 6, and construct an infinite-energy statistical solution
to the Navier-Stokes equations in Section 7, showing that it is unique. In
Section 8 we construct an infinite-energy statistical solution to the Euler
equations using a vanishing viscosity argument.

2. Function spaces and the Biot-Savart Law

Let

ΩR = the disk of radius R centered at the origin,

with Ω∞ = R
2, and define the classical function spaces of incompressible

fluid mechanics,

HR = H(ΩR) =
{

u ∈ (L2(ΩR))2 : div u = 0, u · n = 0 on ∂ΩR

}

,

VR = V (ΩR) =
{

u ∈ (H1(ΩR))2 : div u = 0, u = 0 on ∂ΩR

}

,

H = H∞ = H(R2), V = V∞ = V (R2).

We endow HR with the L2-norm. For VR, we use the H1-norm:

‖u‖VR
= ‖u‖L2(ΩR) + ‖∇u‖L2(ΩR) . (2.1)

Note, in particular, that

‖u‖L2(ΩR) ≤ ‖u‖VR
, ‖∇u‖L2(ΩR) ≤ ‖u‖VR

. (2.2)

Had we used the Poincare inequality to replace Equation (2.1) with the
equivalent norm that includes only the second term, as is normally done for
a bounded domain, it would have introduced a factor of R in the right-hand
side of the first inequality, preventing us from having a consistent norm with
which to compare solutions on ΩR for different values of R.

Our deterministic infinite energy solutions will lie in the space Em of [3].
A vector v belongs to Em if it is divergence-free and can be written in the
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form v = σ + v′, where v′ is in L2(R2) and where σ is a stationary vector
field, meaning that σ is of the form,

σ =

(

−
x2

r2

∫ r

0
ρg(ρ) dρ,

x1

r2

∫ r

0
ρg(ρ) dρ

)

(2.3)

with g in C∞
0 (R). The subscript m ∈ R is the integral over all space of the

vorticity,

ω(v) = ∂1v
2 − ∂2v

1.

Em is an affine space; fixing an origin, σ, in Em we can define a “norm”
by ‖σ + v′‖Em

= ‖v′‖L2(Ω). Convergence in Em is equivalent to convergence

in the L2–norm to a vector in Em.
We will find it convenient to fix a choice of origin for Em as follows. For

E1 we choose σ1 of the form Equation (2.3) with ω(σ1) supported in the unit
disk and with

∫

Ω1

ω(σ1) =

∫

R2

ω(σ1) = 1.

We can then use σm = mσ1 as an origin for Em.
Let ψσ1

be a given fixed stream function for σ1. As in [10], ψσ1
is radially

symmetric with

ψσ1
(x) = C2 +

1

2π
log |x| (2.4)

for all |x| ≥ 1. For |x| ≥ 1, |σ1(x)| = 1/ |x| by Equation (2.3), and

‖σ1‖
2
H1(ΩR\ΩR−1) = 2π

∫ R

R−1

1

r2
r dr + 2π

∫ R

R−1

1

r4
r dr

= 2π log(R/(R − 1)) + π
[

(R − 1)−2 −R−2
]

→ 0 as R→ ∞.

(2.5)

Equation (2.4) also gives ∆σ1 = ∆∇⊥ψσ1
= ∇⊥∆ψσ1

= 0 on ΩC
1 .

The spaces HR and Em, or VR and Em ∩ Ḣ1(R2), where Ḣ1(R2) is the
set of all functions whose gradient lies in L2(R2), are the appropriate ones
for initial velocities for weak deterministic solutions to the Navier-Stokes
equations, but for the Euler equations more regularity is required to obtain
well-posedness. Rather than being as general as possible, we will assume that
for deterministic solutions the initial vorticity lies in L∞ for solutions on ΩR

and in Lp0 ∩ L∞, for some p0 < 2 for solutions on R
2. Slightly unbounded

vorticities could be handled, as in [9], with little complication. This gives not
only existence but uniqueness of the solutions. (The uniqueness of solutions
for bounded initial vorticity is due to Yudovich [13], as is the uniqueness for
unbounded vorticities [14].)

Thus, we fix p0 < 2, and define the spaces

Ym = {u ∈ Em : ω(u) ∈ Lp0 ∩ L∞} ,

with “norm”

‖u‖
Ym

= ‖u‖Em
+ ‖ω(u− σm)‖Lp0∩L∞
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and

Y(ΩR) =
{

u ∈ H(ΩR) ∩H1(ΩR) : ω(u) ∈ L∞
}

with norm

‖u‖
Y(ΩR) = ‖u‖H1(ΩR) + ‖ω(u)‖Lp0∩L∞(ΩR) , R <∞.

Because Lp0(ΩR) ⊆ L∞(ΩR), using only the L∞-norm of ω(u) in the Y (ΩR)-
norm would give a simpler, equivalent norm. We avoid doing this, however,
for the same reason we avoided the use of Poincare’s inequality in defining
the VR-norm in Equation (2.1).

For statistical solutions in the whole plane, we do not want to assume that
the value of m is fixed, so we must deal with larger spaces. For statistical
solutions to the Navier-Stokes equations we will use

E =
⋃

m∈R

Em and E
1 =

⋃

m∈R

Em ∩ Ḣ1(R2)

and for statistical solutions to the Euler equations we will use

Y =
⋃

m∈R

Ym. (2.6)

E, Y, and E
1 are function spaces, being closed under addition, with the

norms

‖σm + v‖
E

= |m| + ‖v‖L2
, ‖u‖

Y
= ‖u‖

E
+ ‖ω(u)‖Lp0∩L∞ ,

‖σm + v‖
E1 = ‖σm + v‖

E
+ ‖∇v‖L2(R2) .

These norms induce metrics on their respective spaces. Because H and V
are separable, so too are E and E

1. The space Y, however, is not separable,
because L∞(R2) is not.

There exists a unique decomposition of any u in E, Y, or E
1 of the form

u = σm + v, m ∈ R, v ∈ H. Given such a u, we define

m(u) = m, σ(u) = σm(u). (2.7)

Definition 2.1. We say that the support of a measure µ on the function
space X is bounded in X if

suppµ ⊆ {u ∈ X : ‖u‖X ≤M} for some M <∞.

If Y is a subspace of X, we say that the support of a measure µ is (X,Y )-
bounded if

suppµ ⊆ {u ∈ Y : ‖u‖X ≤M} for some M <∞.

That is, the support of µ lies in the subspace, but only its norm in the full
space is controlled.

Lemma 2.2. [Biot-Savart law] Let p be in [1, 2) and let q > 2p/(2−p). For
any vorticity ω in Lp(R2) there exists a unique divergence-free vector field u



6 JAMES P. KELLIHER

in Lp(R2) + Lq(R2) whose curl is ω, with u being given by the Biot-Savart
law,

u = K ∗ ω. (2.8)

Here, K is the Biot-Savart kernel, K(x) = (1/2π)x⊥/ |x|2.

Proof. See the proof of Proposition 3.1.1 p. 44-45 of [3]. �

Corollary 2.3. For any vorticity ω in L1 ∩ L∞(R2) there exists a unique
divergence-free vector field u in L∞(R2) whose curl is ω, with u given by
Equation (2.8). If ω is also compactly supported then u lies in Em, where
m =

∫

R2 ω.

Proof. By Lemma 2.2 applied with p = 1, K ∗ω is the unique vector field in
L1 ∩ L∞ whose vorticity is ω. But also,

‖K ∗ ω‖L∞ ≤ ‖(χΩ1
K) ∗ ω‖L∞ + ‖(1 − χΩ1

)K ∗ ω‖L∞

≤ ‖χΩ1
K‖L1 ‖ω‖L∞ + ‖(1 − χΩ1

)K‖L∞ ‖ω‖L1

≤ C ‖ω‖L1∩L∞ .

Here, χA is the characteristic function of A. This shows that, in fact, K ∗ω is
in L∞ and is the unique such vector field. The last statement in the corollary
follows from Lemma 1.3.1 of [3]. �

3. Projection operators

Let PVR
: E

1 → VR be restriction to ΩR followed by projection onto VR. PVR

is well-defined because as Hilbert spaces VR is a closed subspace of H1
div(ΩR),

the space of all divergence-free vector fields in (H1(ΩR))2, endowed with the
inner product,

〈u, v〉H1

div(ΩR) = (u, v) + (∇u,∇v).

We can describe PVR
explicitly by characterizing V ⊥

R , the orthogonal comple-

ment of VR inH1
div(ΩR). By definition, w is in V ⊥

R if and only if 〈w, v〉H1

div(ΩR) =

0 for all v in VR. Treating ∆w as a distribution, integrating by parts gives
(w − ∆w, v) = 0 for all v in VR, where VR = VR ∩ D(ΩR). It follows from
this that w is in V ⊥

R if and only if

∆w − w = ∇p (3.1)

for some p in L2(Ω) (see, for instance, Proposition I.1.1 of [12]) and, of
course, divw = 0.

Now let u lie in H1
div(ΩR) and let u = PVR

u. Then w = u− u lies in V ⊥
R

so from Equation (3.1),






∆u− u = ∆u− u+ ∇p in ΩR,
div u = ∆p = 0 in ΩR,
u = 0 on ∂ΩR.

(3.2)

Equality is to hold in a weak sense in Equation (3.2). Since u is in H1,
however, f = ∆u − u + u is in H−1, which is sufficient to conclude that
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u is in V and p is in L2. (See, for instance, Remark I.2.6 of [12].) Also,
the solution to Equation (3.2) is unique because otherwise it would follow
that −1 is an eigenvalue of the Stokes operator, −P∆, where P is the Leray
projector. But the Stokes operator is positive-definite, so all its eigenvalues
are positive.

The estimates involving the operator PVR
are hard to prove directly using

this characterization. It is simpler to employ an approximate projection
operator UR, and use the fact that projection into VR gives the closest
vector field in VR to the vector field being projected. (The same idea is used
for projection into HR in [10, 7].)

To define UR we need two cutoff functions, ϕR and hR.
Let ϕ1 in C∞(Ω1) take values in [0, 1] and be defined so that ϕ1 = 1 on

Ω1/2 and so that ϕ1 and ∇ϕ1 are both zero on ∂ΩR. Let ϕR(·) = ϕ1(·/R).
Observe that ϕR and ∇ϕR both vanish on ∂ΩR.

Let g in C∞([0, 3/4]) taking values in [0, 1] be defined so that g(0) =
g′(0) = 0 and g = 1 on [1/2, 1]. Then define hR in C∞(ΩR) by hR(x) =
g(R − |x|) for points x in ΩR \ ΩR−1 and hR = 1 on ΩR−1. Observe that

‖hR‖Ck ≤ Ck, (3.3)

k = 0, 1, . . . , for constants Ck independent of R in [1,∞). Also, hR = 0 and
∇hR = 0 on ∂ΩR.

Definition 3.1. Define UR : E
1 → VR by

UR(u) = ∇⊥(hR(ψσm − ψσm(R))) + ∇⊥(ϕRψv)

for u = σm + v in Em. Here, ψv is the stream function for v chosen so that
∫

ΩR
ψv = 0 on ∂ΩR.

Lemma 3.2. PVR
maps E

1 continuously onto VR with

‖u− PVR
u‖H1(ΩR) ≤ C ‖u− σ(u)‖H1(ΩR\ΩR/2) + |m(u)| β(R), (3.4)

where

β(R) = ‖σ1‖H1(ΩR\ΩR−1)
→ 0 as R→ ∞,

and

‖PVR
(u− σm)‖VR

≤ ‖u− σm‖V , (3.5)

‖PVR
u‖VR

≤ ‖u‖
E1 + C |m(u)| . (3.6)

Proof. That PVR
maps onto VR is clear, and it is continuous because the

restriction and the projection operators are continuous.
To prove Equation (3.4), let u = σm + v in Em ∩ Ḣ1(R2). Then

‖u− URu‖H1(ΩR) ≤ ‖σm − URσm‖H1(ΩR) + ‖v − URv‖H1(ΩR) . (3.7)

It follows from the proof of Lemma 4.2 of [9] that

‖v − URv‖H1(ΩR) ≤ C ‖u− σ(u)‖H1(ΩR\ΩR/2) .
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Also, letting ψ = ψσm − ψσm(R) and using Equation (3.3),

‖σm − URσm‖H1(ΩR) = ‖∇⊥ψ −∇⊥(hRψ)‖H1(ΩR)

≤ ‖(1 − hR)σm‖H1(ΩR) + ‖∇⊥hRψ‖H1(ΩR)

≤ ‖1 − hR‖C1 ‖σm‖H1(ΩR\ΩR−1) + ‖∇hR‖C1 ‖ψ‖H1(ΩR\ΩR−1)

≤ C ‖σm‖H1(ΩR\ΩR−1) + C ‖ψ‖H1(ΩR\ΩR−1)

≤ C ‖σm‖H1(ΩR\ΩR−1) + C ‖ψ‖L2(ΩR\ΩR−1) .

Because ΩR \ ΩR−1 has width 1 and ψ vanishes on its outer boundary, we
can apply Poincare’s inequality with a constant that is independent of R to
give

‖ψ‖L2(ΩR\ΩR−1) ≤ C ‖∇ψ‖L2(ΩR\ΩR−1) = C ‖σm‖L2(ΩR\ΩR−1) .

Thus,

‖σm − URσm‖H1(ΩR) ≤ C ‖σm‖H1(ΩR\ΩR−1) = C |m| ‖σ1‖H1(ΩR\ΩR−1) ,

which vanishes as R → ∞ by Equation (2.5). This gives Equation (3.4) for
UR. Projection into VR gives the closest element in VR, so Equation (3.4)
holds for PVR

.
Equation (3.5) follows easily:

‖PVR
(u− σm)‖VR

≤ ‖u− σm‖VR
≤ ‖u− σm‖V ,

the first inequality holding simply because PVR
is an orthogonal projection

operator.
To prove Equation (3.6), let u = σm + v in Em ∩ Ḣ1(R2). Then

‖PVR
u‖VR

≤ ‖PVR
σm‖VR

+ ‖PVR
v‖VR

≤ ‖σm‖VR
+ ‖v‖VR

≤ ‖σm‖V + ‖v‖V = |m| ‖σ1‖V + ‖v‖V = C |m| + ‖v‖V

≤ ‖u‖
E1 + C |m| .

�

Lemma 3.3. PVR
σm is a stationary solution to the Euler equations on ΩR.

Proof. Let σm = PVR
σm. Since ψσm and ω(σm) are radially symmetric, so

too must ψσm and ω(σm) be. But then

ω(σm · ∇σm) = σm · ∇ω(σm) = 0,

and thus σm · ∇σm = ∇p for some scalar field p. �

Remark 3.4. Equations (3.4) through (3.6) continue hold if the projection
operator PVR

is replaced by the approximate projection operator UR, though
a constant factor is introduced on the right-hand sides of Equation (3.5) and
Equation (3.6). Equations (3.4) through (3.6) also hold with PVR

replaced
by UR and H1 replaced by L2. This gives control not only on the H1-norm
but individual control on the L2-norm. See Remarks 5.3 and 5.6.
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We will use the operator PVR
in establishing the deterministic expanding

domain limit in Section 5 and in constructing statistical solutions to (NS)
in Section 7. For solutions to the Euler equations, we will need the following
approximate truncation operator of Definition 3.5 (or we could use projection
into Y (ΩR)).

Definition 3.5. Define UR : Y → Y(ΩR) by

UR(σm + v) = σm|ΩR
+ TRv,

where TR : Y0 → Y(ΩR) is the operator in Lemma 4.2 of [9].

Because ΩR is a disk, σm|ΩR
is in HR and so also in Y(ΩR). This is why

UR : Y → Y(ΩR). It is also why if we define PHR
to be the restriction to

ΩR followed by projection into HR that for all u in E,

PHR
u = σ(u) + PHR

(u− σ(u)).

It follows from Lemma 4.2 of [9] that for all u in E,

‖PHR
u− u‖L2(ΩR) → 0 as R→ ∞. (3.8)

Actually, Lemma 4.2 of [9] applies to an approximate projection operator
into HR, but we are using, as in in [10, 7], the fact that projection into HR

gives the closest vector field in HR to the vector field being projected.

4. Weak deterministic solutions

Definition 4.1 (Weak Navier-Stokes Solution). Given viscosity ν > 0, ini-
tial velocity u0 in HR, and forcing f in L2

loc([0,∞),HR), u in L2([0, T ];VR)
with ∂tu in L2([0, T ];V ′

R) is a weak solution to the Navier-Stokes equations
on ΩR if u(0) = u0 and

(NS)

∫

ΩR

∂tu · v +

∫

ΩR

(u · ∇u) · v + ν

∫

ΩR

∇u · ∇v = (u, f)

for almost all t in [0, T ] and for all v in VR. A weak solution on R
2 is defined

for u0 in Em with u lying in L2([0, T ]; Ḣ1) and ∂tu in L2([0, T ];V ′), and with
(NS) holding for all v in V .

Definition 4.2 (Weak Euler Solution). Given an initial velocity u0 in Y(ΩR)
and forcing f in L2

loc([0,∞),HR), u in L∞([0, T ];HR ∩H1(ΩR)) with ∂tu in
L2([0, T ];V ′

R) is a weak solution to the Euler equations if u(0) = u0 and

(E)

∫

ΩR

∂tu · v +

∫

ΩR

(u · ∇u) · v = (f, v)

for almost all t in [0, T ] and for all v in HR ∩ H1(ΩR). A weak solution
on R

2 is defined for u0 in Ym with u lying in L∞([0, T ]; Ym) and ∂tu in
L2([0, T ];V ′), and with (E) holding for all v in V .
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Note that the test functions always have finite energy, even for solutions
in the whole plane. (Test functions in Em would be too large to define the
integrals involving the nonlinear terms in (NS) and (E).)

Given a solution to (NS), there exists a distribution p (tempered, if the
solution is in the whole plane) such that

∂tu+ u · ∇u+ ∇p = ν∆u+ f, (4.1)

equality holding in the sense of distributions. This follows from a result of
Poincaré and de Rham that any distribution that is a curl-free vector is the
gradient of some scalar distribution.

Given a solution to (E), there exists a pressure p such that

∂tu+ u · ∇u+ ∇p = f, (4.2)

but we can only interpret p as a distribution when working in the whole
plane. Otherwise, we must view ∂tu+ u · ∇u as lying in H−1(ΩR) and p as
lying in L2(ΩR). (Equation (4.2) follows, for instance, from Remark I.1.9 p.
14 of [12].)

In both Equation (4.1) and Equation (4.2) the pressure is unique up to the
addition of a function of time. We resolve this ambiguity on ΩR by requiring
that

∫

ΩR
p(t) = 0 and on R

2 by requiring that p(t) lie in L2(ΩR) for almost

all t in [0, T ].
In referring to solutions on ΩR we will say solutions for R in [1,∞) and

in referring to solutions on R
2 we will say solutions for R = ∞.

Theorem 4.3. (1) Assume that u0 is in Em ∩ Ḣ1. There exists a unique
weak solution (u, p) to (NS) in the sense of Definition 4.1 with initial velocity
u0 for R = ∞ and initial velocity PVR

u0 for R in [1,∞), with

u− σm ∈ L∞([0, T ];HR), ∇u ∈ L∞([0, T ];L2(ΩR)). (4.3)

Moreover, there is a bound on each of these norms that is independent of R
in [1,∞] and that depends continuously on ‖u0‖E1 . For R = ∞, if u0 is in

Em∩ Ḣ1 and ω(f) is in L1([0, T ];Lp0 ∩L∞) then ω(u) is in L∞([0, T ];Lp0 ∩
L∞).

(2) Assume that u0 is in Ym and that ω(f) is in L1([0, T ];Lp0 ∩ L∞).
There exists a unique weak solution (u, p) to (E) in the sense of Defini-
tion 4.2 with initial velocity u0 for R = ∞ and initial velocity URu0 for R
in [1,∞). We have,

u− σm ∈ L∞([0, T ];HR), ∇u ∈ L∞([0, T ];L2(ΩR)),
u ∈ L∞([0, T ] × ΩR), u ∈ C([0, T ] × ΩR),
∂tu ∈ L∞([0, T ];HR), ∇p ∈ L∞([0, T ];L2(ΩR)),
ω(u) ∈ L∞([0, T ];Lp0 ∩ L∞(ΩR)),

and there is a bound on each of these norms that is independent of R in
[1,∞] and that depends continuously on ‖u0‖Y

.

Proof. These results are standard for R < ∞, except for the independence
of the norms on R. The independence of the first norm in Equation (4.3)
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follows for solutions to (NS) from the energy inequality in Equation (5.4)
along with Equation (3.4); for the second norm it follows from adapting
slightly the proof of this same fact for finite energy in [9]. The stronger
bounds for solutions to (E) follow from the vorticity equation for (E). The
results for R = ∞ are a minor modification of the same results for finite-
energy: see, for instance, [2]. �

Definition 4.4 (Solution operators). Fix fR in L2([0,∞);HR) and write f
for f∞. Let SR(t) be the solution operator for (NS) on ΩR with S = S∞,
and let SR(t) be the solution operator for (E) on ΩR with S = S∞.

In application, we will often start with f in L2([0,∞);H) or even time-
independent f in H and let fR = PHR

f .
SR(0) is the identity operator, as is SR(0). For all t > 0, SR maps

HR → VR and VR → VR and S maps Em → Em ∩ Ḣ1, Em ∩ Ḣ1 → Em ∩ Ḣ1,
E → E

1, and E
1 → E

1. For all t ≥ 0, SR maps Y (ΩR) → Y (ΩR) and S
maps Ym → Ym and Y → Y. Each of these maps is continuous.

Observe that SR(t)PVR
u0 = u(t) for R in [1,∞) and S(t)u0 = u(t) for

R = ∞ in part (1) of Theorem 4.3, while SR(t)URu0 = u(t) for R in [1,∞)
and S(t)u0 = u(t) for R = ∞ in part (2).

5. Deterministic expanding domain limit

First we establish the basic energy equality for deterministic solutions to
(NS) in ΩR and in all of R

2. In all of R
2, the energy is not finite, so we

need to subtract σm from the velocity to produce an “energy” equality. To
make these estimates uniform over R in [1,∞], we need, then, to subtract
σm from the velocity for R < ∞ as well. Actually, it will be slightly more
convenient to subtract

σm = PVR
σm for R ∈ [1,∞), σm = σm for R = ∞

instead, but because σm → σm in the H1(ΩR)-norm as R → ∞ by Equa-
tion (3.4), this amounts to the same thing.

Theorem 5.1. Let u be a solution to (NS) as in Definition 4.1 with initial
velocity u0 in HR for R <∞ and u0 in Em for R = ∞. Then

‖(u− σm)(t)‖2
L2(ΩR) + 2ν

∫ t

0
‖∇(u− σm)‖2

L2(ΩR)

= ‖u0 − σm‖2
L2(ΩR) − 2

∫ t

0

∫

ΩR

((u− σm) · ∇σm) · (u− σm)

− 2ν

∫ t

0

∫

ΩR

∇σm · ∇(u− σm) + 2

∫ t

0

∫

Ω
fR · (u− σm)

(5.1)
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and

‖(u− σm)(t)‖2
L2(ΩR) + ν

∫ t

0
‖∇(u− σm)‖2

L2(ΩR)

≤
(

‖u0 − σm‖2
L2(ΩR) + Cm2νt+ ‖f‖2

L1([0,t];L2)

)1/2
e(Cm+1)t,

(5.2)

where C depends only on ‖∇σ1‖L2∩L∞.

Proof. Assume first that R <∞. Using u−σm, which is in VR for all t > 0,
as a test function in (NS) gives

∫

ΩR

∂tu · (u− σm) +

∫

ΩR

(u · ∇u) · (u− σm) + ν

∫

ΩR

∇u · ∇(u− σm)

=

∫

ΩR

f · (u− σm).

But,
∫

ΩR

∂tu · (u− σm) =

∫

ΩR

∂t(u− σm) · (u− σm) =
1

2

d

dt
‖u− σm‖2

L2(ΩR)

and
∫

ΩR

(u · ∇u) · (u− σm) =

∫

ΩR

(u · ∇(u− σm)) · (u− σm)

+

∫

ΩR

(u · ∇σm) · (u− σm)

=
1

2

∫

ΩR

u · ∇ |u− σm|2 +

∫

ΩR

((u− σm) · ∇σm) · (u− σm)

+

∫

ΩR

(σm · ∇σm) · (u− σm).

The first integral in the right-hand side above is formally zero because
div u = 0 and u · n = 0 on ∂ΩR. More properly, we first observe that the
integral is finite. This is because at time t in [0, T ] both u and u − σm are

in H1(ΩR) and so in L4(ΩR) by Sobolev embedding. But |∇ |u− σm|2 | ≤
2 |u− σm| |∇(u− σm)|, and applying Hölder’s inequality gives the finiteness
of the integral. Approximating by smooth functions and using the dominated
convergence theorem shows that the integral is zero. (This is the approach of
Lemmas II.1.1 and II.1.3 p. 108-109 of [12].) Since by Lemma 3.3, σm ·∇σm

is a gradient, the last integral above vanishes. We conclude that
∫

ΩR

(u · ∇u) · (u− σm) =

∫

ΩR

((u− σm) · ∇σm) · (u− σm).

For the final term, we observe that
∫

ΩR

∇u · ∇(u− σm)

=

∫

ΩR

∇(u− σm) · ∇(u− σm) +

∫

ΩR

∇σm · ∇(u− σm).
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Combining all these equalities gives

1

2

d

dt
‖u− σm‖2

L2(ΩR) + ν ‖∇(u− σm)‖2
L2(ΩR)

= −

∫

ΩR

((u− σm) · ∇σm) · (u− σm) − ν

∫

ΩR

∇σm · ∇(u− σm)

+

∫

ΩR

fR · (u− σm).

Integrating in time gives Equation (5.1). Also, we can bound the right-hand
side by

‖∇σm‖L∞(R2) ‖u− σm‖2
L2(ΩR) + ν ‖∇σm‖L2(R2) ‖∇(u− σm)‖L2(ΩR)

+ ‖fR‖L2(ΩR) ‖u− σm‖L2(ΩR

≤ Cm ‖u− σm‖2
L2(ΩR) + Cm2ν +

1

2
‖fR‖

2
L2(ΩR) +

ν

2
‖∇(u− σm)‖2

L2(ΩR) ,

where we used Young’s inequality and σm = mσ1. Thus,

d

dt
‖u− σm‖2

L2(ΩR) + ν ‖∇(u− σm)‖2
L2(ΩR)

≤ Cm2ν + ‖fR‖
2
L2(ΩR) + C ‖u− σm‖2

L2(ΩR) .
(5.3)

Integrating in time and applying Gronwall’s inequality gives Equation (5.2).
The energy argument above works equally as well when R = ∞ with

the exception of the term (1/2)
∫

R2 u · ∇ |u− σm|2, which must be handled

slightly differently, because at time t in [0, T ] we no longer have u in H1(ΩR),

only in Ḣ1(R2). So we divide the integral in two, writing

1

2

∫

R2

u · ∇ |u− σm|2 =
1

2

∫

R2

(u− σm) · ∇ |u− σm|2

+
1

2

∫

R2

σm · ∇ |u− σm|2 .

The first integral is finite and, in fact, zero, using the same reasoning as
with the similar term for R < ∞. The vector field σm is in L∞(R2)

and ∇ |u− σm|2 is in L1(R2) since |∇ |u− σm|2 | ≤ 2 |u− σm| |∇(u− σm)|;
hence, the second integral is finite. We then have

∣

∣

∣

∣

1

2

∫

R2

σm · ∇ |u− σm|2
∣

∣

∣

∣

= lim
R→∞

∣

∣

∣

∣

1

2

∫

ΩR

σm · ∇ |u− σm|2
∣

∣

∣

∣

= lim
R→∞

∣

∣

∣

∣

1

2

∫

∂ΩR

(σm · n) |u− σm|2
∣

∣

∣

∣

.

This integral vanishes, since σm · n = 0 on ∂ΩR. �

Corollary 5.2. Let f lie in L2([0,∞);H) and let fR = PHR
f . Let u0 be

in Em ∩ E
1 and let u be a solution to (NS) as in Definition 4.1 with initial
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velocity PVR
u0 when R is in [1,∞) and initial velocity u0 when R = ∞.

Then for a constant C independent of R and u0,

‖(u− σm)(t)‖2
L2(ΩR) + ν

∫ t

0
‖∇(u− σm)‖2

L2(ΩR)

≤
(

‖u0 − σm‖2
VR

+ Cm2νt+ ‖f‖2
L1([0,t];L2)

)1/2
e(Cm+1)t.

(5.4)

Proof. Apply Theorem 5.1 with initial velocity PVR
u0 = PVR

(u0 − σm) +
PVR

σm and use Equation (3.5). �

Remark 5.3. Were we to use an initial velocity of URu0 instead of PVR
u0

in Corollary 5.2 we could replace ‖u0 − σm‖VR
on the right-hand side of

Equation (5.4) with C‖u0 − σm‖HR
. See Remark 3.4.

We can control the decay of the tail of solutions to (NS) at time t based,
ultimately, on the their decay at time zero:

Lemma 5.4. For all u0 in E
1,

‖S(t)u0 − σ(S(t)u0)‖L∞([0,T ];L2(ΩC
R)) → 0 as R→ ∞

and

‖S(t)u0 − σ(S(t)u0)‖L2([0,T ];H1(ΩC
R)) → 0 as R→ ∞.

Proof. This is a minor adaptation of Lemma 7.1 of [9] to account for infinite-
energy, and follows by a standard argument. �

Theorem 5.5. Assume that u0 lies in E
1 and let uR(t) = SR(t)PVR

u0 and
u(t) = S(t)u0. Then

‖uR − u‖L∞([0,T ];H1(ΩR)) → 0 as R→ ∞, (5.5)

‖∇(uR − u)‖L2([0,T ];L2(ΩR)) → 0 as R→ ∞, (5.6)

and

‖F (t, u) − FR(t, uR)‖L2([0,T ];V ′

R(ΩR)) → 0 as R→ ∞. (5.7)

In addition, the supremum over all u0 in any bounded subset of E
1 and over

all R in [1,∞] of each of the quantities,

‖uR − σ(u)‖L∞([0,T ];L2(ΩR)) , ‖∇uR‖L2([0,T ];L2(ΩR)) ,

‖FR(t, uR)‖L2([0,T ];V ′

R(ΩR))

(5.8)

is finite.

Proof. The first two bounds in Equation (5.8) follow from Equation (5.4).
Equations (5.5) and (5.6) follow from Theorem 8.1 of [9] extended to infinite
energy solutions using Equation (5.4) in place of the standard finite-energy
energy bounds.
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We now prove Equation (5.7). We have,

‖F (t, u) − FR(t, uR)‖V ′

R(ΩR) ≤ ‖Au(t) −ARuR(t)‖V ′

R(ΩR)

+ ‖Bu(t) −BRuR(t)‖V ′

R(ΩR) + ‖f − fR‖V ′

R(ΩR) .

Let v be in VR with ‖v‖VR
= 1. Then

|(Au(t) −ARuR(t), v)| = ν |(∆u(t) − ∆uR(t), v)|

= ν |(∇u(t) −∇uR(t),∇v)| ≤ ν ‖∇u(t) −∇uR(t)‖L2(ΩR) ‖v‖VR
.

Thus,

‖Au(t) −AR(uR)(t)‖L2([0,T ];V ′

R(ΩR)) ≤ ν ‖∇u−∇uR‖L2([0,T ];L2(ΩR)) ,

which vanishes as R→ ∞ by Equation (5.6).
For the nonlinear term,

|(Bu(t) −BRuR(t), v)| = |(u(t) · ∇u(t) − uR(t) · ∇uR(t), v)|

= |(div(u(t) ⊗ u(t) − uR(t) ⊗ uR(t)), v)|

= |(u(t) ⊗ u(t) − uR(t) ⊗ uR(t),∇v)|

≤ ‖u(t) ⊗ u(t) − uR(t) ⊗ uR(t)‖L2(ΩR) ‖v‖VR
.

But,
∥

∥u(t)iu(t)j − uR(t)i ⊗ uR(t)j
∥

∥

L2(ΩR)

≤
∥

∥u(t)i(u(t)j − uR(t)j)
∥

∥

L2(ΩR)
+

∥

∥(u(t)i − uR(t)i)uR(t)j
∥

∥

L2(ΩR)

≤ C ‖u(t)‖L4(ΩR) ‖u(t) − uR(t)‖L2(ΩR)

≤ C ‖u(t)‖
1/2
L2(ΩR)

‖∇u(t)‖
1/2
L2(ΩR)

‖u(t) − uR(t)‖
1/2
L2(ΩR)

× ‖∇(u(t) − uR(t))‖
1/2
L2(ΩR)

≤ C ‖∇u(t)‖
1/2
L2(ΩR)

‖∇(u(t) − uR(t))‖
1/2
L2(ΩR)

,

where we used Ladyzhenskaya’s inequality (which gives no dependence on R
for the constant C). Thus,

‖Bu(t) −BR(uR)(t)‖L2([0,T ];V ′

R(ΩR))

≤ C ‖∇u‖L1([0,T ];L2(ΩR) ‖∇(u(t) − uR(t))‖L1([0,T ];L2(ΩR)

Ct ‖∇u‖L2([0,T ];L2(ΩR) ‖∇(u(t) − uR(t))‖L2([0,T ];L2(ΩR) ,

which vanishes as R→ ∞ by Equation (5.6).
For the forcing term,

‖f − fR‖L2([0,T ];V ′

R(ΩR)) ≤ ‖f − fR‖L2([0,T ];HR(ΩR)) ,

which vanishes as R→ ∞ by Equation (3.8).
From these bounds, Equation (5.7) follows.
It remains to establish the last bound in Equation (5.8). But this follows

from an argument similar to that we just made to prove Equation (5.7),
using the first two bounds in Equation (5.8). �
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Remark 5.6. Together, the limits in Equations (5.5) and (5.6) are called the
expanding domain limit in [9]. Most of the estimates involved in establishing
these limits require only that the initial velocity lie inH (or E for the infinite-
energy extension). The key exception is that the regularity of the pressure
is insufficient to complete the argument unless the initial velocity is in V (or
E

1 for the infinite-energy extension).
Had we used UR in place of PVR

in defining the initial velocity, the ex-
panding domain limit would still hold (indeed, this is how the limit was
established in [9]). An advantage of using UR is that the resulting bound on
the rate of convergence is slightly improved, since H1-norms are replaced by
L2-norms in certain constants that appear in the bound. But this is unim-
portant in our use of the limit, so we preferred to use PVR

, since it has a
more natural definition.

Corollary 5.7. For all u0 in E
1,

‖SR(t)PVR
u0 − PVR

S(t)u0‖L∞([0,T ];HR) → 0 as R→ ∞ (5.9)

and

‖SR(t)PVR
u0 −PVR

S(t)u0‖L2([0,T ];VR) → 0 as R→ ∞. (5.10)

Proof. By Equations (5.5) and (5.6)

lim
R→∞

‖SR(t)PVR
u0 − S(t)u0‖L2([0,T ];VR) → 0 as R→ ∞.

But by Equation (3.4),

‖PVR
S(t)u0 − S(t)u0‖L2([0,T ];VR)

≤ C ‖S(t)u0 − σ(S(t)u0)‖L2([0,T ];H1(ΩR\ΩR/2)) + T 1/2 |m(u)| β(R)

≤ C ‖S(t)u0 − σ(S(t)u0)‖L2([0,T ];H1(ΩC
R/2

)) + T 1/2 |m(u)| β(R),

which also vanishes as R→ ∞ by Lemma 5.4. Equation (5.10) then follows
from the triangle inequality. The proof of Equation (5.9) is similar. �

Remark 5.8. It is only in the proof of Corollary 5.7 where we directly use
the uniform decay over time of the tail of the velocity for solutions to (NS).
It was, however, already used in the extension of the expanding domain limit
from finite to infinite energy energy alluded to in the proof of Theorem 5.5.

Lemma 5.9. For all u in E
1.

‖F (t, u) − FR(t,PVR
u)‖V ′

R(ΩR) → 0 as R→ ∞,

and the supremum over any bounded subset of E
1 and over all R in [1,∞] of

‖FR(t,PVR
u)‖V ′

R(ΩR) (5.11)

is finite.

Proof. The proof is the same as that of Equation (5.7), with no need to
introduce the L2-norm over [0, T ], and using Lemma 3.2 in place of the
bounds in Equations (5.5) and (5.6). �
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6. Definition of infinite-energy statistical solutions

Following [6] p. 264-265, we define a statistical solution to (NS) on ΩR, first
defining the space of test functions.

Definition 6.1. The space TR of test functions, R < ∞, is the set of all
functions Φ: HR → R such that Φ(u) = φ((u, g1), . . . , (u, gk)) for some φ in
C1(Rk) and some g1, . . . , gk in VR. The Fréchet derivative of such a Φ is
given by

Φ′(u) =

k
∑

j=1

∂jφ((u, g1), . . . , (u, gk))gj ,

which lies in VR since each gj is in VR. When R = ∞, we require that each
of g1, . . . , gk be compactly supported in R

2, so that Φ: E → R, and we also
write T for T∞. This is the same class of test functions as for homogeneous
solutions in the whole space (Definition 2.3 p. 278 of [6]).

Observe that because each ∂jφ is bounded,
∥

∥Φ′(u)
∥

∥

VR
≤ C(Φ) (6.1)

for all u in VR.
For t ≥ 0 and u in HR let

FR(t, u) = fR(t) − νARu−BR(u),

where AR is the Stokes operator and BR is the classical linear operator
associated with the nonlinear term in (NS) on ΩR. (See, for instance, p. 38
of [6].) We also write F for F∞, A for A∞, and B for B∞.

For R = ∞, we will assume for simplicity that f is in L2
loc([0,∞);H); that

is, we do not allow infinite forcing.

Definition 6.2 (Statistical solution to (NS)). Assume that µ0 is a Borel
probability measure on HR. Then a family,

µ = {µt}t≥0 ,

of Borel probability measures on HR, R < ∞, is a statistical solution to
(NS) (SSNS) on ΩR if each of the following is satisfied:

(1) For all Φ in TR and all t ≥ 0,
∫

HR

Φ(u) dµt(u) =

∫

HR

Φ(u) dµ0(u)

+

∫ t

0

∫

HR

(FR(s, u),Φ′(u)) dµs(u) ds.

(2) For all t ≥ 0,
∫

HR

‖u‖2
L2 dµt(u) + 2ν

∫ t

0

∫

HR

‖∇u‖2
L2 dµs(u) ds

=

∫ t

0

∫

HR

(f(s), u) dµs(u) ds +

∫

HR

‖u‖2
L2 dµ0(u).
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(3) The map

t 7→

∫

HR

φ(u) dµt(u)

is measurable for all t ≥ 0 and all φ in C0(HR).
(4) The map

t 7→

∫

HR

‖u‖2
HR

dµt(u)

lies in L∞
loc([0,∞)).

(5) The map

t 7→

∫

HR

‖∇u‖2
L2 dµt(u)

lies in L1
loc([0,∞)).

When R = ∞, we make two changes in the definition. First, we replace
HR by E throughout. Second, the energy equality in (2) is replaced by

(2’) For all t ≥ 0,
∫

E

‖u− σ(u)‖2
L2 dµt(u) + 2ν

∫ t

0

∫

E

‖∇(u− σ(u))‖2
L2 dµs(u) ds

=

∫ t

0

∫

E

(f(s), u− σ(u)) dµs(u) ds +

∫

E

‖u− σ(u)‖2
L2 dµ0(u)

− 2

∫ t

0

∫

E

((u− σ(u)) · ∇σ(u)), u− σ(u)) dµs(u) ds

− 2ν

∫ t

0

∫

E

∇σ(u) · ∇(u− σ(u)) dµs(u) ds,

where σ(u) is defined in Equation (2.7).

The following is from Theorems 1.1 and 1.2 Chapter V of [6]:

Theorem 6.3. Let µ0 be as in Definition 6.2 , R <∞, with kinetic energy
∫

HR

‖u‖2
HR

dµ0(u) <∞

and assume that f lies in L2
loc([0,∞);HR). There exists a SSNS, µ, as in

Definition 6.2. If the support of µ0 is (HR, VR)-bounded as in Definition 2.1
(meaning that the containment in Equation (6.3) holds for t = 0) and f
in HR is time-independent then µt = SR(t)µ0 for all t ≥ 0 is a SSNS.
Furthermore, this solution is the unique SSNS satisfying Equations (6.2)
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through (6.4):

t 7→

∫

HR

ϕ(u) dµt(u) is continuous on [0,∞) for all ϕ in C(Hw
R ), (6.2)

suppµt ⊆
{

u ∈ VR : ‖u‖HR
≤M

}

for all t ≥ 0 for some M, (6.3)
∫

HR

Ψ(t, u) dµt(u) =

∫

HR

Ψ(0, u) dµ0(u)

+

∫ t

0

∫

HR

[

Ψ′
s(s, u) + (F (u),Ψ′

u(s, u))
]

dµs(u) ds. (6.4)

Hw
R is the space HR in the weak topology. In Equation (6.4), equality holds

for all Fréchet-differentiable continuous real-valued functions on [0,∞)×VR

(see the discussion following Equation V.1.16 in [6] for more details).

For statistical solutions to (E), we consider only solutions in the whole
plane. For solutions to (E) there is no term involving the Stokes operator,
so we define

F (t, u) = f(t) −B(u).

Definition 6.4 (Statistical solution to (E) in the plane). Assume that µ0

is a Borel probability measure on E. A statistical solution to the Euler
equations (SSE) on E satisfies all the properties of a SSNS in Definition 6.2
for R = ∞ except that the terms involving ν in property (2’) are eliminated.

7. Construction of Navier-Stokes solutions

Let S(t) be the solution operator on E as in Definition 4.4. Given that we
expect the analog of Theorem 6.3 to hold for infinite-energy solutions in R

2,
we would expect that

µt = S(t)µ0 (7.1)

is the unique SSNS associated to the initial measure µ0 if we assume that
the support of the initial Borel probability measure µ0 is (E,E1)-bounded as
in Definition 2.1. We show that this is, in fact, the case. Our approach will
be to use the SSNS on ΩR and take a limit as R → ∞ in a careful way to
demonstrate that µt is a SSNS on all of R

2.
We start by defining the initial probability measure µR

0 on HR by

µR
0 (E) = µ0(P

−1
VR
E)

for all Borel measurable subsets E of HR. Then µR
0 is a probability mea-

sure, for µR
0 (HR) = µ0(P

−1
VR
HR) = µ0(E) = 1. Since we are treating initial

probability distributions supported on E
1, we use projection into VR. When

working with SSNSs as weak as those of Definition 6.2, projection into HR

would be used instead (though the limiting argument in that case is consid-
erably more involved).
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Similarly, we define the forcing term fR in FR by letting

fR = PHR
f, (7.2)

where PHR
is projection into HR. For simplicity, we assume that f is time-

independent. Then

‖f − fR‖HR
→ 0 as R→ ∞ (7.3)

from Lemma 4.2 of [9] and the observation that projection into HR gives the
closest element in HR.

We let µR be the associated SSNS on ΩR, so that, by Theorem 6.3,

µR
t = SR(t)µR

0 ,

meaning that SR(t)µR
0 (E) = µR

0 (S−1
R (t)E) for any Borel measurable subset

E of HR.
Let Φ be in T as in Definition 6.1. Because each gj is compactly supported,

for all sufficiently large R, we can define a test function ΦR in TR by

ΦR(v) =
def
φ((v, g1|ΩR

), . . . , (v, gk|ΩR
)) = Φ(ERv) (7.4)

for all v in HR, where ERv is extension by zero of v in HR to all of R
2. It

follows that for all v in HR,

ERΦ′
R(v) = Φ′(ERv). (7.5)

From now on, we always assume that R is sufficiently large that Equa-
tion (7.4) holds.

For all u in E
1,

|ΦR(PVR
u) − Φ(u)|

= |φ((PVR
u, g1|ΩR

), . . . , (PVR
u, gk|ΩR

)) − φ((u, g1), . . . , (u, gk))|

≤ ‖∇φ‖L∞ |(PVR
u− u, g1), . . . , (PVR

u− u, gk)|

≤ ‖φ‖C1 ‖PVR
u− u‖L2(ΩR)

(

‖g1‖
2
H + · · · + ‖gk‖

2
H

)1/2

≤ C ‖PVR
u− u‖L2(ΩR) .

Thus from Lemma 3.2,

ΦR(PVR
u) → Φ(u) as R → ∞. (7.6)
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Similarly, for all u in E
1,

∥

∥Φ′
R(PVR

u) − Φ′(u)
∥

∥

VR

≤

k
∑

j=1

|∂jφ((PVR
u, g1), . . . , (PVR

u, gk)) − ∂jφ((u, g1), . . . , (u, gk))| ‖gj‖VR

≤ C
k

∑

j=1

µj (|(PVR
u, g1), . . . , (PVR

u, gk) − (u, g1), . . . , (u, gk)|)

= C
k

∑

j=1

µj (|(PVR
u− u, g1), . . . , (PVR

u− u, gk)|)

≤ C

k
∑

j=1

µj

(

‖PVR
u− u‖HR

(

‖g1‖
2
H + · · · + ‖gk‖

2
H

)1/2
)

,

where µj is the modulus of continuity of ∂jφ. Thus by Lemma 3.2,
∥

∥Φ′
R(PVR

u) − Φ′(u)
∥

∥

VR
→ 0 as R→ ∞. (7.7)

Before proceeding, we mention one logical simplification that we cannot
make. It might seem reasonable to try to show that

S(t)µ0 = lim
R→∞

PVR
◦ SR(t) ◦ P−1

VR
µ0

= lim
R→∞

µ0 ◦P−1
VR

◦ SR(t)−1 ◦PVR

(7.8)

by showing that equality holds on any Borel measurable set E. We note,
however, that if µ0 is supported on a singleton set E = {u0} in E, u0 nonzero,
then P−1

VR
◦SR(t)−1 ◦PVR

(SR(t)u0) will in general never equal u0. Thus, the
right-hand side above applied to E will evaluate to 0 for all R, while the
left-hand side will evaluate to 1.

Observe that Equation (7.8) is equivalent to saying that
∫

E

Φ(u) dµt(u) = lim
R→∞

∫

HR

Φ (u) dνR
t (u), (7.9)

where νt = PVR
µt for all test functions Φ (which are dense in the set of

bounded continuous functions). We will prove instead that
∫

E

Φ(u) dµt(u) = lim
R→∞

∫

HR

ΦR (u) dµR
t (u), (7.10)

and that similar limits hold for the other integral in Property (1) of Defini-
tion 6.2, thus circumventing our difficulty. In this weak sense, the expanding
domain limit could be said to hold for statistical solutions.

Theorem 6.3 continues to hold for R = ∞ if we impose at the outset the
condition that the initial velocity µ0 is supported in E

1. This condition is
required to allow us to take advantage of the expanding domain limit and
related bounds from Section 5. (See, however, Remark 7.2.) The idea for
proving existence is to first assume that the measure has bounded support
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in E
1, apply the results of Section 5, which require such support, then use

the linearity of properties (1)-(5) of Definition 6.2 to drop the boundedness
assumption. This leads to Theorem 7.1.

Theorem 7.1. Let µ0 be as in Definition 6.2 for R = ∞, but supported in
E

1, and having “energy”
∫

E

‖u‖2
E
dµ0(u) <∞.

Assume that f lies in L2
loc([0,∞);V ). There exists a SSNS, µ, as in Defini-

tion 6.2. If the support of µ0 is (E,E1)-bounded as in Definition 2.1 (meaning
that Equation (7.12) holds for t = 0) and f in V is time-independent then
µt = S(t)µ0 for all t ≥ 0 is a SSNS. Furthermore, this solution is the unique
SSNS satisfying Equations (7.11) through (7.13):

t 7→

∫

E

ϕ(u) dµt(u) is continuous on [0,∞) for all ϕ in C(Hw), (7.11)

suppµt ⊆
{

u ∈ E
1 : ‖u‖

E
≤M(t)

}

for all t ≥ 0, (7.12)
∫

E

Ψ(t, u) dµt(u) =

∫

E

Ψ(0, u) dµ0(u)

+

∫ t

0

∫

X

[

Ψ′
s(s, u) + (F (u),Ψ′

u(s, u))
]

dµs(u) ds. (7.13)

In Equation (7.12), M is continuous on [0,∞). In Equation (7.12), equal-
ity holds for all Fréchet-differentiable continuous real-valued functions on
[0,∞) × V .

Proof. Existence: Assume first that the initial Borel probability measure
µ0 has bounded support in E

1, meaning that

suppµ0 ⊆
{

u ∈ E
1 : ‖u‖

E1 ≤M
}

, for some M,

and define µt by Equation (7.1) for t ≥ 0. By Equation (4.3) it follows that

suppµt ⊆
{

u ∈ E
1 : ‖u‖

E1 ≤M(t)
}

(7.14)

for some continuous function M .
In Theorem 5.5, for initial velocity u0 in E

1 we defined uR(t) = SR(t)PVR
u0

and u(t) = S(t)u0. In this proof we will be integrating over all initial veloc-
ities in E and calling the initial velocity u, to agree with the notation of [6].
In this notation, Equation (5.8) and Equation (5.11) become

‖SR(t)PVR
u− σ(u)‖L∞([0,T ];L2(ΩR)) , ‖∇SR(t)PVR

u‖L2([0,T ];L2(ΩR)) ,

‖FR(t, SR(t)PVR
u)‖L2([0,T ];V ′

R(ΩR)) , ‖FR(t,PVR
S(t)u)‖V ′

R(ΩR)

(7.15)

are bounded on suppµ0 uniformly over all R in [1,∞]. This will allow us to
apply the dominated convergence theorem in several steps in our proof.
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Using Equation (7.4), for all u in E
1,

Φ

(

lim
R→∞

SR(t)PVR
u

)

= Φ

(

lim
R→∞

ERSR(t)PVR
u

)

= lim
R→∞

Φ (ERSR(t)PVR
u) = lim

R→∞
ΦR (SR(t)PVR

u) ,
(7.16)

where we used the continuity of Φ. Thus we have,
∫

E

Φ(u) dµt(u) =

∫

E

Φ(S(t)u) dµ0(u)

=

∫

E

Φ

(

lim
R→∞

SR(t)PVR
u

)

dµ0(u)

=

∫

E

lim
R→∞

ΦR (SR(t)PVR
u) dµ0(u)

= lim
R→∞

∫

E

ΦR (SR(t)PVR
u) dµ0(u)

= lim
R→∞

∫

HR

ΦR (SR(t)v) dµR
0 (v)

= lim
R→∞

∫

HR

ΦR (u) dµR
t (u)

giving Equation (7.10). The first equality follows from Equation (7.1), since
the space of bounded continuous functions is dual to the space of Borel proba-
bility measures. The limit in the second equality follows from Theorem 5.5.
The third equality follows from Equation (7.16). The fourth equality fol-
lows by the dominated convergence theorem, since ΦR is uniformly bounded
over R in [1,∞] and µ0 is a finite measure. The fifth equality follows from
Lemma 7.3. The sixth and final equality follows in the same way as does the
first.

This shows that Equation (7.10) holds for all t ≥ 0, so if we can show that
∫ t

0

∫

E

(F (s, u),Φ′(u)) dµs(u) ds

= lim
R→∞

∫ t

0

∫

HR

(FR(s, u),Φ′
R(u)) dµR

s (u) ds

(7.17)

then we will have established the first property of Definition 6.2 for µ.
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Toward this end,
∫ t

0

∫

E

(F (s, u),Φ′(u)) dµs(u) ds

=

∫ t

0

∫

E

(F (s, S(s)u),Φ′(S(s)u)) dµ0(u) ds

=

∫ t

0

∫

E

lim
R→∞

(FR(s,PVR
S(s)u),Φ′(S(s)u)) dµ0(u) ds

=

∫ t

0

∫

E

lim
R→∞

(FR(s,PVR
S(s)u),Φ′

R(PVR
S(s)u)) dµ0(u) ds

= lim
R→∞

∫ t

0

∫

E

(FR(s,PVR
S(s)u),Φ′

R(PVR
S(s)u)) dµ0(u) ds.

(7.18)

The first equality follows from Lemma 7.4. The second equality follows from
Lemma 5.9 and Equation (7.15), since Φ′(S(s)u) is bounded and compactly
supported—and so also we can view the pairings as being in either the duality
between V and V ′ or between VR and V ′

R. The third equality follows from
Equation (7.7). The fourth equality follows from the dominated convergence
theorem using Equation (7.15).

We would like to commute the roles of the projection operator and the
solution operator in the right-hand side of Equation (7.18) to allow us to
apply Lemma 7.3. To do this, we estimate,

D(s,u) = |(FR(s,PVR
S(s)u),Φ′

R(PVR
S(s)u))

− (FR(s, SR(s)PVR
u),Φ′

R(SR(s)PVR
u))|

≤ |(FR(s,PVR
S(s)u) − FR(s, SR(s)PVR

u),Φ′
R(PVR

S(s)u))|

+ |(FR(s, SR(s)PVR
u),Φ′

R(PVR
S(s)u) − Φ′

R(SR(s)PVR
u))|

≤ ‖FR(s,PVR
S(s)u) − FR(s, SR(s)PVR

u)‖V ′

R

∥

∥Φ′
R(PVR

S(s)u)
∥

∥

VR

+ ‖FR(s, SR(s)PVR
u)‖V ′

R

∥

∥Φ′
R(PVR

S(s)u) − Φ′
R(SR(s)PVR

u)
∥

∥

VR
.

Letting

h(R,u, s) :=
∥

∥Φ′
R(PVR

S(s)u) − Φ′
R(SR(s)PVR

u)
∥

∥

VR
, (7.19)

we have
∫ t

0

∫

E

D(s, u) dµ0(u) ds

≤ C

∫ t

0

∫

E

‖FR(s,PVR
S(s)u) − FR(s, SR(s)PVR

u)‖V ′

R
dµ0(u) ds

+

∫ t

0

∫

E

‖FR(s, SR(s)PVR
u)‖V ′

R
h(R,u, s) dµ0(u) ds.

(7.20)
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Applying the Cauchy-Schwarz inequality, we can bound the last term by
∫

E

‖FR(s, SR(s)PVR
u)‖L2([0,t];V ′

R) ‖h(R,u, ·)‖L2([0,t]) dµ0(u)

≤ C

∫

E

‖h(R,u, ·)‖L2([0,t]) dµ0(u),

using Equation (7.15).
By Equation (7.5),

h(R,u, s) =
∥

∥Φ′
R(PVR

S(s)u) − Φ′
R(SR(s)PVR

u)
∥

∥

VR

=
∥

∥Φ′(ERPVR
S(s)u) − Φ′(ERSR(s)PVR

u)
∥

∥

V
.

By Equation (6.1), ‖Φ′(v)‖V ≤ C0 for all v in HR, for some C0 independent
of R. Thus, h(R,u, ·) ≤ 2C0. Also, because Φ′ : H → V is continuous it
follows from Equation (5.9) that h(R,u, ·) → 0 as R → ∞ for all u in E

1.
Hence, for all u in E

1,

‖h(R,u, ·)‖2
L2([0,t]) =

∫ t

0
h(R,u, s)2 ds→ 0

by the dominated convergence theorem. But then also ‖h(R,u, ·)‖L2([0,t]) ≤

2C0t
1/2 and applying the dominated convergence theorem again gives

∫

E

‖h(R,u, ·)‖L2([0,t]) → 0 as R→ ∞.

We conclude that the second term on the right-hand side of Equation (7.20)
vanishes as R→ ∞.

For the first term in the right-hand side of Equation (7.20),

‖FR(s,PVR
S(s)u) − FR(s, SR(s)PVR

u)‖V ′

R

≤ ‖FR(s,PVR
S(s)u) − F (s, S(s)u)‖V ′

R

+ ‖F (s, S(s)u) − FR(s, SR(s)PVR
u)‖V ′

R
.

Since dµ0(u) ds is a finite measure on [0, t] × E and the first term on the
right-hand side is both bounded and vanishes as R→ ∞ by Lemma 5.9 and
Equation (7.15), after being integrated over [0, t]×E the first term vanishes
as R→ ∞. The L2([0, t])-norm of the second term on the right-hand side is
bounded on the support of µ0 by Equation (7.15) and vanishes as R → ∞
by Equation (5.7); applying the Cauchy-Schwarz inequality followed by the
dominated convergence theorem shows that

∫ t

0

∫

E

‖F (s, S(s)u) − FR(s, SR(s)PVR
u)‖V ′

R
dµ0(u) ds

≤ t1/2

∫

E

‖F (s, S(s)u) − FR(s, SR(s)PVR
u)‖L2([0,t];V ′

R) dµ0(u)

vanishes as R→ ∞.
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We conclude that D(s, u) integrates to zero in the limit as R→ ∞, mean-
ing that

∫ t

0

∫

E

(F (s, u),Φ′(u)) dµs(u) ds

= lim
R→∞

∫ t

0

∫

E

(FR(s, SR(s)PVR
u),Φ′

R(SR(s)PVR
u)) dµ0(u) ds.

Finally, using Lemma 7.3 and Lemma 7.4,
∫ t

0

∫

E

(FR(s, SR(s)PVR
u),Φ′

R(SR(s)PVR
u)) dµ0(u) ds

=

∫ t

0

∫

HR

(FR(s, SR(s)v),Φ′
R(SR(s)v)) dµR

0 (v) ds

=

∫ t

0

∫

HR

(FR(s, v),Φ′
R(v)) dµR

s (v) ds,

giving Equation (7.17), completing the demonstration that property (1) of
Definition 6.2 is satisfied for µ.

The other properties in Definition 6.2 follow more easily, using the dom-
inated convergence theorem and the first two bounds in Equation (5.8).
Thus, we have established the existence of a SSNS for R = ∞ when the ini-
tial probability measure has bounded support in E

1. But we can drop this
restriction by exploiting the inherent linearity in the definition of a SSNS,
as done on p. 318 of [6]. This establishes the existence part of the theorem.

Higher regularity: We now add the assumption that the support of µ0

is (E,E1)-bounded. Equation (7.11) and Equation (7.12) follow much as did
properties (2) through (5) of Definition 6.2. Adding the assumption that f
is time-independent, Equation (7.13) follows for R = ∞ in the same way it
does for R <∞.

Uniqueness: The proof of uniqueness for R < ∞ on p. 319-321 of [6]
applies with the following two changes: First, in the Galerkin approximation
we use a basis for E

1 in place of the eigenfunctions of the Stokes operator
(the spectrum no longer being discrete). Second, we use the energy bound
in Equation (5.2) for R = ∞ in place of the bound involving the eigenvalue,
λm, of the Stokes operator. �

Remark 7.2. It is possible to drop the assumption in Theorem 7.1 that µ0

is supported in E
1 and still obtain existence and to weaken the assumption

that the support of µ0 is (E,E1)-bounded to the support of µ0 being bounded
in E and still obtain uniqueness. The argument relies on using the boundary
condition, u · n = ω(u) = 0 on ∂ΩR, in place of no-slip boundary conditions
in solutions to the Navier-Stokes equations. Such boundary conditions allow
one to bound the gradient of the pressure in L1([0, T ];L2(ΩR)) uniformly in
R and so obtain the expanding domain limit of Theorem 5.5 assuming only
that u0 lies in E. Key to bounding the pressure in this way is Lemma 1 of
[11].
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We used the following two elementary lemmas in the proof of Theorem 7.1.
Note that when we say that equality holds between two integrals when the
integrands are only Borel measurable, we mean that either both integrals
are defined and equal or that both integrals are undefined. We state the
lemmas this way because in their application we do not always know a priori
that the integrands are integrable.

Lemma 7.3. For any Borel measurable function f on HR,
∫

E

f(PVR
u) dµ0(u) =

∫

HR

f(v) dµR
0 (v). (7.21)

Proof. First observe that f ◦ PVR
is Borel measurable on E because PVR

is
Borel measurable (in fact, continuous) and f is Borel measurable, so the left-
hand side of Equation (7.21) is well-defined. When f = χE , the characteristic
function of a Borel measurable subset E of HR,

∫

E

f(PVR
u) dµ0(u) = µ0(P

−1
VR
E) = µR

0 (E) =

∫

HR

f(v) dµR
0 (v).

Equation (7.21) then holds for simple functions by linearity, for nonnegative
functions by the monotone convergence theorem, and hence for all Borel
measurable functions. �

Lemma 7.4. For any function f that is Borel measurable on HR,
∫

HR

f(u) dµR
t (u) =

∫

HR

f(SR(t)u) dµR
0 (u).

When f is Borel measurable on X,
∫

X
f(u) dµt(u) =

∫

X
f(S(t)u) dµ0(u).

Proof. As in the proof of Lemma 7.3, equality holds for simple functions,
then nonnegative functions, then all Borel measurable functions. �

8. Construction of Euler solutions

We construct infinite-energy statistical solutions to the Euler equations by
making a vanishing viscosity argument, using the infinite-energy statistical
solutions to the Navier-Stokes equations that we constructed in Section 7.

For initial velocities as in Theorem 7.1, we have the following for SSNSs:

Theorem 8.1. Assume that the support of the initial velocity µ0 for a SSNS
with R = ∞ is bounded in Y as in Definition 2.1 and that f is time-
independent and lies in Y0. Then the SSNS also satisfies

suppµt ⊆ {u ∈ Y : ‖u‖
Y
≤M(t)} , (8.1)

for a continuous function M independent of ν, and for all p in [p0,∞],
∫

E

‖ω(u)‖Lp dµt(u) ≤

∫

E

‖ω(u)‖Lp dµ0(u) +

∫ t

0
‖ω(f(s))‖Lp ds. (8.2)
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Proof. It is a standard result that

‖ω(S(t)u)‖Lp ≤ ‖ω(u)‖Lp +

∫ t

0
‖ω(f(t))‖Lp (8.3)

for all u in Y0. To prove it for p = r/q in lowest terms, with r even, one
takes the vorticity of Equation (4.1), ∂tω+ u · ∇ω = ν∆ω+ω(f), multiplies
both sides by ωp−1, and integrates over space and time formally to give

‖ω(t)‖p
Lp + p(p− 1)

∫ t

0
‖ωp/2−1∇ω‖2

L2(R2) = ‖ω0‖
p
Lp + p

∫ t

0
(ω(f), ωp−1).

An approximation and smoothing argument is required to establish the
equality rigorously, and it then follows for all p in [p0,∞] by the conti-
nuity of the Lp norm as a function of p. Applying Hölder’s inequality gives
Equation (8.3).

Now assume that u = σm + v is in Ym. Then ∂tu = ∂tv and ∆u = ∆v
on ΩC

1 , where ∆σm vanishes. Thus, the only additional complication in
the argument above is the presence of the additional term (σm ·∇ω, ωp−1) =
(1/p)(σm,∇ω

p). But this vanishes formally by the divergence theorem, since
σm · n = 0 on ∂ΩR, hence this term need not be accounted for in the ap-
proximation and smoothness argument.

Integrating Equation (8.3) over E gives
∫

E

‖ω(S(t)u)‖Lp dµ0(u) ≤

∫

E

‖ω(u)‖Lp dµ0(u) +

∫ t

0
‖ω(f(t))‖Lp .

(The last term has no dependence on u so the integral over E disappears,
µ0 being a probability measure.) But ‖ω(·)‖Lp : Y → [0,∞) is a bounded
continuous function on suppµ0 so Equation (8.2) follows from µt = S(t)µ0,
and Equation (8.1) follows from Equation (8.2). �

Theorem 8.2. Assume that µ0 is supported in Y with
∫

E

‖u‖2
E
dµ0(u) <∞,

and assume that f is time-independent and lies in Y0. There exists a SSE,
µ, as in Definition 6.4. One such solution is µt = S(t)µ0 for all t ≥ 0, where
S(t) is the solution operator for the two-dimensional Euler equations in R

2

as in Definition 4.4. Furthermore, if the support of µ0 is bounded in Y as in
Definition 2.1 and f is time-independent then this solution satisfies Equa-
tion (8.1) for some function M continuous on [0,∞) and Equation (8.2).

Proof. Assume first that the support of µ0 is bounded in Y. Define µt =
S(t)µ0, and let µ be the unique SSNS for R = ∞ given by Theorem 7.1
with the same forcing and initial data as for the Euler equations. Let Φ =
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φ((u, g1), . . . , (u, gk)) lie in T . Then g1, . . . , gk are in V and

Φ′(u) =

k
∑

j=1

∂jφ((u, g1), . . . , (u, gk))gj ∈ V,

∇Φ′(u) =

k
∑

j=1

∂jφ((u, g1), . . . , (u, gk))∇gj ∈ L2,

with
∥

∥Φ′(u)
∥

∥

V
≤ C,

∥

∥∇Φ′(u)
∥

∥

L2 ≤ C (8.4)

for some constant C independent of u in E.
Now,

∫

Y

Φ(u) dµt(u) =

∫

Y

Φ(u) dµ0(u) +

∫ t

0

∫

Y

(F (s, u),Φ′(u)) dµs(u) ds

so, using F = f − νAu−Bu and F = f −Bu,
∫

Y

Φ(u) dµt(u) −

∫

Y

Φ(u) dµ0(u) −

∫ t

0

∫

Y

(F (s, u),Φ′(u)) dµs(u) ds

=

∫

Y

Φ(u) d(µ0 − µ0)(u) +

∫ t

0

∫

Y

(F (s, u) − F (s, u),Φ′(u)) dµs(u) ds

−

∫ t

0

∫

Y

(Bu,Φ′(u)) d(µs − µs)(u) ds

=

∫

Y

Φ(u) d(µ0 − µ0)(u) − ν

∫ t

0

∫

Y

(Au,Φ′(u)) dµs(u) ds

−

∫ t

0

∫

Y

(Bu,Φ′(u)) d(µs − µs)(u) ds.

But µ0 = µ0, so
∫

Y

Φ(u) d(µt − µt)(u) = −ν

∫ t

0

∫

Y

(Au,Φ′(u)) dµs(u) ds

−

∫ t

0

∫

Y

(Bu,Φ′(u)) d(µs − µs)(u) ds.

We have,

(Bu,Φ′(u)) = (u · ∇u,Φ′(u))

and

(Au,Φ′(u)) = −(∆u,Φ′(u)) = (∇u,∇Φ′(u)),

since Φ′(u) is in V . Thus,
∫

Y

Φ(u) d(µt − µt)(u) = −ν

∫ t

0

∫

Y

(∇u,∇Φ′(u)) dµs(u) ds

−

∫ t

0

∫

Y

(u · ∇u,Φ′(u)) d(µs − µs)(u) ds.
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We have,
∫

Y

(∇u,∇Φ′(u)) dµs(u) ≤ C

∫

Y

‖∇u‖L2 dµs(u) ≤ C,

where we used Equation (8.4) followed by Equation (8.2) and the bound-
edness of the support of µ0 in Y. The same bound holds when integrating
against µs. Thus,

∣

∣

∣

∣

∫

Y

Φ(u) d(µt − µt)(u)

∣

∣

∣

∣

≤ Rνt+

∣

∣

∣

∣

∫ t

0

∫

Y

(u · ∇u,Φ′(u)) d(µs − µs)(u) ds

∣

∣

∣

∣

,

(8.5)

where R is proportional to the right-hand side of Equation (8.2), which we
note increases with time unless there is zero forcing.

For any Borel measurable function G on H,
∫

Y

G(u)d(µs − µs)(u) =

∫

Y

G(u)dµs(u) −

∫

Y

G(u)dµs(u)

=

∫

Y

G(S(s)u) dµ0(u) −

∫

Y

G(S(s)u) dµ0(u)

=

∫

Y

(G(S(s)u0) −G(S(s)u0)) dµ0(u0)

=

∫

Y

(G(u(s)) −G(u(s))) dµ0(u0).

In the last integral, we are defining u(t) and u(t) to be S(t)u0 and S(t)u0,
respectively. These are the solutions to (NS) and (E) given the initial
velocity u0. (The support of µ0 lying in Y insures that S(t)u0 is well-defined
and continuous for µ0-almost all u0.)

Thus,
∫

Y

(u · ∇u,Φ′(u)) d(µs − µs)(u)

=

∫

Y

[

(u(s) · ∇u(s),Φ′(u(s)) − (u(s) · ∇u(s),Φ′(u(s)))
]

dµ0.

Letting w = u− u, we have

(u · ∇u,Φ′(u)) − (u · ∇u,Φ′(u)) = (u · ∇w,Φ′(u))

+ (u · ∇u,Φ′(u) − Φ′(u)) + (w · ∇u,Φ′(u))

= −(u · ∇Φ′(u), w) + (u · ∇u,Φ′(u) − Φ′(u)) + (w · ∇u,Φ′(u)),
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so
∣

∣(u(s) · ∇u(s),Φ′(u(s)) − (u(s) · ∇u(s),Φ′(u(s)))
∣

∣

≤ ‖u(s)‖L∞

∥

∥∇Φ′(u(s))
∥

∥

L2 ‖w(s)‖H

+ ‖u(s)‖L∞ ‖∇u(s)‖L2

∥

∥Φ′(u(s)) − Φ′(u(s))
∥

∥

H

+ ‖w(s)‖H ‖∇u(s)‖L2

∥

∥Φ′(u(s))
∥

∥

L∞
.

Now, Equation (8.3) holds for solutions to (E): it can be derived as for
(NS) or by viewing (E) as a non-homogeneous transport equation for the
vorticity. Since suppµ0 is bounded in Y, it follows from Equation (8.3) that
u and u are bounded in the L∞([0, T ] × R

2)-norm uniformly over suppµ0,
as is ∇u in the L∞([0, T ];L2)-norm. This is discussed more fully in [2] or
[8], where it is shown, moreover, that there exists a continuous function
ρ : [0,∞)× [0,∞) → [0,∞), nondecreasing in t, with ρ(0, t) = 0 for all t ≥ 0,
such that for all t > 0,

‖w(t)‖H ≤ ρ(ν, t). (8.6)

(For sufficiently small νt, ρ(ν, t) = (Cνt)(1/2)e−Ct
.)

Also,
∥

∥Φ′(u(s)) − Φ′(u(s))
∥

∥

H

≤
k

∑

j=1

|∂jφ((u(s), g1), . . . , (u(s), gk)) − ∂jφ((u(s), g1), . . . , (u(s), gk))| ‖gj‖H .

Now,

|(u(s), gj) − (u(s), gj)| ≤ ‖w(s)‖H ‖gj‖H ≤ ρ(ν, s) ‖gj‖H ,

so since each ∂jφ is continuous, it follows that
∥

∥Φ′(u(s)) − Φ′(u(s))
∥

∥

H
→ 0 as ν → 0 uniformly over [0, T ].

Combining all these facts shows that
∫ t

0

∫

Y

(u · ∇u,Φ′(u)) d(µs − µs)(u) → 0 as ν → 0

and hence that

lim
ν→0

∫

Y

Φ(u) dµt(u)

=

∫

Y

Φ(u) dµ0(u) +

∫ t

0

∫

Y

(F (s, u),Φ′(u)) dµs(u) ds.

(8.7)



32 JAMES P. KELLIHER

On the other hand,

lim
ν→0

∫

Y

Φ(u) dµt(u) = lim
ν→0

∫

Y

Φ(S(t)u) dµ0(u)

=

∫

Y

lim
ν→0

Φ(S(t)u) dµ0(u) =

∫

Y

Φ(S(t)u) dµ0(u)

=

∫

Y

Φ(u) dµt(u).

(8.8)

In the second equality we used the dominated convergence theorem. For the
third equality, we used
∣

∣Φ(S(t)u) − Φ(S(t)u)
∣

∣

=
∣

∣φ((S(t)u, g1), . . . , (S(t)u, gk)) − φ((S(t)u, g1), . . . , (S(t)u, gk))
∣

∣

≤ ‖∇φ‖L∞

∣

∣((S(t)u, g1), . . . , (S(t)u, gk)) − ((S(t)u, g1), . . . , (S(t)u, gk))
∣

∣

≤ C
∣

∣((S(t)u− S(t)u, g1), . . . , (S(t)u− S(t)u, gk))
∣

∣

≤ C
∥

∥S(t)u− S(t)u
∥

∥

H
≤ Cρ(ν, t) → 0 as ν → 0,

the last inequality just being another way of writing Equation (8.6). Hence,
the right-hand sides of Equations (8.7) and (8.8) are equal, establishing the
first property in Definition 6.4.

Equations (8.1) and (8.2) follow as in the proof of Theorem 8.1.
As in the proof of Theorem 7.1, we can drop the restriction that the

support of µ0 is bounded in Y by exploiting the inherent linearity in the
definition of a SSE, as done on p. 318 of [6]. The remaining properties in
Definition 6.4 follow using the dominated convergence theorem in a manner
similar to what we did above. �

The proof of Theorem 8.2 shows that
∫

Y

Φ(u) dµt(u) →

∫

Y

Φ(u) dµt(u) as ν → 0.

Since the space T of test functions is dense in the space of all bounded
continuous functions on E, it follows that µ → µ as measures as ν → 0;
that is, the vanishing viscosity limit holds for statistical solutions to the
Navier-Stokes and Euler equations.
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i Mat. Fiz., 3:1032–1066 (Russian), 1963. 4

[14] V. I. Yudovich. Uniqueness theorem for the basic nonstationary problem in the dy-
namics of an ideal incompressible fluid. Math. Res. Lett., 2(1):27–38, 1995. 4

Department of Mathematics, University of California, Riverside, 900 Uni-

versity Ave., Riverside, CA 92521

Current address: Department of Mathematics, University of California, Riverside, 900
University Ave., Riverside, CA 92521

E-mail address: kelliher@math.ucr.edu


	1. Introduction
	2. Function spaces and the Biot-Savart Law
	3. Projection operators
	4. Weak deterministic solutions
	5. Deterministic expanding domain limit
	6. Definition of infinite-energy statistical solutions
	7. Construction of Navier-Stokes solutions
	8. Construction of Euler solutions
	Acknowledgements
	References

