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Abstract. We show that the k-th eigenvalue of the Dirichlet Laplacian
is strictly less than the k-th eigenvalue of the classical Stokes operator
(equivalently, of the clamped buckling plate problem) for a bounded do-
main in the plane having a locally Lipschitz boundary. For a C

2 bound-
ary, we show that eigenvalues of the Stokes operator with Navier slip
(friction) boundary conditions interpolate continuously between eigen-
values of the Dirichlet Laplacian and of the classical Stokes operator.

1. Introduction

Let Ω be a bounded domain in R
2 with locally Lipschitz boundary Γ. Let

σD be the spectrum of the negative Laplacian with homogenous Dirichlet
boundary conditions (which we refer to as the Dirichlet Laplacian) and let σS

be the spectrum of the Stokes operator with homogenous Dirichlet boundary
conditions (which we refer to as the classical Stokes operator). Equivalently,
σS is the set of eigenvalues of the clamped buckling plate problem ([23], [24],
[9]). Each spectrum is discrete with

σD = {λj}∞j=1 , 0 < λ1 < λ2 ≤ · · · , (1.1)

σS = {νj}∞j=1 , 0 < ν1 ≤ ν2 ≤ · · · , (1.2)

each eigenvalue repeated according to its multiplicity.
We prove the following:

Theorem 1.1. For all positive integers k, λk < νk.

Further, let γk(θ) be the k-th eigenvalue of the Stokes operator with
boundary conditions (1−θ)ω(u)+θu·τ = u·n = 0, where ω(u) = ∂1u

2−∂2u
1

is the vorticity of u and τ ,n are the tangential, normal unit vectors (see
Section 8 for details). We also prove:

Theorem 1.2. When Γ is C2 and has a finite number of components, for
all positive integers k, the function γk is a strictly increasing continuous
bijection from [0, 1] onto [λk, νk].
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Theorem 1.1 is the analog of the inequality µk+1 < λk for k = 1, 2, . . .
proved by Filonov in [6]. Here, σN = {µj}∞j=1 is the spectrum of the negative

Laplacian with homogenous Neumann boundary conditions (which we refer
to as the Neumann Laplacian). Then σN is also discrete with 0 = µ1 <
µ2 ≤ · · · . Filonov’s inequality applies in R

d, d ≥ 2 and only requires that
Ω have finite measure and that its boundary have sufficient regularity that
the embedding of W 1(Ω) in L2(Ω) is compact, which is slightly weaker than
our assumption that Γ is locally Lipschitz. Because of the need to integrate
by parts, however, we require the additional regularity.

Filonov’s strict inequality is a strengthening of the partial inequality,
µk+1 ≤ λk, proved by L. Friedlander in [8] using very different techniques.

A fairly direct variational argument gives λk ≤ νk (see Remark 5.3 or
Equation (1.8) of [2]); it is the strict inequality in Theorem 1.1 that is of
interest.

For the unit disk, where one can calculate the eigenfunctions explicitly,

σD =
{
j2nk : n = 0, 1 . . . , k = 1, 2, . . .

}
,

σS =
{
j2nk : n = 1, 2 . . . , k = 1, 2, . . .

}
,

where jnk is the k-th positive zero of the Bessel function Jn of the first kind
of order n. Each eigenvalue has multiplicity 2 except for

{
j20k : k ∈ N

}
⊆ σD

and
{
j21k : k ∈ N

}
⊆ σS , which have multiplicity 1. This gives the ordering

0 < λ1 < λ2 = λ3 = ν1 < λ4 = λ5 = ν2 = ν3 < λ6 < · · · . In this case
we have λk+1 ≤ νk for all k but λk+1 6< νk for k = 1. This leaves open the
possibility that λk+1 ≤ νk in full generality. This inequality was conjectured
to hold by L. E. Payne many years ago, but has remained unproved.

To prove Theorem 1.1 we adapt Filonov’s proof in [6] that µk+1 < λk,
which is shockingly direct and simple. As we observed for a disk, λk+1 6< νk,
which shows that some aspect of Filonov’s approach must fail if we attempt
to adapt it to obtain Theorem 1.1. In fact, what fails is his use of a function
of the form f = eiω·x with |ω|2 = λ for λ > 0, which has the properties

that ∆f + λf = 0 and |∇f |2 = λ |f |. This serves as an “extra” function
that increases the dimension of a subspace of functions that he shows satisfy
the bound in the variational formulation of the eigenvalue problem for the
Neumann Laplacian. There can be no such function that will serve in general
for us (else λk+1 < νk would hold in general), but we describe the analog of
such a function in our setting in Section 7, show that given its existence we
obtain λk+1 ≤ νk, and explain why it fails to give λk+1 < νk.

Our proof of λk < νk is largely a matter of transforming the eigenvalue
problems so that the Stokes operator can play the role the Dirichlet Lapla-
cian plays for Filonov and so the Dirichlet Laplacian can play the role that
the Neumann Laplacian plays for Filonov.

The approach of Friedlander in [8] can also be adapted to prove Theo-
rem 1.1, at least for C1-boundaries.
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In Section 8 we show that when Γ is C2 and has a finite number of
components, one can interpolate continuously between λj and νj using the
eigenvalues of the negative Laplacian with Navier slip boundary conditions
(Theorem 1.2). These boundary conditions, originally defined by Navier,
have recently received considerable attention among fluid mechanics as a
physically motivated replacement for Dirichlet boundary conditions, as they
allow a thorough characterization of the boundary layer. See, for instance,
[4], [21], [17], [15], and [16]. We also discuss Neumann boundary conditions
for the velocity and for the vorticity, and Robin boundary conditions for the
vorticity.

This paper is organized as follows: We describe the necessary function
spaces, trace operators, and related lemmas in Section 2. In Section 3 we
define the classical Stokes operator and a variant of it using Lions boundary
conditions (vanishing vorticity on the boundary). We show that the eigen-
value problem for the classical Stokes operator is equivalent to the eigen-
value problem for the clamped buckling plate problem. We also describe
the strong forms of the associated eigenvalue problems in Section 3, giving
the weak forms in Section 4. In Section 5 we describe the variational (min-
max) formulations of the eigenvalue problems, using these formulations in
Section 6 to prove Theorem 1.1. In Section 7, we describe the properties of
the analog of the function f used by Friedlander and Filonov and prove that
its existence would imply the inequality λk+1 ≤ νk. Finally, in Section 8 we
discuss Navier boundary conditions and prove Theorem 1.2.

For a vector field u we define u⊥ = (−u2, u1) and for a scalar field ψ
we define ∇⊥ψ = (−∂2ψ, ∂1ψ). Observe that (u⊥)⊥ = −u and (∇⊥)⊥ψ =
−∇ψ. By ω(u) we mean the vorticity (scalar curl) of u: ω(u) = ∂1u

2−∂2u
1.

We make frequent use of the identities ∇⊥ω(u) = ∆u and ω(u) = − div u⊥,
the former requiring that u be divergence-free.

We assume throughout that Ω is a bounded domain whose bound-

ary, Γ, unless specifically stated otherwise, is locally Lipschitz.

2. Function spaces and related facts

Let n be the outward-directed unit normal vector to Γ and τ be the unit
tangent vector chosen so that (n, τ ) has the same orientation as the Carte-
sian unit vectors (e1, e2). These vectors are defined almost everywhere on
Γ since Γ is locally Lipschitz.

The spaces Ck,α(Ω), Ck,α(Ω), and W s(Ω) are the usual Hölder and L2-
based Sobolev spaces, k an integer, 0 ≤ α ≤ 1, and s any real number.
About these spaces, which can be defined in various equivalent ways, we
need to say a few words.
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Defining the norms,

‖f‖Ck =
m∑

j=0

sup
Ω

sup
|β|=j

∣∣∣Dβu
∣∣∣ ,

‖f‖Ck,α = ‖f‖Ck + sup
|β|=k

sup
x 6=y∈Ω

∣∣Dβf(x) −Dβf(y)
∣∣

|x− y|α ,

0 < α ≤ 1, Ck(Ω) = Ck,0(Ω) and Ck,α(Ω) are the spaces of functions finite
under their respective norms; Ck,α(Ω) is defined similarly. Here β is a multi-
index.

When m ≥ 0 is an integer, Wm(Ω) is the completion of the space of all
C∈(Ω)-functions in the norm,

‖f‖W m =




∑

|α|≤m

‖Dαf‖2
L2(Ω)




1/2

,

where α is a multi-index. Equivalently, Wm(Ω) is the space of all functions
f such that Dαf is in L2(Ω) for all |α| ≤ m. Wm

0 (Ω) is defined similarly as
the closure of C∞

0 (Ω) under the Wm-norm. (See, for instance, Section 3.1
of [1].) W 1

0 (Ω) can equivalently be defined as all functions in W 1(Ω) whose
boundary trace is zero. W−m(Ω) is the dual space of Wm

0 (Ω). Fractional
Sobolev spaces, W s(Ω) can be defined, for instance, as in Theorem 7.48 of
[1].

On Ω, we will only need integer-order Hölder and Sobolev spaces, but on
Γ we will need to use fractional spaces. Hölder spaces, however, can only be
defined when the boundary has sufficient regularity.

We define a bounded domain Ω (or its boundary ∂Ω) to be of class Ck,α,
k ≥ 0 an integer, 0 ≤ α ≤ 1, if locally there exists a Ck,α diffeomorphism ψ
that maps Ω into the upper half-plane with ∂Ω being mapped to an open
interval I. We say that ϕ is in Ck,α(∂Ω) if ϕ◦ψ−1 is in Ck,α(I). We also write
Ck for Ck,0. If Ω is a Ck,α domain and ϕ lies in Cj,β(∂Ω) for j + β ≤ k+ α
then there exists an extension of ϕ to Cj,β(Ω). See Section 6.2 of [12] for
more details. The inverse operation of restricting to the boundary gives an
equivalent definition of Ck,α(∂Ω) as restrictions of functions in Ck,α(Ω).

When Γ is locally Lipschitz, we will only have need for W s(∂Ω) for

s = ±1/2 and 0. We define W 1/2(∂Ω) to be the image (a subspace of
L2(∂Ω)) under the unique continuous extension to W 1(Ω) of the map that
restricts the value of a C∞(Ω)-function to the boundary. The existence
of this extension was proven by Gagliardo [10] (or see Theorem 1.5.1.3 of
[13]). Alternately, we could define W 1/2(Ω) intrinsically as in Section II.3

of [11]. We define W−1/2(∂Ω) to be the dual space to W 1/2(∂Ω) and let
W 0(∂Ω) = L2(∂Ω).

For C2 boundaries, we will need Corollary 2.2 and hence need to define
W s(∂Ω) for all real s. We use the intrinsic definition of W s(∂Ω) due to
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J. L. Lions, which applies when the boundary is of class Cm, m ≥ 1. This
definition is similar to that for the Hölder spaces defined above, and requires
for s > 0 that each ϕ ◦ ψ−1 be of class W s(I), where I is the domain of
ψ−1. (See p. 215-217 of [1] for more details.) For s < 0 we define W s(∂Ω)
to be the dual space of W−s(∂Ω) and let W 0(∂Ω) = L2(∂Ω) as above. It
follows from Theorem 7.53 of [1] that the two definitions of these spaces are
equivalent for 0 < s ≤ m and hence for all real s. (Adams gives the proof
only for s = m− 1/2, from which it follows immediately for all s = j − 1/2,
j an integer with 1 ≤ j ≤ m, since if ∂Ω is of class Cm it is of class Ck for
all 1 ≤ k ≤ m. We only need the equivalence for m = 2, s = 1/2, so this
will suffice.)

Lemma 2.1. Let D be any bounded domain in Rn with C∞ boundary. Let
ϕ lie in Ck,α(D) and f lie in W s(D), s > 0. Then ϕf lies in W s(D) as
long as

{
k + α ≥ s, s an integer,
k + α > s, s not an integer.

Let g lie in W s′(D). Then fg lies in W s(D) if s′ > s and s′ ≥ n/2 or if
s′ ≥ s and s′ > n/2.

Proof. This follows from Theorems 1.4.1.1 and 1.4.4.2 of [11]. �

Corollary 2.2. Assume that Γ is of class Ck,α. Then for all ϕ in Cj,β(∂Ω)
for j + β ≤ k + α and f in W s(Γ) for s > 0, ϕf lies in W s(Γ) as long as

{
j + β ≥ s, s an integer,
j + β > s, s not an integer.

If f lies in W s(Γ) and ϕ lies in W s+ǫ(Γ), ǫ > 0, then ϕf lies in W s(Γ) if
s ≥ 1/2.

Proof. Apply Lemma 2.1 to the functions ϕ ◦ψ−1 and f ◦ψ−1 with domain
D = I. �

Corollary 2.3. Assume that Γ is C2. Then gτ and gn are in W 1/2(Γ) for

any g in W 1/2(Γ), and u·τ and u·n are in W 1/2(Γ) for any u in (W 1/2(Γ))2.

Proof. Because Γ is C2, τ and n are in C1 = C1,0. But 1 + 0 > 1/2, so the
second condition in Corollary 2.2 applies in each case to give the result. �

Let

V =
{
u ∈ (C∞

0 (Ω))2 : div u = 0
}

be the space of complex vector-valued divergence-free test functions on Ω.
We let H be the completion of V in L2(Ω) and V be the completion of V in
W 1

0 (Ω). These definitions of H and V are valid for arbitrary domains. We
will also find use for the space

E(Ω) =
{
v ∈ (L2(Ω))2 : div v ∈ L2(Ω)

}
(2.1)
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with ‖u‖E(Ω) = ‖u‖L2(Ω) + ‖div u‖L2(Ω).

We use (·, ·) to mean the inner product in L2(Ω): (u, v) =
∫
Ω uv or some-

times to mean the pairing of v in a space Z with u in Z∗ or of v in D(Ω)
with u in D′(Ω): which is meant is stated if it is not clear from context.

The various integrations by parts that we will make are justified by
Lemma 2.4, which is Theorem 1.2 p. 7 of [25] for locally Lipschitz do-
mains. (Temam states the theorem for C2 boundaries but the proof for
locally Lipschitz boundaries is the same, using a trace operator for Lips-
chitz boundaries in place of that for C2 boundaries: see p. 117-119 of [11],
in particular, Theorem 2.1 p. 119.)

Lemma 2.4. There exists an extension of the trace operator γn : (C∞
0 (Ω))2 →

C∞(Γ) defined by u 7→ u ·n on Γ to a continuous linear operator from E(Ω)

onto W−1/2(Γ). The kernel of γn is the space E0(Ω)—the completion of
C∞

0 (Ω) in the E(Ω) norm. For all u in E(Ω) and f in W 1(Ω),

(u,∇f) + (div u, f) =

∫

Γ
(u · n)f . (2.2)

Remark 2.5. In Equation (2.2) and in what follows we usually do not ex-
plicitly include the trace operators. On the right-hand side of Equation (2.2),

for instance, u ·n is actually γnu, which is thus in W−1/2(Γ), and f is actu-

ally γ0f , where γ0 is the usual trace operator from W s(Ω) to W s−1/2(Γ) for
all s > 1/2. Also, the boundary integral should more properly be written

as a pairing in the duality between W−1/2(Γ) and W 1/2(Γ) of u · n and f .

Lemma 2.6. W s(Ω) is compactly embedded in W r(Ω) for all s > r ≥ 0.

Proof. This is an instance of the Rellich-Kondrachov theorem. That it holds
for a bounded domain with locally Lipschitz boundary follows, for instance,
from the comments on p. 67 and Theorem 6.2 p. 144 of [1]. �

We will use several times the following basic result of elliptic regularity
theory:

Lemma 2.7. Let f lie in W−1(Ω). There exists a unique ψ in W 1
0 (Ω) that

is a weak solution of ∆ψ = f . Furthermore, ‖ψ‖W 1(Ω) ≤ C ‖f‖W−1(Ω).

When Γ is C2 and f is in L2(Ω), ‖ψ‖W 2(Ω) ≤ C ‖∆ψ‖L2(Ω) .

Proof. See, for instance, p. 118-121 of [18] for general bounded open domains
and Theorem 4 of [5] and the remark following it on p. 317 for C2 boundaries.

�

Poincare’s inequality holds in both its classical forms:

Lemma 2.8. Let f lie in W 1
0 (Ω) or else lie in W 1(Ω) with

∫
Ω f = 0. Then

there exists a constant C such that

‖f‖L2(Ω) ≤ C ‖∇f‖L2(Ω) .

Proof. See Theorem 4.1 p. 49 and Theorem 4.3 p. 54 of [11]. �
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Since Γ is locally Lipschitzian, we can define

Ĥ =
{
u ∈ (L2(Ω))2 : div u = 0 in Ω, γnu = 0 on Γ

}
,

V̂ =
{
u ∈ (W 1(Ω))2 : div u = 0 in Ω, γ0u = 0 on Γ

}
.

By the continuity of the trace operators γn and γ0 it follows that H ⊆ Ĥ

and V ⊆ V̂ . When Γ is a bounded domain with locally Lipschitz boundary,

H = Ĥ and V = V̂ . For H = Ĥ see Theorem 1.4 Chapter 1 of [25]. That

V = V̂ is proved in [22] (see comments p. 148 of [11] and p. 67 of [1]).

Lemma 2.9. Assume that u is in (D′(Ω))2 with (u, v) = 0 for all v in V.
Then u = ∇p for some p in D′(Ω). If u is in (L2(Ω))2 then p is in W 1(Ω);
if u is in H then p is in W 1(Ω) and ∆p = 0.

Proof. For u in (D′(Ω))2 see Proposition 1.1 p. 10 of [25]. For u in (L2(Ω))2

the result follows from a combination of Theorem 1.1 p. 103 and Remark
4.1 p. 54 of [11] (also see Remark 1.4 p. 11 of [25]). �

We will also find a need for the following spaces:

Y = Y 1 = H ∩W 1(Ω), Y 2 =
{
u ∈ Y : ω ∈W 1(Ω)

}
,

Y 2
0 =

{
u ∈ Y : ω(u) ∈W 1

0

}
,

X = X1 =
{
u ∈ H : ω(u) ∈ L2(Ω)

}
, X2 =

{
u ∈ H : ω(u) ∈W 1

}
,

X2
0 =

{
u ∈ H : ω(u) ∈W 1

0

}
,

with the obvious norms on each space. We give Y the W 1(Ω) norm, but
place no norm on the other spaces. When Γ is C2 and has a finite number
of components, the X and Y spaces coincide as in Corollary 2.16.

The average value of any vector u in H—and hence in all of our spaces—
is zero, as can be seen by integrating u · ei over Ω, where ei = ∇xi is a
coordinate vector, and applying Lemma 2.4. Thus, Poincare’s inequality
holds for Y and V so we can, and will, use

‖u‖Y = ‖u‖V = ‖∇u‖L2(Ω)

in place of the W 1(Ω) norm for these two spaces.
Let

Hc = {v ∈ H : ω(v) = 0}
and, noting that Hc is a closed subspace of H, let W0 be the orthogonal
complement of Hc in H. Thus, H = W0⊕Hc is an orthogonal decomposition
of H. Observe that V ∩W0 = V , and when Ω is simply connected, H = W0.

Lemma 2.10. For any u in W0 there exists a stream function ψ in W 1(Ω)
for u—that is, u = ∇⊥ψ—and ψ is unique up to the addition of a constant.
Moreover,

W0 =
{
∇⊥ψ : ψ ∈W 1

0 (Ω)
}

= ∇⊥W 1
0 (Ω).
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If u is in W0 ∩ Y then ψ can be taken to lie in W 1
0 (Ω) ∩W 2(Ω) and if u is

in V then ψ can be taken to lie in W 2
0 (Ω).

Proof. Let u be in W0, and let ψ in W 1
0 (Ω) solve ∆ψ = ω(u) ∈ W−1(Ω) as

in Lemma 2.7. Letting w = ∇⊥ψ ∈ L2(Ω), we have ω(w) = ∆ψ = ω(u),
divw = 0, and w · n = 0 on Γ, so w is in H. Thus, w is a vector in H with
the same vorticity as u, meaning that u− w is in Hc.

We claim that w is in W0. To see this, let v be in Hc. Then

(w, v) = (∇⊥ψ, v) = (−∇ψ, v⊥) = (ψ,div v⊥) +

∫

Γ
(v⊥ · n)ψ = 0.

The last equality follows from div v⊥ = ω(v) = 0 (showing also that v⊥ is
in E(Ω) and allowing integration by parts via Lemma 2.4) and ψ = 0 on Γ.
Since this is true for all v in Hc, it follows that w is in W0.

Thus, both u and w are in W0, so u − w is in W0. But we already saw
that u− w is in Hc, so u− w = 0.

What we have shown is both the existence of a stream function and the
expression for W0, the uniqueness of the stream function up to a constant
being then immediate. The additional regularity of ψ for u in W0 ∩ Y or V
follows simply because ∇ψ = −u⊥ is in W 1(Ω). For u in V it is also true
that ∇ψ = 0 on Γ so ψ can be taken to lie in W 2

0 (Ω). �

Closely related to Lemma 2.10 is Lemma 2.11, a form of the Biot-Savart
law.

Lemma 2.11. The operator ω is a continuous linear bijection between the
following pairs of spaces: W0 and W−1(Ω), W0 ∩ X and L2(Ω), W0 ∩ X2

0

and W 1
0 (Ω).

Proof. That ω has the domains and ranges stated and that it is continuous
follows directly from the definitions of the spaces.

For ω in W−1(Ω) let ψ in W 1
0 (Ω) solve ∆ψ = ω on Ω as in Lemma 2.7

and let u = ∇⊥ψ. Then ω(u) = ω and if ω(v) = ω as well for v in W0

then ω(u − v) = 0 implying that u − v is in Hc. But u − v is also in W0

so u − v = 0. Thus, u = ω−1(ω) with ‖u‖H = ‖∇ψ‖L2 ≤ C ‖ω‖W−1(Ω) by

Lemma 2.7, showing that ω−1 is defined and bounded and hence continuous,
since it is clearly linear.

For ω in in L2(Ω) or W 1
0 (Ω) the same argument applies, though now we

use either ‖u‖X = ‖∇ψ‖L2 + ‖ω(u)‖L2 ≤ C ‖ω‖L2 + ‖ω‖L2 or ‖u‖X2

0

=

‖∇ψ‖L2 + ‖ω(u)‖W 1 ≤ C ‖ω‖L2 + ‖ω‖W 1 ≤ C ‖ω‖W 1 to demonstrate the
continuity of ω−1. �

Corollary 2.12. X is dense and compactly embedded in H and X2
0 is dense

and compactly embedded in X.

Proof. Let A = L2(Ω), B = W−1(Ω) or A = W 1
0 (Ω), B = L2(Ω). In both

cases A is dense and compactly embedded in B. Density is transferred to
the image spaces ω−1(A) and ω−1(B) by virtue of ω−1 being a continuous
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surjection. The property that the spaces are compactly embedded transfers
to the image spaces by virtue of ω being bounded (since it is continuous
linear) along with ω−1 being a continuous surjection. �

We also have the following useful decomposition of L2(Ω), variously named
after some combination of Leray, Helmholtz, and Weyl:

Lemma 2.13. For any u in (L2(Ω))2 there exists a unique v in H and p in
W 1(Ω) such that u = v + ∇p.
Proof. This follows, for instance, from Theorem 1.1 p. 107 of [11], which
holds for an arbitrary domain, along with Lemma 2.9. �

The mapping u 7→ v, with u and v as in Lemma 2.13, defines the Leray
projector P from (L2(Ω))2 onto H.

A slight strengthening of Poincare’s inequality holds on Y (and so on V )
when Ω is simply connected:

Lemma 2.14. For any u in W0 ∩X,

‖u‖L2(Ω) ≤ C ‖ω(u)‖L2(Ω) , (2.3)

and when Γ is C2,

‖∇u‖L2(Ω) ≤ C ‖ω(u)‖L2(Ω) . (2.4)

Proof. As in the proof of Lemma 2.10, u = ∇⊥ψ for ψ in W 1
0 (Ω) with ∆ψ =

ω(u) in L2(Ω), and ‖ψ‖L2(Ω) ≤ ‖ψ‖W 1(Ω) ≤ C ‖ω(u)‖L2(Ω) by Lemma 2.7.

But ∇ψ is in E(Ω) and ψ is in W 1(Ω) so by Lemma 2.4 we can integrate

by parts to give (ω(u), ψ) = (∆ψ,ψ) = −(∇ψ,∇ψ) = −‖u‖2
L2(Ω). Hence by

the Cauchy-Schwarz inequality,

‖u‖2
L2(Ω) ≤ ‖ψ‖L2(Ω) ‖ω(u)‖L2(Ω) ≤ C ‖ω(u)‖2

L2(Ω) ,

giving Equation (2.3).
When Γ is C2, using Lemma 2.7,

‖∇u‖L2(Ω) = ‖∇∇ψ‖L2(Ω) ≤ ‖ψ‖W 2(Ω) ≤ C ‖∆ψ‖L2(Ω)

= C ‖ω(u)‖L2(Ω) ,

giving Equation (2.4). �

Corollary 2.15. If Γ is C2 and has a finite number of components then
any u in H with ω(u) in L2(Ω) is also in Y , and

‖∇u‖L2(Ω) ≤ C
[
‖ω(u)‖L2(Ω) + ‖u‖L2(Ω)

]
.

Proof. This inequality follows from the basic estimate of elliptic regularity
theory. �

Corollary 2.16. When Γ is C2 and has a finite number of components,

X = Y, X2 = Y 2 = H ∩W 2(Ω),

X2
0 = Y 2

0 =
{
u ∈ H ∩W 2(Ω): ω(u) = 0 on Γ

}
.
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Proof. The first identity follows from Corollary 2.15 and the second and
third from the identity ∆u = ∇⊥ω and Lemma 2.7. �

We will find a need for the trace operator of Proposition 2.17 in Section 8.

Proposition 2.17. Assume that Γ is C2 and has a finite number of com-
ponents, and let

U =
{
ω ∈ L2(Ω): ∆ω ∈ L2(Ω)

}

endowed with the norm, ‖ω‖U = ‖ω‖L2(Ω) + ‖∆ω‖L2(Ω). There exists a

linear continuous trace operator γω : U → W−1/2(Γ) such that γωω is the
restriction of ω to Γ for all ω in C∞(Ω). For any α in W 1

0 (Ω) ∩W 2(Ω),

(γωω,∇α · n)W−1/2(Γ),W 1/2(Γ) = (∆α, ω) − (α,∆ω). (2.5)

Lemma 2.18. For any f in L2(Ω) and a in (W 1/2(Γ))2 satisfying the com-
patibility condition,

∫

Ω
f =

∫

Γ
a · n

there exists a (non-unique) solution v in W 1(Ω) to div v = f in Ω, v = a
on Γ.

Proof. This follows from Lemma 3.2 p. 126-127, Remark 3.3 p. 128-129,
and Exercise 3.4 p. 131 of [11] (and see the comment on p. 67 of [1]). �

Lemma 2.19. Define γτ : Y → L2(Γ) by γτ v = γ0v · τ for any v in Y .

When Γ is C2, γτ maps Y onto W 1/2(Γ). When Γ is C2 and has a finite

number of components, γτ (W0 ∩ Y ) is dense in W 1/2(Γ).

Proof. Assume that Γ is C2 and let g lie in W 1/2(Γ). Then since Γ is C2,

gτ is also in W 1/2(Γ) by Corollary 2.3, and by Lemma 2.18 there exists a
vector field v in W 1(Ω) with div v =

∫
Γ gτ · n = 0 and v = gτ on Γ. Thus,

in fact, v lies in Y , which shows that γτ (Y ) maps onto W 1/2(Γ). If Γ has a
finite number of components, then Hc ∩ Y is finite-dimensional and so is its
image under this map; hence the image of W0 ∩ Y is dense in W 1/2(Γ). �

Proof of Proposition 2.17. Assume first that ω is in C∞(Ω), let α be in
W 1

0 (Ω)∩W 2(Ω), and let v = ∇⊥α, so that v lies in W0∩Y with ∆α = ω(v).
Then

(α,∆ω) = −(∇α,∇ω) +

∫

Γ
(∇ω · n)α = −(∇α,∇ω)

= (∆α, ω) −
∫

Γ
(∇α · n)ω = (∆α, ω) −

∫

Γ
ωv · τ .

From this calculation it follows that for any choice of v (equivalently, by
Lemma 2.10, of α) with a given value of v · τ on Γ the value of (∆α, ω) −
(α,∆ω) is the same.
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Now, because of Lemma 2.19, we can define γω(ω) to be that unique

element of W−1/2(Γ) such that Equation (2.5) holds. This gives a linear

mapping from U to W−1/2(Γ) whose restriction to C∞(Ω) is the classical
trace.

To establish the continuity of this mapping, let a be any element of
W 1/2(Γ). If Ω is simply connected then a = v · τ = ∇⊥α · τ = ∇α · n
for some v in Y or equivalently for some α in W 1

0 (Ω) ∩W 2(Ω). Then

(γωω, a)W−1/2(Γ),W 1/2(Γ) = |(∆α, ω) − (α,∆ω)| ≤ C ‖∆α‖L2(Ω) ‖ω‖U

≤ C ‖∇α‖W 1(Ω) ‖ω‖U ≤ C ‖∇α‖W 1/2(Γ) ‖ω‖U

= C ‖∇α · n‖W 1/2(Γ) ‖ω‖U = C ‖a‖W 1/2(Γ) ‖ω‖U .

Here, we Lemma 2.7 in the first and second inequalities and the continuity
of the inverse of the standard trace operator in the third inequality. Also,
the second-to-last equality holds because α has the constant value of zero
on Γ so ∇α · τ = 0 and |∇α| = |∇α · n|. This shows that the mapping is
bounded and hence continuous.

When Ω is multiply connected the argument is the same except that we
must employ a simple density argument using Lemma 2.19. �

3. Strong Formulations of three eigenvalue problems

Assume for the moment that Γ is C2. Then given any u in V ∩W 2(Ω), the
(classical) Stokes operator AS applied to u is that unique element ASu of H
such that ∆u+ASu = ∇p for some harmonic pressure field p. Equivalently,
AS = −P∆, P being the Leray projector, defined following Lemma 2.13.
The operator AS maps V ∩ W 2(Ω) onto H (see, for instance, p. 49-50
of [7] for more details), is strictly positive-definite, self-adjoint, and as a
map from V to V ∗, the composition of A−1

S with the inclusion map of V
into V ∗ is compact. It follows that {uj} is complete in H (and in V ) with
corresponding eigenvalues {νj}, 0 < ν1 ≤ ν2 ≤ · · · , νj → ∞ as j → ∞.
Also, the eigenfunctions are orthogonal in both H and V .

When Γ is only locally Lipschitz, −P∆ is only known to be symmetric
on V ∩W 2(Ω), not self-adjoint. Thus, we define AS to be the Friedrich’s
extension, as an operator on H, of −∆ defined on V ∩ C∞

0 (Ω). A concrete
description of its domain, D(AS), in terms of more familiar spaces is not
known, though V ∩ H2(Ω) ⊆ D(AS) ⊆ V . In three dimensions, tighter
inclusions have been obtained: see, for instance, [3]. In any case, basic
properties of the Friedrich’s extension insure that AS is strictly positive-
definite, self-adjoint, and maps D(AS) bijectively onto H.

Definition 3.1. A strong eigenfunction uj ∈ V ∩X2 of AS with eigenvalue
νj > 0 satisfies, for some pj in W 1(Ω),

{
∆uj + νjuj = ∇pj, ∆pj = 0, div uj = 0 in Ω,
uj = 0 on Γ.

(3.1)
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Taking the curl of Equation (3.1), we see that the vorticity ωj = ω(uj)
satisfies {

∆ωj + νjωj = 0 in Ω,
uj = 0 on Γ.

(3.2)

That is, ωj is an eigenfunction of the negative Laplacian, but with boundary
conditions on the velocity uj .

Let ψj be the stream function for uj given by Lemma 2.10, so uj = ∇⊥ψj .

Then ωj = ∆ψj and ∇ψj = −u⊥j = 0 on Γ. Since ψj is determined only up
to a constant we can then assume that ψj = 0 on Γ. Thus, ψj satisfies

{
∆∆ψj + νj∆ψj = 0 in Ω,
∇ψj · n = ψj = 0 on Γ.

(3.3)

This is the eigenvalue problem for the clamped buckling plate (see, for in-
stance, [24, 2]).

Temam exploits the similar correspondence between the Stokes problem
and the biharmonic problem in the proof of Proposition I.2.3 of [25] to obtain
a relatively simple proof of the regularity of solutions to the Stokes problem
in two dimensions with at least C2 regularity of the boundary. Also, as
pointed out by Ashbaugh in [2], there is a similar correspondence between
the eigenvalue problems for the Dirichlet Laplacian and Equation (3.3) with
the boundary condition ∇ψj · n = 0 replaced by ∆ψj = 0. This is the
correspondence we exploit in the proof of Theorem 1.1, though we view the
correspondence as being that given in Lemma 2.11, instead.

What we have shown is that given uj satisfying Equation (3.1), the corre-
sponding stream function ψj satisfies Equation (3.3). Conversely, given ψj

satisfying Equation (3.3), ωj = ∆ψj and uj = ∇⊥ψj satisfy Equation (3.2)
and one can show, at least for sufficiently smooth boundaries, that uj satis-
fies Equation (3.1). Thus, the eigenvalue problems for the Stokes operator
and the clamped buckling plate are equivalent.

Returning to Equation (3.1), if we use instead the boundary conditions
employed by J.L. Lions in [19] p. 87-98 and P.L. Lions in [20] p. 129-131,

uj · n = 0, ωj = 0 on Γ, (3.4)

which we call Lions boundary conditions, we obtain the eigenvalue problem
for the Dirichlet Laplacian of Definition 3.2.

Definition 3.2. A strong eigenfunction ωj ∈W 1
0 (Ω) of the Dirichlet Lapla-

cian, −∆D, with eigenvalue λj > 0 satisfies
{

∆ωj + λjωj = 0 in Ω,
ωj = 0 on Γ.

(3.5)

Using Lemma 3.4, we can recover the divergence-free velocity uj in X2
0

uniquely from a vorticity in W 1
0 (Ω) under the constraint that uj · n = 0,

leading to the eigenvalue problem in Definition 3.3 for an operator AL, which



EIGENVALUES OF STOKES VERSUS LAPLACIAN 13

we will call the Stokes operator with Lions boundary conditions. (We use
λ∗j in place of λj because of the presence of zero eigenvalues.)

Definition 3.3. A strong eigenfunction uj ∈ X2
0 of AL with eigenvalue

λ∗j > 0 satisfies
{

∆uj + λ∗juj = 0, div uj = 0 in Ω,

uj · n = 0, ω(uj) = 0 on Γ.
(3.6)

What we have done is to define the eigenvalue problem for the operator AL

before defining the operator itself. In fact, AL : X2
0 → H with ALu = −∆u.

That is, AL is simply the negative Laplacian on X2
0 .

To see that AL is well-defined, observe that for any u in X2
0 , ∆u · n =

∇⊥ω(u) ·n = −∇ω(u) ·τ = 0, since ω(u) is constant (namely, zero) along Γ.
(Another way of viewing this is that there is no need for a Leray projector
in X2

0 , making the Stokes operator on X2
0 akin to the Stokes operator on

H ∩W 2(Ω) for a periodic domain, which of course has no boundary. This
is one reason that the use of the boundary conditions of Equation (3.4) in
[19] and [20] is so effective.)

Lemma 3.4. Given ω in W 1
0 (Ω) that satisfies

{
∆ω + λω = 0 in Ω,
ω = 0 on Γ

with λ > 0 there exists a unique u in X2
0 such that ω = ω(u) and

{
∆u+ λu = 0, div u = 0 in Ω,
u · n = 0, ω(u) = 0 on Γ.

Proof. Let v = ω−1(ω), which lies in W0 ∩X2
0 by Lemma 2.11. Then ∆v =

∇⊥ω is in L2(Ω), so w = ∆v+ λv is a divergence-free vector field in L2(Ω).
Hence, by Lemma 2.13, w = h+∇p for a unique vector field h in H and an
harmonic scalar field p in W 1(Ω) satisfying ∇p · n = w · n = ∆v · n on Γ.
(Since div ∆v = 0, ∆v is in E(Ω) so ∆v · n is in W−1/2(Γ) by Lemma 2.9.)

But ∆v · n = ∇⊥ω(v) · n = ∇⊥ω · n = −∇ω · τ = 0 on Γ, where ω has
the constant value of zero. Thus, ∆p = 0 in Ω with ∇p · n = 0 on Γ, so
∇p ≡ 0, and thus w = h and so lies in H. Also, ω(w) = ∆ω(v) + λω(v) =
∆ω + λω = 0.

Then u = v − (1/λ)w is in H, and using ∆w = ∇⊥ω(w) = 0 we see that

∆u+ λu = ∆v + λv − w = w − w = 0,

which gives the boundary value problem for u in the statement of the lemma.
�

4. Weak formulations of the eigenvalue problems

To establish the existence of the eigenfunctions in Section 3 (Proposition 4.10)
we work with their weak formulation, then show that these weak formula-
tions are equivalent to those of Section 3 (for AS , though, only when the
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boundary or the eigenfunctions are sufficiently regular). The formulations
for AS and AL are modelled along the lines of the formulation in Defini-
tion 4.2 for the Dirichlet Laplacian, which is classical (see, for instance,
Chapter 1 of [14]).

Definition 4.1. The vector field uj in V is a weak eigenfunction of AS with
eigenvalue νj > 0 if

(ω(uj), ω(v)) − νj(uj , v) = 0 ∀v ∈ V.

Definition 4.2. The scalar field ωj in W 1
0 (Ω) is a weak eigenfunction for

the Dirichlet Laplacian with eigenvalue λj > 0 if

(∇ωj,∇α) − λj(ωj , α) = 0 ∀α ∈W 1
0 (Ω).

Definition 4.3. The vector field uj in W0 ∩X is a weak eigenfunction for
AL for λ∗j > 0 if

(ω(uj), ω(v)) − λ∗j(uj , v) = 0 ∀v ∈W0 ∩X. (4.1)

Any vector in Hc is an eigenfunction of AL with zero eigenvalue.

Proposition 4.4. In Definition 4.3 the eigenfunction uj for λ∗j > 0 and the
test function v can be taken to lie in X.

Proof. Suppose we change Definition 4.3 to assume that uj and the test
function v lie in X. Then in particular,

(ω(uj), ω(v)) − λ∗j(uj , v) = −λ∗j(uj , v) = 0 for all v ∈ Hc.

That is, uj is normal to any vector in Hc and so lies in W0 ∩X. But then
knowing that uj lies in W0∩X it follows that for any v in Hc, (ω(uj), ω(v))−
λ∗j(uj , v) = 0; that is, one need only use test functions in W0∩X. Thus, the
more stringent requirement for being a weak eigenfunction of AL reduces to
the less stringent requirement, meaning that the two are equivalent. �

Proposition 4.5. A strong eigenfunction of AS is a weak eigenfunction of
AS; a weak eigenfunction of AS lying in X2 is a strong eigenfunction of AS.

Proof. If uj is a strong eigenfunction of AS as in Definition 3.1 then applying
Corollary A.1, for all v in V ,

(ω(uj), ω(v)) − νj(uj , v) = −(∆uj + νjuj , v) = −(∇pj, v) = 0. (4.2)

Thus, uj is a weak eigenfunction of AS as in Definition 4.1.
Conversely, suppose that uj is a weak eigenfunction of AS as in Defi-

nition 4.1 for which ω(uj) happens to lie in W 1(Ω). Letting v lie in V ,
(ω(uj), ω(v)) − νj(uj , v) = 0, and we have sufficient regularity of uj and v
to apply Corollary A.1 as above to give (∆uj + νju, v) = 0 for all v in V .
From Lemma 2.9 we conclude that ∆uj + νju = ∇pj for some harmonic
pressure field pj in W 1(Ω), since ∆uj + νju is in L2(Ω). This shows that uj

is a strong eigenfunction of AS as in Definition 3.1. �
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Proposition 4.6. Definitions 3.2 and 4.2 are equivalent as, too, are Defi-
nitions 3.3 and 4.3. When Γ is C2, Definitions 3.1 and 4.1 are equivalent.

Proof. If uj is a strong eigenfunction of AL as in Definition 3.3 then by
virtue of Corollary A.1, for all v in W 1(Ω),

(ω(uj), ω(v)) − λ∗j (uj , v) = −(∆uj , v) +

∫

Γ
ω(uj)v · τ − λ∗j (uj , v)

= −(∆uj + λ∗juj , v) = 0.

(4.3)

It follows that uj is a weak eigenfunction of AL as in Definition 4.3.
Now suppose that uj is a weak eigenfunction of AL as in Definition 4.3.

Let ψj be the stream function for uj lying in W 1
0 (Ω) given by Lemma 2.10.

Then for all v in X,

(uj , v) = (∇⊥ψj , v) = −(∇ψj, v
⊥) = (ψj ,div v⊥) −

∫

Γ
(v⊥ · n)ψj

= −(ψj, ω(v)).

Hence, by virtue of Proposition 4.4, for all v in X,

(ω(uj) + λ∗jψj , ω(v)) = (∆ψj + λ∗jψj , ω(v)) = 0.

Then since by Lemma 2.11 ω(v) ranges over all of L2(Ω), ∆ψj + λ∗jψj = 0

so ωj = −λ∗jψj lies in W 1
0 (Ω). Thus, ∆uj = ∇⊥ωj is in L2(Ω) so uj is a

strong eigenfunction of AL as in Definition 3.3.
A strong eigenfunction of AS is a weak eigenfunction of AS by Proposi-

tion 4.5.
Suppose that uj is a weak eigenfunction of AS as in Definition 4.1 and

that Γ is C2. Let v lie in V. Then

(ω(uj), ω(v)) = −(ω(uj),div v⊥) = (∇ω(uj), v
⊥) = −(∇⊥ω(uj), v)

= −(∆uj, v).

Hence,

(∆uj + νjuj , v) = 0 for all v ∈ V
so by Lemma 2.9

∆uj + νjuj = ∇pj (4.4)

for some pj in D′(Ω).
Now, by Proposition I.2.3 of [25], there exists w in V ∩W 2(Ω), q in W 1(Ω)

satisfying

∆w + νjuj = ∇q.
(This is the only place in which we require Γ to be C2.)

Define the bilinear form a on V × V by a(u, v) = (ω(u), ω(v)). Then

a(u, v) = (∇u,∇v) by Corollary A.3 so a(u, u) = ‖u‖2
V and we can apply the

Lax-Milgram theorem to conclude that w = uj . Hence, uj is in V ∩W 2(Ω)
showing that it is a strong eigenfunction of AS .
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That a strong eigenfunction of −∆D is weak is classical. It is also classical
that for a weak eigenfunction, ωj is in C∞(Ω), which is enough to conclude
that ∆ωj is in L2(Ω). �

Remark 4.7. When Γ is C2, in fact the eigenfunctions of AL and AS lie
in W 2(Ω), as can seen by the proof of Proposition 4.6 for AL and by, for
instance, Proposition I.2.3 of [25] for AS .

Proposition 4.8. There exists a bijection between the strong eigenfunc-
tions of AL having positive eigenvalues and the weak eigenfunctions of the
Dirichlet Laplacian, with a corresponding bijection between the eigenvalues.

Proof. By Lemma 2.11 for any u in W0 ∩ X2
0 there exists ω(u) in W 1

0 (Ω)
and this gives a bijection between the spaces. Also by Lemma 2.11 and its
proof, for any v in W0 ∩X2

0 there exists ω(v) in W 1
0 (Ω), and associated to

v is its stream function ψ in W 1
0 (Ω) with ∆ψ = ω(v). With u, v, and ψ as

above,

(∇ω,∇ψ)

(ω,ψ)
=

−(ω,∆ψ) +
∫
Γ(∇ψ · n)ω

−(div u⊥, ψ)

=
−(ω(u), ω(v))

(u⊥,∇ψ) −
∫
Γ(u⊥ · n)ψ

=
−(ω(u), ω(v))

−(u,∇⊥ψ)

=
(ω(u), ω(v))

(u, v)
.

We applied Lemma 2.4 twice, the first time using ω in W 1
0 (Ω) with ∇ψ in

E(Ω) and the second time using ψ in W 1
0 (Ω) with u⊥ in E(Ω).

By the bijections mentioned above, this shows that if ω is a weak eigen-
function of −∆D then u = ω−1(ω) is a weak eigenfunction of AL (also using
Corollary 2.12) which lies in X2

0 , and hence is a strong eigenfunction of the
AL by Proposition 4.6. The converse follows from the same equality. �

Corollary 4.9. There exists a bijection between the weak eigenfunctions of
AL having positive eigenvalues and the weak eigenfunctions of the Dirichlet
Laplacian, with a corresponding bijection between the eigenvalues; that is,
λ∗k = λk for all k.

Proof. Combine Propositions 4.6 and 4.8. �

Proposition 4.10. There exists a sequence of weak eigenfunctions for each
of our three eigenvalue problems with spectra increasing to infinity as in
Equation (1.1) for −∆D and AS and with

σL = {λj}∞j=1 , 0 < λ1 < λ2 ≤ · · · .
If Ω is multiply connected, σL will also include 0. The eigenfunctions of
−∆D form an orthonormal basis of both L2(Ω) and W 1

0 (Ω) while those of
AS form an othogonal basis of both H and V . The eigenfunctions of AL

lie in C∞(Ω) ∩ X2
0 and form an orthogonal basis of both H and X. The

eigenfunctions of −∆D are in C∞(Ω) ∩W 2(Ω).



EIGENVALUES OF STOKES VERSUS LAPLACIAN 17

Proof. To prove the existence of eigenfunctions of AS , let G be the inverse
of AS . Let u, v be in H. Since AS is a bijection from D(AS) onto H,
there exists w in D(AS) such that v = ASw, w = Gv. Then because AS is
self-adjoint,

(Gu, v) = (Gu,ASw) = (ASGu,w) = (u,w) = (u,Gv),

showing that G is symmetric and hence, being defined on all of H, it is self-
adjoint. The above calculation also shows that (Gu, u) = (ASGu,Gu) =

‖∇Gu‖2
L2(Ω), which is positive for all nonzero u in H.

But V is compactly embedded in H by Lemma 2.6, so G, viewed as a map
from H to H, is compact. Therefore, G is a compact, positive, self-adjoint
operator. The spectral theorem thus gives a complete set of eigenfunctions
in H and a discrete set of eigenvalues decreasing to zero; applying G to
these eigenfunctions and using the reciprocal of the eigenvalues gives the
eigenfunctions and eigenvalues of AS in the usual way.

The results for −∆D are classical and the results for AL then follow from
Corollary 4.9 or they can be proven directly using an argument similar to
that above. �

Remark 4.11. Because the strong form of the eigenvalue problem for AS ,
∆uj + λ∗juj = ∇pj, has a nonzero pressure, the classical interior regularity
argument for −∆D cannot be made for AS . To obtain further regularity,
one must assume a more regular boundary.

5. Min-max formulations of the eigenvalue problems

Proposition 5.1. Let

Sk = span {first k eigenfunctions of AS} ,
Lk = span {first k eigenfunctions of AL} ,
Dk = span {first k eigenfunctions of − ∆D} ,

with S0 = L0 = D0 = {0}. Then

νk = min
{
RS(u) : u ∈ S⊥

k−1 ∩ V \ {0}
}
,

λk = min
{
RD(ω) : ω ∈ D⊥

k−1 ∩W 1
0 (Ω) \ {0}

}

= min
{
RL(u) : u ∈ L⊥

k−1 ∩W0 ∩X \ {0}
}
,

= min
{
RL(u) : u ∈ L⊥

k−1 ∩W0 ∩X2
0 \ {0}

}
,

where the Rayleigh quotients are

RS(u) = RL(u) =
‖ω(u)‖2

L2(Ω)

‖u‖2
L2(Ω)

, RD(ω) =
‖∇ω‖2

L2(Ω)

‖ω‖2
L2(Ω)

.
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Proof. The form of the Rayleigh coefficient for νk and that in the first two
expressions for λk come from the weak formulations of the eigenvalue prob-
lems in Definitions 4.1 through 4.3. The third expression for λk follows from
the bijection in Lemma 2.11 and the observation that if u is any element of
X2

0 then RL(u) = RD(ω(u)), as in the proof of Proposition 4.8. �

Define the four functions mapping R to Z,

NS(λ) = # {j ∈ N : νj < λ} , NL(λ) = # {j ∈ N : λj < λ} ,
NS(λ) = # {j ∈ N : νj ≤ λ} , NL(λ) = # {j ∈ N : λj ≤ λ} .

Corollary 5.2 follows immediately from Proposition 5.1.

Corollary 5.2. We have,

NS(λ) = max
Z⊆V

{dimZ : RS(u) ≤ λ for all u ∈ Z} ,

NL(λ) = max
Z⊆W0∩X2

0

{dimZ : RL(u) ≤ λ for all u ∈ Z}

= max
Z⊆W0∩X

{dimZ : RL(u) ≤ λ for all u ∈ Z} .

Remark 5.3. By Corollary A.3, RS(u) = ‖∇u‖2
L2(Ω) / ‖u‖

2
L2(Ω), so λk ≤ νk

follows from Corollary 5.2. Strict inequality, however, is not so immediate.

6. Proof of Theorem 1.1

Lemma 6.1 is the analog of the (only) lemma in [6] and, in fact, follows from
it. For completeness we give the full proof.

Lemma 6.1. For all λ in R,

V ∩ ker {AL − λ} ∩X2
0 = {0} .

Proof. Let u be in V ∩ ker {AL − λ} ∩X2
0 = ker {AS − λ} ∩X2

0 , where we
used Proposition 4.5. Then

{
∆u+ λu = ∇p, div u = 0, ∆ω + λω = 0 in Ω,
u = 0, ω = 0 on Γ.

Because ω = 0 on Γ, ∇p = 0 on Ω by Lemma 3.4. Hence, ∇ω = −(∆u)⊥ =
λu⊥ = 0 on Γ. Thus, ω extended by 0 to all of R

2 lies in W 1(R2). Then for
all ψ in S(R2),

(−∆ω,ψ)S′(R2),S(R2) = (∇ω,∇ψ)S′(R2),S(R2) =

∫

R2

∇ω · ∇ψ

=

∫

Ω
∇ω · ∇ψ = −

∫

Ω
∆ωψ +

∫

Γ
(∇ω · n)ψ

= λ

∫

Ω
ωψ = λ

∫

R2

ωψ = (λω,ψ)S′(R2),S(R2),

which shows that ∆ω = −λω as distributions. But ω is in W 1(R2) so, in
fact, ∆ω is in W 1(R2) and ∆ω+λω = 0 on R

2. Moreover, ω vanishes outside
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of Ω. But the Laplacian is hypo-elliptic so ω is real analytic and therefore
vanishes on all of R

2.
Now, were Ω simply connected it would follow immediately that u ≡ 0.

In any case, observe that ω ≡ 0 =⇒ ∆u = ∇⊥ω ≡ 0. But ∆u = −λu so
u ≡ 0. �

Proof of Theorem 1.1. Let λ > 0 and choose a subspace F of V of di-
mension NS(λ) with

‖ω(u)‖2
L2(Ω) ≤ λ ‖u‖2

L2(Ω) for all u ∈ F. (6.1)

This is possible by the variational formulation of the eigenvalue problem for
AS in Corollary 5.2. By Lemma 6.1,

G = F ⊕
(
ker {AL − λ} ∩X2

0

)

is a direct sum and so has dimension NS(λ) + dimker {−∆D − λ}, where
we used Propositions 4.5 and 4.8. (Either of the vector spaces above could
contain only 0.)

For any u ∈ F , v ∈ ker {AL − λ} ∩X2
0 ,

‖ω(u+ v)‖2
L2(Ω) = ‖ω(u)‖2

L2(Ω) + ‖ω(v)‖2
L2(Ω) + 2Re(ω(u), ω(v))

= ‖ω(u)‖2
L2(Ω) + ‖ω(v)‖2

L2(Ω) + 2λRe(u, v),

because (ω(u), ω(v)) = λ(u, v) by Definition 4.3.
Also by Definition 4.3,

‖ω(v)‖2
L2(Ω) = λ ‖v‖2

L2(Ω) ,

and combined with Equation (6.1) this gives

‖ω(u+ v)‖2
L2(Ω) ≤ λ ‖u‖2

L2(Ω) + λ ‖v‖2
L2(Ω) + 2λRe(u, v)

= λ ‖u+ v‖2
L2(Ω) .

Then by the variational formulation of the eigenvalue problem for AL in
Corollary 5.2 it follows that

NL(λ) ≥ dimG = NS(λ) + dimker {−∆D − λ}
so

NL(λ) = NL(λ) − dimker {−∆D − λ} ≥ NS(λ).

Setting λ = νk gives

NL(νk) ≥ NS(νk) ≥ k.

In other words, there are at least k eigenvalues in σD (counted according to
multiplicity) strictly less than νk; that is, λk < νk. �
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7. Toward the inequality λk+1 ≤ νk

Theorem 7.1. For each k in N, define Uk
R = (νk, x), where x is the smallest

element of (σS∪σD)∩(νk,∞), and define Uk
L = (y, λk), where y is the largest

element of (σS ∪ σD) ∩ (−∞, λk). (Let y = −∞ if k = 1.) Suppose that for
some λ in Uk

R there exists a nonzero vector field w in X2 and a scalar field
q in W 1(Ω) satisfying the underdetermined problem,

{
∆w + λw = ∇q, divw = 0 on Ω,
w · n = 0 on Γ,

(7.1)

but with the constraint∫

Γ
ω(w)w · τ = ‖ω(w)‖2

L2(Ω) − λ ‖w‖2
L2(Ω) ≤ 0. (7.2)

Then λk+1 ≤ νk. If for each k there exist λ in Uk
L, a nonzero vector field w

in X2, and a scalar field q in W 1(Ω) satisfying Equation (7.1) and Equa-
tion (7.2) then λk+1 ≤ νk for all k.

Proof. Observe first that
∫
Γ ω(w)w · τ = ‖ω(w)‖2

L2(Ω) − λ ‖w‖2
L2(Ω) follows

from Corollary A.1.
Assume that λ in Uk

R and w and q are as in Equation (7.1) and Equa-
tion (7.2). Let the set F be defined as in the proof of Lemma 6.1, but
let

G = F ⊕ span {w} .
This is a direct sum since otherwise w would be in spanF , meaning that
it would vanish on Γ and so would actually be an eigenfunction of AS ; but
this is impossible since λ is not in σS by assumption. The dimension of G
is NS(λ) + 1.

Then for any u in F and c in C,

‖ω(u+ cw)‖2
L2 = ‖ω(u)‖2

L2 + ‖ω(cw)‖2
L2 + 2Re(ω(u), ω(cw)).

But by Corollary A.1,

(ω(u), ω(w)) = −(∆w, u) = (λw, u) − (∇q, u) = λ(u,w)

and

‖ω(w)‖2
L2 ≤ λ ‖w‖2

L2

by Equation (7.2). Also, ‖ω(u)‖2
L2 ≤ λ ‖u‖2

L2 , so we can conclude that

‖ω(u+ cw)‖2
L2 ≤ λ ‖u‖2

L2 + λ ‖cw‖2
L2 + 2λRe(u, cw)

= λ ‖u+ cw‖2
L2 .

Then by the variational formulation of the eigenvalue problem for AL in
Corollary 5.2 it follows that

NL(λ) ≥ dimG = NS(λ) + 1.
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Because λ is larger than νk but smaller than any eigenvalue in (σD∪σS)∩
(λ,∞), NL(λ) = NL(νk) and NS(λ) = NS(νk) so

NL(νk) ≥ NS(νk) + 1 ≥ k + 1.

In other words, there are at least k+1 eigenvalues in σD (counted according
to multiplicity) less-than-or-equal-to νk; that is, λk+1 ≤ νk. This establishes
the result for λ in Uk

R.

Now assume that for all k there exists a λ in Uk
L with w and q as in Equa-

tion (7.1) and Equation (7.2). Given j in N, let δ be the lowest eigenvalue
greater than νj in σS ∪ σD. If δ is in σS , then δ = νn for some n > j, and if
λn+1 ≤ νn then it will follow that λj+1 ≤ νj since there are no eigenvalues
in σD between νj and νn (though νj , νn, or both might also be in σD). We
can continue this line of reasoning until eventually we reach a value of j such
that the next lowest eigenvalue δ in σS ∪σD is in σD (δ might also be in σS ,
but this will not affect our argument). Then δ = λn for some n in N.

Then by assumption there is some λ in Un
L with w and q as in Equa-

tion (7.1) and Equation (7.2). But this λ is also in U j
R, so we conclude that

λj+1 ≤ νj, and from our argument above, this inequality holds, then, for all
j in N. �

Remark 7.2. For λ in σD, even if a w exists satisfying the conditions in
Equation (7.1) and Equation (7.2), w might be an eigenfunction of AL and
so lie in ker {AL − λ}. This means that we cannot extend the argument
along the lines in the proof of Theorem 1.1, since span {w} might not be
linearly independent of the set G in the proof of that theorem. This prevents
us from concluding that λk+1 < νk for all k, which is in any case not true
in general.

The difficulty with applying Theorem 7.1 is that it is relatively easy to
find vector fields w satisfying the given conditions in a left neighborhood of
νk, or perhaps in a right neighborhood of λk, but hard to find ones in the
required neighborhoods. We give an example in Section 8.

8. Proof of Theorem 1.2 and related issues

Navier slip boundary conditions for the Stokes operator provide a physically
justifiable alternative to the classical no-slip boundary conditions used to
define AS . To the extent possible, we will work with these boundary condi-
tions with a locally Lipschitz boundary, but we will find that they are really
only of use when the boundary is C2 and has a finite number of components.
(Observe that under this assumption, by Corollary 2.16, the distinctions we
have been making between the “X” spaces and the “Y” spaces disappear.)

To define Navier boundary conditions in the classical sense, we must as-
sume that Γ is C2. (Here, as elsewhere in this paper, C1,1 would suffice, but
introduces added complexities we wish to avoid.) The Navier conditions can
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be written in the form

ω(u) = (2κ− α)u · τ on Γ, (8.1)

where κ is the curvature of the boundary and α is any function in L∞(Γ).
If u in H ∩W 2(Ω) satisfies Equation (8.1) then by Corollary A.1, for any

v in X,

(−∆u, v) = (ω(u), ω(v)) −
∫

Γ
(2κ− α)u · v.

Let

HV =
{
u ∈ H ∩W 2(Ω): ω(u) = (2κ− α)u · τ on Γ

}
,

endowed with the same norm as Y . We define the operator AV : Y → H by
requiring that

(AV u, v) = (ω(u), ω(v)) +

∫

Γ
(α− 2κ)u · v

= (∇u,∇v) +

∫

Γ
(α− κ)u · v,

(8.2)

for all v in Y . The second equality (which gives the form of the operator
A defined on p. 218 of [17]) follows from Lemma A.2, Lemma A.4, and the
density of (C1(Ω))2 in Y .

Now assume that Ω is bounded and Γ is locally Lipschitz. Then the
curvature is no longer defined, so we replace the function α − 2κ with a
function f lying in L∞(Γ), though we lose in this way the physical meaning.
In place of Equation (8.1), we have

ω(u) + fu · τ = 0 on Γ (8.3)

and

(AV u, v) = (ω(u), ω(v)) +

∫

Γ
fu · v. (8.4)

Observe that the second expression for AV in Equation (8.2) now has insuf-
ficient regularity so it no longer applies.

We define the strong and weak formulation of the eigenvalue problem for
AV as follows:

Definition 8.1. A vector field uj ∈ X2 is a strong eigenfunction of AV with
eigenvalue γj if

{
∆uj + γjuj = ∇pj, ∆pj = 0, div uj = 0 in Ω,
uj · n = 0, ω(uj) + fuj · τ = 0 on Γ.

Definition 8.2. The vector field uj in X is a weak eigenfunction of AV

with eigenvalue γj if

(ω(uj), ω(v)) +

∫

Γ
fuj · v − γj(uj , v) = 0 ∀v ∈ X.
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Proposition 8.3. If uj is a strong eigenfunction of AV then it is a weak
eigenfunction of AV ; if uj is a weak eigenfunction of AV that happens to be
in X2 and satisfy ω(uj)+ fuj ·τ = 0 on Γ then uj is a strong eigenfunction
of AV .

Proof. Strong implies weak follows by the integration by parts performed
above. For the reverse implication, assume that uj is a weak eigenfunction
of AV lying in X2. Then choosing v to lie in V it follows that

(ω(uj), ω(v)) − γj(uj, v) = 0 ∀v ∈ V.

Applying Corollary A.1 gives

(∆uj + γjuj , v) = 0 ∀v ∈ V,

and we conclude that ∆uj +γjuj = ∇pj for some harmonic field p in W 1(Ω)
by Lemma 2.9. �

When Γ is C2 and has a finite number of components, we can consider the
special case α = κ, which gives ω(uj) = κuj · τ . It follows from Lemma A.5
that ∇ujn · v = 0 for any v in X. More simply, we can write this as ∇ujn ·
τ = 0. These boundary conditions imply that for all v in X, (−∆uj , v) =
(∇uj,∇v) (or we can take advantage of the second form of (AV u, u) in
Equation (8.2)), and we can explicitly define such eigenfunctions as follows,
though we need no longer assume that the boundary is C2:

Definition 8.4. A vector field uj ∈ X2 is a strong eigenfunction of AN if
{

∆uj + βjuj = ∇pj, ∆pj = 0, div uj = 0 in Ω,
uj · n = 0, ∇ujn · τ = 0 on Γ.

Definition 8.5. A vector field uj in X is a weak eigenfunction of AN if

(∇uj ,∇v) − βj(uj , v) = 0 ∀v ∈ X.

We also have the following min-max formulations for the eigenvalues of
AV and the special case of AN .

Proposition 8.6. Let

Vk = span {first k eigenfunctions of AV } ,
Nk = span {first k eigenfunctions of AN} ,

with V0 = N0 = {0}. Then

γk = min
{
RV (u) : u ∈ V ⊥

k−1 ∩X \ {0}
}
,

βk = min
{
RN (u) : u ∈ N⊥

k−1 ∩X \ {0}
}
,

where

RV (u) =
‖ω(u)‖2

L2(Ω) +
∫
Γ f |u|

2

‖u‖2
L2(Ω)

, RN (u) =
‖∇u‖2

L2(Ω)

‖u‖2
L2(Ω)

.
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The eigenvalues are real with 0 = β1 ≤ β2 ≤ · · · and, when f is nonnegative,
0 < γ1 ≤ γ2 ≤ · · · with γk → ∞.

Proof. Define the operator T : X → X by

T = (iI +AV )−1 ◦ j,
where I is the identity map, j is the inclusion map from X to X∗ (which
is compact by Corollary 2.12), and i =

√
−1. Then since (iI + AV )−1 is

bounded (its norm can be no greater than 1) T is compact, and the spectral
theorem provides us with eigenvalues of T accumulating at zero. To each
eigenvalue λ of T there corresponds an eigenvalue γ = µ−1 − i of AV . But
AV is self-adjoint, so γ is real. And when f is nonnegative, since RV (u) is
nonnegative, 0 < γ1 ≤ γ2 ≤ · · · with γk → ∞. �

Define the two functions mapping R to Z,

NV (λ) = # {j ∈ N : γj ≤ λ} , NN (λ) = # {j ∈ N : βj ≤ λ} .
Corollary 8.7 follows immediately from Proposition 8.6.

Corollary 8.7. We have,

NV (λ) = max
Z⊆X

{dimZ : RV (u) ≤ λ for all u ∈ Z} ,

NN (λ) = max
Z⊆X

{dimZ : RN (u) ≤ λ for all u ∈ Z} .

Proposition 8.8. Assume that Γ is C2 and has a finite number of compo-
nents and that

f ∈ C1/2+ǫ(Γ) +W 1/2+ǫ(Γ). (8.5)

A weak eigenfunction of AV is a strong eigenfunction of AV . In particular,
a weak eigenfunction uj of AV satisfies ω(uj) + fuj · τ = 0 on Γ.

Proof. Suppose that u is a weak eigenfunction of AV as in Definition 8.2 with
ω = ω(u). Then for any v in V integration by parts gives (∆u+ λu, v) = 0
so ∆u+ λu = ∇p by Lemma 2.9, equality holding in terms of distributions.
Taking the curl it follows that ∆ω = −λω so ω is in U of Proposition 2.17,
since ω is in L2. Thus, by Proposition 2.17, ω is well-defined on Γ as an
element of W−1/2(Γ).

Let v be any vector in W0 ∩Y and let α be its associated stream function
lying in W 1

0 (Ω) ∩ W 2(Ω) given by Lemma 2.10, so that ∆α = ω(v) is in
L2(Ω). Thus, again by Proposition 2.17, since ∇α · n = −v · τ ,

(γωω, v · τ )W−1/2(Γ),W 1/2(Γ) = (α,∆ω) − (ω(v), ω)

= −λ(α, ω) − (ω(v), ω) = λ(u, v) − (ω(v), ω).

Here we used,

(α, ω) = −(α,div u⊥) = (∇α, u⊥) +

∫

Γ
(u⊥ · n)α = −(v, u),

noting that we had enough regularity to apply Corollary A.1.
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But because u is a weak eigenfunction of AV , also

(fu · τ , v · τ )W−1/2(Γ),W 1/2(Γ) = λ(u, v) − (ω(v), ω).

Thus, the two boundary integrals are equal, and because of Lemma 2.19,
we can conclude that ω = −fu · τ on Γ, and in particular that ω is in
W 1/2(Γ). (By Corollaries 2.2 and 2.3 and Equation (8.5) we know that

fu · τ is in W 1/2(Γ).) From this gain of regularity on the boundary, along
with ∆ω = −λω ∈ L2(Ω), we conclude that ω is in W 1(Ω), from which it
follows that u is a strong solution to AV as in Definition 8.1.

(The origin of this proof was the proof of Lemma 2.2 of [4].) �

We have the following simple extension of Lemma 6.1:

Lemma 8.9. When Γ is C2 and has a finite number of components, and
Equation (8.5) holds, for all λ in R,

V ∩ ker {AV − λ} = {0} .
Proof. By Proposition 8.8, u is a strong eigenfunction of AV and so satisfies
ω(u) = −fu · τ = 0 on Γ, and so is a strong eigenfunction of AL. But then
u = 0 by Lemma 6.1. �

Restricting our attention to the case where f is nonnegative and constant
on Γ (in which case Equation (8.5) holds), we can write the boundary con-
ditions in Definition 8.1 as (1 − θ)ω(uj) + θuj · τ = 0 on Γ, where θ lies in
[0, 1]. When θ = 0, we have the special case of Lions boundary conditions
and when θ = 1 we have Dirichlet boundary conditions on the velocity. In
Definition 8.2, f = θ/(1 − θ) for θ in [0, 1). With this parameterization, we
can view γj as a function of θ. That is, γj(θ) is the j-th eigenvalue of AV (or
AL or AS) so, for instance, to each eigenvalue γj(θ) of multiplicity k there
will be exactly k values of n for which γn(θ) = γj(θ).

Because f is constant on Γ, f is certainly in C1(Γ), which is a requirement
of Proposition 8.8.

Proposition 8.10. Assume that Γ is C2 and has a finite number of com-
ponents. For all j in N, γj : [0, 1) → [λj , νj) and is strictly increasing and
continuous.

Proof. To show that γj(θ) < νj for θ in [0, 1) we repeat the proof of Theo-
rem 1.1 using G = F ⊕ ker {AV − λ} in place of F ⊕ ker({AL − λ} ∩ X2

0 ).
Let u ∈ F , v ∈ ker {AV − λ}. Then because v is a weak eigenfunction of AV

as in Definition 8.2 and u is zero on the boundary, letting z = f = θ/(1−θ),
we have

(ω(u), ω(v)) = λ(u, v) − z

∫

Γ
v · u = λ(u, v).

Thus,

‖ω(u+ v)‖2
L2(Ω) = ‖ω(u)‖2

L2(Ω) + ‖ω(v)‖2
L2(Ω) + 2Re(ω(u), ω(v))

= ‖ω(u)‖2
L2(Ω) + ‖ω(v)‖2

L2(Ω) + 2λRe(u, v),
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as was the case for AL. Now, however,

‖ω(v)‖2
L2(Ω) = λ ‖v‖2

L2(Ω) − z

∫

Γ
|v|2 = λ ‖v‖2

L2(Ω) − z

∫

Γ
|u+ v|2 ,

and combined with Equation (6.1) this gives

‖ω(u+ v)‖2
L2(Ω) ≤ λ ‖u‖2

L2(Ω) + λ ‖v‖2
L2(Ω) + 2λRe(u, v) − z

∫

Γ
|u+ v|2

= λ ‖u+ v‖2
L2(Ω) − z

∫

Γ
|u+ v|2 .

Thus, RV (u + v) ≤ λ, and the proof of γj(θ) < νj is completed as in the
proof of Theorem 1.1.

The argument that γj is strictly increasing on [0, 1) is more direct, be-
cause the variational formulations in Corollary 8.7 for different values of θ
all involve maximums over subspaces of the same space Y . (That γj is non-
decreasing on [0, 1) follows immediately from the principle of monotonicity,
as in Theorem 2.5.1 p. 21 of [26].)

For θ in [0, 1), write Aθ
V for the operator AV and similarly for Rθ

V and

N
θ
V . In particular, AL = A0

V . Let f(θ) = θ/(1 − θ), which we note is an
increasing function of θ on [0, 1).

Now suppose that θ, θ′ are in [0, 1) with θ < θ′. Let λ > 0 and choose a

subspace F of Y of dimension N
θ′

V (λ) with Rθ′
V ≤ λ; that is,

‖ω(u)‖2
L2(Ω) +

∫

Γ
f(θ′) |u|2 ≤ λ ‖u‖2

L2(Ω) for all u ∈ F, (8.6)

which is possible by Corollary 8.7. Let

G = F ⊕ ker{Aθ
V − λ}.

This is, in fact, a direct sum, since if a nonzero u lies in both F and ker{Aθ
V −

λ} then from Equation (8.6) and Definition 8.2 it follows that
∫

Γ
(f(θ′) − f(θ)) |u|2 ≤ 0.

But f(θ′)−f(θ) is a positive constant on Γ so, in fact, u = 0 on Γ and hence
lies in V . It follows from Lemma 8.9 that u is identically zero.

This shows that when λ = γj(θ), G has at least one more element than

F . But then setting Z = F in the definition of N
θ
V (γj(θ)) in Corollary 8.7,

because Rθ
V ≤ Rθ′

V , we see that

N
θ
V (γj(θ)) ≥ dimG > dimF = N

θ′

V (γj(θ)),

which means that γj(θ) < γj(θ
′).

This shows that γj is strictly increasing. To show that it is continuous,
fix θ in [0, 1) and let Z be any subspace of Y that achieves the maximum in

the expression for k = N
θ
V (γk(θ)) in Corollary 8.7. Here we assume that if

λk is a multiple eigenvalue k is the largest such index.
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Choose a basis (v1, . . . , vk) for Z and observe that because RV (u) =
RV (cu) for any nonzero constant c,

sup
u∈Z

Rθ′
V (u) = max

u∈Z′

Rθ′
V (u)

for any θ′ in [0, 1), where

Z ′ =
{
c1v1 + · · · + ckvk : c1, . . . , ck ∈ C, |c1|2 + · · · + |ck|2 = 1

}
.

Now, the map from the complex k-sphere S to R defined by (c1, . . . , ck) 7→
‖c1v1 + · · · + ckvk‖L2(Ω) is continuous and so achieves its minimum, a, which

is the same as the minimum of ‖u‖L2(Ω) on Z ′. Because (v1, . . . , vk) is

independent, a must be positive. Similarly, ‖u‖Y achieves its maximum,
b > 0, on Z ′.

Thus, on Z ′ and so on Z, for any θ′ > θ,

Rθ′
V (u) −Rθ

V (u) =
(f(θ′) − f(θ))

∫
Γ |u|2

‖u‖2
L2(Ω)

≤ Ca−2 ‖u‖2
Y (f(θ′) − f(θ))

≤ Ca−2b2(f(θ′) − f(θ)),

where we used the standard trace inequality for u in Y ,

‖u‖L2(Γ) ≤ C ‖u‖1/2
L2(Ω)

‖∇u‖1/2
L2(Ω)

,

followed by Poincare’s inequality. But this shows that

N
θ′

V (λ) ≥ N
θ
V (γk(θ))

for λ = γk(θ) + Ca−2b2(f(θ′) − f(θ)). Since we already know that γk(θ
′) >

γk(θ) it follows that
∣∣γk(θ

′) − γk(θ)
∣∣ ≤ Ca−2b2(f(θ′) − f(θ)),

meaning that γk is continuous on [0, 1). �

The first part of Theorem 8.11 is Theorem 1.2.

Theorem 8.11. Assume that Γ is C2 and has a finite number of compo-
nents. For all j in N, the function γj : [0, 1] → [λj, νj ] is a strictly increasing
continuous bijection. Also, Equation (7.2) holds for any eigenfunction of
AV .

Proof. For any value of θ in (0, 1) we let w = w(θ) be any eigenfunction of
AV with eigenvalue γj(θ), normalized so that ‖w‖H = ‖w‖L2(Ω) = 1. We
know from Proposition 8.10 that γj(θ) strictly increases continuously from
λj at θ = 0 and remains bounded by νj. Formally, as θ → 1, w becomes
an eigenfunction of AS , since w must approach zero on the boundary so
that ω(w) = (θ/(1 − θ))w · τ can remain finite. We now make this formal
argument rigorous.
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Letting z = f = θ/(1 − θ), we have

‖w‖2
L2(Γ) =

∫

Γ
(w · τ )(w · τ ) = −z−1

∫

Γ
ω(w)w · τ ,

the boundary integral being well-defined because of Proposition 8.8. Then
∫

Γ
ω(w)w · τ = −z ‖w‖2

L2(Γ) ≤ 0,

so Equation (7.2) holds.
Moreover, from Definition 8.2,

‖ω(w)‖2
L2(Ω) + z ‖w‖2

L2(Γ) = γj(θ) ‖w‖2
L2(Ω) = γj(θ).

From this we conclude two things. First, that

‖w‖2
L2(Γ) =

γj(θ) − ‖ω(w)‖2
L2(Ω)

z
≤ νj

z
, (8.7)

since γj(θ) < νj . Second, that ‖ω(w)‖L2(Ω) ≤ γj(θ)
1/2 and hence, because

γj(θ) < νj and by virtue of Corollary 2.15, that ‖w‖Y ≤ C.
Now letting the parameter θ vary over the set {1 − 1/n : n ∈ N}, we obtain

a sequence (un) of eigenfunctions of AV , un = w(1 − 1/n), with eigenvalues
γn = γj(1−1/n). By the observations above, (un) is a bounded sequence in
Y . But Y is compactly embedded in H by Lemma 2.6 (or by Corollaries 2.12
and 2.16) so there exists a subsequence of (un) that converges strongly in
H. Since this subsequence is bounded in Y , which is a separable, reflexive
Banach space, taking a further subsequence, and relabeling it (un), we con-
clude that un → u strongly in H and weak∗ in Y to some vector field u in
Y with ‖u‖H = 1 (so u is nonzero).

Furthermore, ‖un‖W 1/2(Γ) ≤ C ‖un‖Y ≤ C, so (un) is bounded inW 1/2(Γ),

which is compactly embedded in L2(Γ), and hence extracting a subsequence
and relabeling once more, we conclude that also un → u strongly in L2(Γ).
But since z → ∞ as n→ ∞, we have un → u = 0 in L2(Γ) by Equation (8.7).

Then by Definition 8.2, for any v in V ,

(ω(un), ω(v)) − γn(un, v) = 0.

Letting γ = limn→∞ γn (the limit exists because γn is a bounded increasing
sequence of real numbers),

(ω(un), ω(v)) − γ(un, v) = (γn − γ)(un, v).

Since |(un, v)| ≤ ‖un‖L2(Ω) ‖v‖L2(Ω) ≤ C, the right-hand side converges to

zero. Because un → u strongly in L2(Ω), (un, v) → (u, v). Because un → u
weak∗ in Y , (ω(un), ω(v)) = (∇un,∇v) → (∇u,∇v) = (ω(u), ω(v)), where
we used Corollary A.3. We conclude that

(ω(u), ω(v)) − γ(u, v) = 0

and thus that u is a weak eigenfunction of AS with eigenvalue γ ≤ νj.
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What we have shown is that γj : [0, 1] → [λj , νk] for some k ≤ j and
that γj is strictly increasing and continuous on all of [0, 1]. To show that
k = j, we first observe that if γk(1) = γm(1) = νj for some k 6= m then
the eigenvalue νj has multiplicity at least 2. To see this, we repeat the
compactness argument above, this time choosing the original sequence of
eigenvectors (uk,n)∞n=1 and (um,n)∞n=1 such that uk,n is orthogonal in L2(Ω)
to um,n, which we can always do even if they lie in the same eigenspace. We
showed above that uk,n → u and um,n → w in L2(Ω) for some u and w that
are eigenvectors of AS . It is elementary to see, then, that (u,w) = 0, which
shows that νj has multiplicity at least two.

Similarly, the multiplicity of the eigenvalue νj is at least as high as the
number of distinct values of k for which γk(1) = νj. This means that the
total number of eigenvalues of AS including multiplicity reached by γj(1)
for some j, 1 ≤ j ≤ k, is at least k. But it can be no more than k since
γj(1) = νm for some m ≤ j ≤ k. Thus, the first k eigenvalues of AL

according to multiplicity are mapped via γj , j = 1, . . . , k, into the first k
eigenvalues of AS , which shows that γj : [0, 1] → [λj , νj ] for all j = 1, . . . , k
and hence for all j in N, since k was arbitrary. �

To round out the picture of how the eigenvalues for different boundary
conditions compare, we consider the eigenfunctions of the negative Laplacian
with Robin boundary conditions on the vorticity. For simplicity, we restrict
our attention to constant coefficients, writing the boundary conditions in
terms of a parameter θ lying in [0, 1], and stating only the strong form:

Definition 8.12. An eigenfunction ωj ∈ W 1
0 (Ω) of the Dirichlet Laplacian

with Robin boundary conditions satisfies
{

∆ωj + ηjωj = 0 in Ω,
(1 − θ)∇ωj · n + θωj = 0 on Γ.

The analog for divergence-free vector fields leads to the eigenvalue prob-
lem for a Stokes operator AR with Robin boundary conditions:

Definition 8.13. An eigenfunction uj ∈ X2 of AR satisfies ARuj = λ∗juj

or, equivalently,
{

∆uj + η∗juj = ∇pj, div uj = 0 in Ω,

uj · n = 0, (1 − θ)∇ωj · n + θωj = 0 on Γ.

A value of θ = 1 gives the operator AL, and θ = 0 gives Neumann
boundary conditions on the vorticity.

Taking the vorticity of uj in Definition 8.13 shows that a strong eigenfunc-
tions of AR corresponds to a strong eigenfunction of the Dirichlet Laplacian
with Robin boundary conditions. Also, the equivalent of Lemma 3.4 for
Robin boundary conditions on ω shows that to each strong eigenfunction of
the Dirichlet Laplacian with Robin boundary conditions there corresponds
a strong eigenfunctions of AR. Thus, there is a bijection between the eigen-
functions and eigenvalues; that is, η∗j = ηj . Moreover, ηj is continuous
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on [0, 1), because the bilinear form associated to Definition 8.12 (see [6]) is
continuous with θ.

Proposition 8.14. For all j in N, ηj : [0, 1) → [µj, λj) and is strictly in-
creasing.

Proof. The proof is similar to that of Proposition 8.10, making adaptations
of Filonov’s proof of his theorem that parallel those in the proof of Propo-
sition 8.10. �

Theorem 8.15. For all j in N, the function ηj : [0, 1] → [µj , λj ] is contin-
uous and strictly increasing.

Proof. The proof parallels that of Theorem 8.11. �

In the addendum at the end of [6], Filonov considers Robin boundary
conditions as in Definition 8.12 with, in effect, θ negative. In that case,
ηj+1(θ) < λj for all j in N.

For any θ,

‖∇pj‖2
L2(Ω) −

∫

Γ
(∇ωj · n)ωj

= ‖∆uj‖2
L2(Ω) − ηj(θ) ‖uj‖2

L2(Ω) −
∫

Ω
∆ω(uj)ω(uj) − ‖∇ω(uj)‖2

L2(Ω)

= ηj(θ)
[
‖ω(uj)‖2

L2(Ω) − ηj(θ) ‖uj‖2
L2(Ω)

]
.

Thus, Equation (7.2) holds for an eigenfunction of AL (θ = 1), where ∇pj ≡
0 and ωj = 0 on Γ, and fails for an eigenfunction of the Stokes operator
with Neumann boundary conditions on the vorticity (AR for θ = 0), where
∇pj 6≡ 0 and ∇ωj · n = 0 on Γ. For θ in (0, 1) it is not clear whether
Equation (7.2) holds or not, leaving open the possibility that the inequality
λj+1 ≤ νj could be proved by showing that Equation (7.2) holds for all θ in
some left neighborhood of 1 for each λj .

In any case, for all j we have the inequalities,

µj < ηj(θ) < λj < γj(θ
′) < νj

for all θ, θ′ in (0, 1), and

µj+1 < λj < βj < νj.

Appendix A. Various lemmas

Corollary A.1 is a corollary of Lemma 2.4: it is the main tool we use to
prove the equivalence of the weak and strong formulations of our eigenvalue
problems. The conditions in this corollary for equality to hold are the weak-
est possible to insure that each factor lies in the correct space for each term
to be finite.
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Corollary A.1. Assume that Ω is a bounded domain with locally Lipschitz
boundary. For any divergence-free distribution u for which ω(u) is in W 1(Ω)
and any v in L2(Ω) with ω(v) in L2(Ω),

(ω(u), ω(v)) = −(∆u, v) +

∫

Γ
ω(u)v · τ .

Proof. The vector field v is in E(Ω) because v⊥ is in L2(Ω) and div v⊥ =
−ω(v) is in L2(Ω). Thus, ω(u) lying in W 1(Ω), we can apply Lemma 2.4 to
obtain

(ω(u), ω(v)) = −(ω(u),div v⊥) = (∇ω(u), v⊥) −
∫

Γ
ω(u)(v⊥ · n).

But (∇ω(u), v⊥) = −(∇⊥ω(u), v) = (−∆u, v) and (v⊥ · n) = −v · τ , from
which the result follows. �

Lemma A.2. Assume that Ω is a bounded domain with locally Lipschitz
boundary. If u is in W 1(Ω) with div u = 0 and v is in (C1(Ω))2 then

(ω(u), ω(v)) = (∇u,∇v) −
∫

Γ
(∇uv) · n.

Proof. We have,

ω(u)ω(v) = (∂1u
2 − ∂2u

1)(∂1v
2 − ∂2v

1)

= ∂1u
2∂1v

2 + ∂2u
1∂2v

1 − (∂1u
2∂2v

1 + ∂2u
1∂1v

2)

= ∂1u
2∂1v

2 + ∂2u
1∂2v

1 + ∂1u
1∂1v

1 + ∂2u
2∂2v

2

− (∂1u
2∂2v

1 + ∂2u
1∂1v

2 + ∂1u
1∂1v

1 + ∂2u
2∂2v

2)

= ∂iu
j∂iv

j − ∂iu
j∂jv

i = ∇u · ∇v − (∇u)T · ∇v.
Since div u = 0, we have (∇u)T · ∇v = ∂iu

j∂jv
i = ∂j(∂iu

jvi) = div(∇uv).
But ∇uv is in L2(Ω) and

‖div(∇uv)‖L2(Ω) ≤ ‖∇u‖L2(Ω) ‖∇v‖L∞(Ω)

is finite, so ∇uv is in E(Ω) and we can apply Lemma 2.4 to give

(ω(u), ω(v)) = (∇u,∇v) −
∫

Ω
div(∇uv) = (∇u,∇v) −

∫

Γ
(∇uv) · n.

�

Corollary A.3. Assume that Ω is a bounded domain with locally Lipschitz
boundary. For all u in W 1(Ω) with div u = 0 and all v in V ,

(ω(u), ω(v)) = (∇u,∇v).

Proof. This follows from Lemma A.2 and the density of C1(Ω) inW 1(Ω). �

Lemma A.4. Assume that Γ is C2. For all u in H ∩W 2(Ω) and v in Y ,

∇uv · n = −κu · v.
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Proof. Because u · n has a constant value (of zero) along Γ,

0 =
∂

∂τ

(u · n) =
∂u

∂τ

· n + u · ∂n
∂τ

= ∇uτ · n + κu · τ .

But v = (v · τ )τ , so multiplying both sides of the above inequality by v · τ
completes the proof. �

Lemma A.5. Assume that Γ is C2. For all u in H ∩W 2(Ω) and v in Y

∇un · v = ω(u)v · τ − κu · v.
Proof. Writing

n =

(
n1

n2

)
, τ =

(
−n2

n1

)

with (n1)2 + (n2)2 = 1, we have

∇un · τ −∇uτ · n

=

((
∂1u

1 ∂2u
1

∂1u
2 ∂2u

2

)(
n1

n2

))
·
(
−n2

n1

)
−

((
∂1u

1 ∂2u
1

∂1u
2 ∂2u

2

)(
−n2

n1

))
·
(
n1

n2

)

=

(
∂1u

1n1 + ∂2u
1n2

∂1u
2n1 + ∂2u

2n2

)
·
(
−n2

n1

)
−

(
−∂1u

1n2 + ∂2u
1n1

−∂1u
2n2 + ∂2u

2n1

)
·
(
n1

n2

)

= −∂1u
1n1n2 − ∂2u

1(n2)2 + ∂1u
2(n1)2 + ∂2u

2n1n2

+ ∂1u
1n1n2 − ∂2u

1(n1)2 + ∂1u
2(n2)2 − ∂2u

2n1n2

=
[
(n1)2 + (n2)2

] [
∂1u

2 − ∂2u
1
]

= ω(u).

Thus by Lemma A.4,

∇un · τ = ω(u) + ∇uτ · n = ω(u) − κu · τ ,
and multiplying both sides by v · τ completes the proof. �
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[4] Thierry Clopeau, Andro Mikelić, and Raoul Robert. On the vanishing viscosity limit
for the 2D incompressible Navier-Stokes equations with the friction type boundary
conditions. Nonlinearity, 11(6):1625–1636, 1998. 3, 25



EIGENVALUES OF STOKES VERSUS LAPLACIAN 33

[5] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 1998. 6
[6] N. Filonov. On an inequality for the eigenvalues of the Dirichlet and Neumann prob-

lems for the Laplace operator. Algebra i Analiz, 16(2):172–176, 2004. 2, 18, 30
[7] C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes equations and turbulence,

volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 2001. 11

[8] Leonid Friedlander. Some inequalities between Dirichlet and Neumann eigenvalues.
Arch. Rational Mech. Anal., 116(2):153–160, 1991. 2

[9] Leonid Friedlander. Remarks on the membrane and buckling eigenvalues for planar
domains. Mosc. Math. J., 4(2):369–375, 535, 2004. 1

[10] Emilio Gagliardo. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi
di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova, 27:284–305, 1957. 4

[11] Giovanni P. Galdi. An introduction to the mathematical theory of the Navier-Stokes

equations. Vol. I, volume 38 of Springer Tracts in Natural Philosophy. Springer-
Verlag, New York, 1994. 4, 5, 6, 7, 9, 10

[12] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of sec-

ond order. Springer-Verlag, Berlin, 1977. Grundlehren der Mathematischen Wis-
senschaften, Vol. 224. 4

[13] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and

Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.
4

[14] Antoine Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in
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Dunod, 1969. 12, 13

[20] Pierre-Louis Lions. Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford

Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford
University Press, New York, 1996. 12, 13

[21] M. C. Lopes Filho, H. J. Nussenzveig Lopes, and G. Planas. On the inviscid limit
for 2d incompressible flow with Navier friction condition. SIAM Math Analysis,
36(4):1130 – 1141, 2005. 3
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