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Abstract. We study the asymptotic behavior of the infinite Darcy-
Prandtl number Darcy-Brinkman-Boussinesq system for convection in
porous media at small Brinkman-Darcy number. The existence of a
boundary layer with thickness proportional to the square root of the
Brinkman-Darcy number for the velocity field is established in both the
L∞(H1) norm (in 2 and 3 d) and the L∞(L∞) norm (in 2d). This
improves in several respects an earlier result of Payne and Straughan [43]
where the vanishing Brinkman-Darcy number limit is studied without
resolving the boundary layer.
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1. Introduction

In this article we investigate a singular perturbation problem for a convec-
tion system. Before we describe our results we will first comment on the
mathematical and physical backgrounds of the problem.

On the mathematical side the context is the behavior at small viscosity
of the incompressible Navier-Stokes equations when the boundary is charac-
teristic. This problem is a major open problem in applied mathematics and
theoretical fluid dynamics. It is still not solved, not even for a small interval
of time, not even in the incompressible case in dimension two, although the
existence and uniqueness of solutions are known for all time for both the
Navier-Stokes and Euler equations. These singular perturbation boundary
layer problems of fluid mechanics are usually difficult to handle even if the
leading order Prandtl type equation is linear (see for instance the case of
Ekman layer [34], and the boundary layer associated with the Navier-Stokes
equations when the boundary is uniformly non-characteristic [58]) and can
be difficult even when the system itself is linear (see, for instance, [67] for
the case of the linearized compressible Navier-Stokes system).

There is an abundant literature on boundary layer associated with in-
compressible flows and the related question of vanishing viscosity (see for
instance [2, 6, 46, 47, 9, 39, 14, 22, 45, 19, 20, 7, 27, 68, 30, 3, 4, 32, 29, 65,
1, 66, 21, 55, 56, 51, 53, 54, 59, 23, 8, 25, 18, 26, 18, 26, 37, 5, 15, 13, 59, 38,
36, 35, 10, 11, 63, 64] among many others) and we will refrain from surveying
the literature here, but emphasize that the boundary layer problem is still
open and that there is a need to develop tools and methods to tackle them.

On the physical side, the context is that of convection phenomena in
porous media which are relevant to a variety of science and engineering
problems ranging from geothermal energy transport to fiberglass insulation
[40]. Here we consider a Bénard like problem: convection in a porous media

region, Ω̃, bounded by two parallel planes saturated with fluids. The bottom
plate is kept at temperature T2 and the top plate is kept at temperature T1

with T2 > T1.
For concreteness, we let Ω̃ = (0, 2πh)d−1 × (0, h), d = 2 or 3, be a d-

dimensional channel, periodic in the x- or x- and y-directions. Most of our
analysis is valid in three dimensions, but when we restrict ourselves to two
dimensions we use (x, z)-coordinates, suppressing the y variable, so that the
z variable is always in the direction normal to the boundary.

The setup is very much similar to the Rayleigh-Bénard convection and the
model we start with is the following Darcy-Brinkman-Oberbeck-Boussinesq
system in the non-dimensional form [40]:

γa(
∂v

∂t
+ (v · ∇)v) + v − D̃a∆v + ∇p = RaD kT, divv = 0,

∂T

∂t
+ v · ∇T = ∆T,
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where k is the unit normal vector directed upward (the positive z direction),
v is the non-dimensional seepage velocity, p is the non-dimensional kinematic
pressure, T is the non-dimensional temperature. The parameters in the
system are given by the Prandtl-Darcy number, γ−1

a , which is defined as

γ−1
a =

νh2

κK
,

where ν is the kinematic viscosity of the fluid, h is the distance between the
top and bottom plates, κ is the thermal diffusivity and K is the permeability
of the fluid; the Brinkman-Darcy number, D̃a, which is given by

D̃a =
νeffK

νh2
,

where νeff is the effective kinematic viscosity of the porous media; and the
Rayleigh-Darcy number, RaD, which takes the form

RaD =
gα(T2 − T1)Kh

νκ
where g is the gravitational acceleration constant, α is the thermal expansion
coefficient. The parameter γa is also called the non-dimensional acceleration
coefficient. The non-dimensionalized domain is given by Ω = (0, 2π)d−1 ×
(0, 1).

The classical Darcy number, Da, is defined as

Da =
K

h2
.

Therefore, the Prandtl-Darcy number is the ratio of the Prandtl number
(Pr = ν

κ) to the Darcy number; that is, γ−1
a = Pr

Da .
The Brinkman-Darcy number is the product of the Darcy number and the

ratio of the effective viscosity to viscosity; that is,

D̃a =
νeff

ν
Da. (1.1)

The Rayleigh-Darcy number RaD is the product of the Rayleigh number,
Ra, and the Darcy number, Da; that is, RaD = (Ra) (Da).

The non-Darcy viscous term (the Brinkman correction), i.e., D̃a∆v, is
needed if the porosity of the media is large or the domain has a boundary
so that the no-slip, no-penetration condition must be imposed [40, 28].

In many physically interesting settings the Prandtl-Darcy number, γ−1
a , is

large either because the Darcy number Da is small (relative smallness of the
permeability K over h2) or the Prandtl number is large [40]. Hence γa is a

small parameter in general. The Brinkman-Darcy number D̃a is also small
in many cases since the effective viscosity νeff is usually of the same order
as the viscosity ν while the the Darcy number Da is small in general [40].

Therefore, we have two small parameters γa and D̃a, and, in the present
work, we will consider simplified models and their validity as these small
parameters approach zero in different physical manners.
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Since the Prandtl-Darcy number γ−1
a is usually large [40], we formally

set the Prandtl-Darcy number to infinity (γa = 0) in the Darcy-Brinkman-
Boussinesq model to arrive at the following infinite Prandtl-Darcy number
Darcy-Brinkman-Boussinesq system (IPDDBB):

v − D̃a∆v + ∇p = RaD kT, div v = 0, v|z=0,1 = 0, (1.2)

∂T

∂t
+ v · ∇T = ∆T, T

∣

∣

z=0
= 1, T

∣

∣

z=1
= 0. (1.3)

Periodicity in the horizontal directions is assumed for simplicity.
Such a formal limit is very much the same as the infinite Prandtl number

limit in the Rayleigh-Bénard convection (except for the harmless low order
Darcy term v) that one of us studied earlier [60, 61, 62] and we anticipate
parallel results for this singular limit problem involving two time scales (of
relaxation type). A related limit where one first drops the Brinkman correc-
tion and the inertial term, then taking the infinite Prandtl-Darcy limit can
be found in [42].

Within the infinite Prandtl-Darcy number Darcy-Brinkman-Boussinesq
system, (1.2), (1.3), we can consider the vanishing viscosity limit since the

Brinkman-Darcy number, D̃a, is usually small [40]. Formally setting the
Brinkman-Darcy number to zero, we arrive at the following infinite Prandtl-
Darcy number Darcy-Boussinesq system (IPDDB):

v0 + ∇p0 = RaD kT 0, divv0 = 0, v0
3

∣

∣

z=0,1
= 0, (1.4)

∂T 0

∂t
+ v0 · ∇T 0 = ∆T 0, T 0

∣

∣

z=0
= 1, T 0

∣

∣

z=1
= 0. (1.5)

Periodicity in the horizontal directions is assumed again.
Our aim in this article is to investigate the relations between the prob-

lem (1.2), (1.3) and problem (1.4), (1.5). This is a singular limit involv-
ing a boundary layer (and hence multiple spatial scales) since the veloc-
ity field of the infinite Darcy-Prandtl number Darcy-Boussinesq equation
(1.4) satisfies the no-penetration boundary condition while the velocity field
of the Brinkman model (1.2) satisfies the no-slip, no-penetration bound-
ary condition. This is very similar to the classical boundary layer problem
for incompressible viscous fluids at small viscosity that we already recalled
[48, 41, 52, 57, 58]. Indeed, following the original work of Prandtl [44], we
can derive a Prandtl type equation for this Brinkman model which indicates
the existence of a boundary layer in the velocity field of a width proportional

to
√

D̃a and with no boundary layer in the temperature field or pressure
field (in the leading order).

In fact, as we shall demonstrate below, the Prandtl type equation for the
boundary layer is linear even though the Darcy-Brinkman-Boussinesq model
(1.2), (1.3) considered here is nonlinear through the nonlinear advection of
temperature and buoyancy forcing. This is similar to the case of the bound-
ary layer for the incompressible Navier-Stokes flows with non-characteristic
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boundary conditions [57, 58]. Physical considerations and numerical evi-
dence [40] both support the existence of a stable laminar boundary layer.
This suggests that we have a simple laminar boundary layer and that we
should be able to analyze the zero Brinkman-Darcy number limit in detail.

Indeed, Payne and Straughan [43] have already established the conver-
gence in L2 on any finite time interval of the solutions of the infinite Prandtl-
Darcy number Darcy-Brinkman-Boussinesq to those of the infinite Prandtl-
Darcy number Darcy-Boussinesq without resolving the boundary layer. Here
we are interested in information in higher Sobolev spaces (say in the space of
vorticity) or L∞ where the boundary layer structure can be detected. These
new estimates are useful in justifying the convergence of physically impor-
tant quantities such as the transport of heat in the vertical direction across
a fixed plane, i.e.

∫

u3(x, y, z0; t)T (x, y, z0; t)dxdy [40].
The approach that we take is classical in the sense that we follow a Prandtl

type approach. However, the technique that we employ to prove the uniform
in space and time estimates is not classical. We would like to emphasize
that the usual Sobolev imbeddings are not sufficient for our purpose, and we
invoke and improve here specific results on anisotropic Sobolev imbeddings
by two of the authors [52, 57, 58].

This paper is organized as follows. In Section 3, we derive the effec-
tive equation for the difference of the solutions of the Brinkman-Boussinesq
model (1.2), (1.3) and the Darcy-Boussinesq model (1.4), (1.5). This ap-
proach differs slightly from Prandtl’s original approach in the sense that we
approximate the difference between the viscous and inviscid solutions instead
of the viscous solution directly; that is, we derive the Prandtl type equation
for θε ≈ vε −v0 formally, where ε = D̃a denotes the small Brinkman-Darcy
number and vε denotes the solution to the infinite Prandtl-Darcy number
Brinkman-Darcy-Boussinesq system (1.2), (1.3) with the Brinkman-Dracy

number D̃a = ε. We construct approximate solutions to the Prandtl type
equations in Section 4. It is this approximate solution that we use as a
corrector to obtain a characterization of the boundary layer.

In Section 5 we give a precise statement of our main results, which we
prove in Section 6, Section 7 and Section 8.

The rate of convergence presented in this work for the uniform in space
and time estimate is not optimal. Improvements on this and other specific
results is the subject of our future work.

The definitions of all of our function spaces reflect the fact that we are
working in a domain that is periodic in the horizontal direction(s). Thus,
for instance, Hm = Hm

per(Ω), m a nonnegative integer, is the Sobolev space
consisting of all functions on Ω whose derivatives up to order m are square
integrable and whose derivatives up to order m− 1 are periodic in the hor-
izontal direction(s), with the usual norm. Equivalently, we can view such
functions as being defined on R

d−1 × (0, 1) with period 2π in the horizontal
direction(s). Similarly, H1

0,per(Ω) is the subspace of functions in H1
per(Ω)

that vanish on z = 0, 1. We will use the classical function spaces of fluid
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mechanics,

H = H(Ω) =
{

v ∈ (L2
per(Ω))d : divv = 0,v · n = 0 on z = 0, 1

}

,

V = V (Ω) =
{

v ∈ (H1
0,per(Ω))d : divv = 0

}

,
(1.6)

where n denotes the unit outer normal to ∂Ω. We put the L2-norm on H and
the H1-norm on V . Because of the Poincaré’s inequality, we can equivalently
use ‖u‖V = ‖∇u‖L2 .

The space Hm should not be confused with the m-fold product of the
space H of (1.6).

We follow the convention that ‖·‖ is the L2-norm.

2. Some preliminaries

Let vε, T ε be the velocity and temperature of (1.2), (1.3) (ε = D̃a), fix
t∗ > 0, and write γ = RaD. Then























−ε∆vε + vε + ∇pε = γT εk on (0, t∗) × Ω,
divvε = 0 on (0, t∗) × Ω,
∂tT

ε + vε · ∇T ε = ∆T ε on (0, t∗) × Ω,
vε = 0, T ε = f on (0, t∗) × ∂Ω,
T ε(0) = T0 on {0} × Ω.

(2.1)

For simplicity we assume that f lies in C∞(∂Ω), though less regularity could
be assumed.

The equations for v0, T 0 of (1.4), (1.5) are the same as for vε, T ε with
ε = 0, except for the boundary condition on v0:























v0 + ∇p0 = γT 0k on (0, t∗) × Ω,
divv0 = 0 on (0, t∗) × Ω,
∂tT

0 + v0 · ∇T 0 = ∆T 0 on (0, t∗) × Ω,
v0 · n = 0, T 0 = f on (0, t∗) × ∂Ω,
T 0(0) = T0 on {0} × Ω.

(2.2)

It is sufficient to specify the initial value of only the temperature in both
(2.1) and (2.2), since the initial velocity can be fully recovered from the
initial temperature.1

The well-posedness of (2.1) is standard and is formulated in Theorem 2.1.
The well-posedness as well as further regularity of (2.2) was established in
[12] and [33] for slightly different boundary conditions and smoother initial
data.

For the purpose of studying the boundary layer, we need smooth solutions
to (2.2) up to t = 0. This can be achieved if we assume certain regularity
and compatibility conditions (see [49]) on the initial temperature, T0, and
the boundary temperature f . More specifically, we assume that the initial
temperature is compatible with the boundary data, possibly because it has

1In fact, and for both variables, at each instant of time, v (= v
ε or v

0) is a function
(functional) of T (= T ε, or T 0). In the language of climatology, the temperature T is a
prognostic variable, v and p are diagnostic variables.
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been “properly prepared” by being the solution to (2.2) for some positive
time, and hence that for some k ≥ 6

v0, T 0 ∈ Ck([0, t∗] × Ω). (2.3)

The proof of such a result under suitable compatibility conditions is a simple
application of the technique developed in [49]. We leave the details to the
interested reader.

As for vε, T ε, we need only weak solutions. For such solutions, we have
the following basic existence and uniqueness result (which applies in both 2
and 3 dimensions):

Theorem 2.1. Fix t∗ > 0 and assume that T0 lies in L2. Then there
exists a unique weak solution to (2.1) with the temperature, T ε, lying in
L∞(0, t∗;L2)∩L2(0, t∗;H1) and the components of the velocity, vε, lying in
L∞(0, t∗;L2) ∩ L∞(0, t∗;H1). Furthermore, there exists a constant C such
that

‖T ε‖L∞(0,t∗;L2) ≤ C,

‖T ε‖L2(0,t∗;H1) ≤ C,

‖vε‖L∞(0,t∗;L2) ≤ C,

‖vε‖L∞(0,t∗;H1) ≤ Cǫ−
1

2 .

(2.4)

The constant C in these equations depends upon T0, f and t∗ but is indepen-
dent of ǫ.

Moreover, if T0 −f lies in H1
0 then vε and T ε−f lie in C([0, t∗];H1

0 ) and
T ε belongs to L2(0, t∗;H2).

The proof, which we omit, is straightforward.

3. Derivation of the Prandtl type equation

Because the boundary conditions for the temperature fields coincide for the
infinite Prandtl Darcy number Darcy-Brinkman-Boussinesq model and the
infinite Prandtl Darcy number Darcy-Boussinesq model we do not expect a
boundary layer for the temperature field. On the other hand, there must ex-
ist a boundary layer for the velocity field due to the disparity between the no-
slip, no-penetration boundary condition for the Brinkman-Boussinesq model
(1.2) and the no-penetration boundary condition for the Darcy-Boussinesq
model (1.4).

It is quite clear that the thickness of the boundary layer for the prob-
lem should be proportional to

√
ε by our knowledge of the Stokes problem

[52]. We can also derive this thickness easily by following Prandtl’s original
stretched coordinate argument.

Notice that θε = vε − v0 satisfies the following equation

−ε∆θε + θε + ∇qε = ε∆v0, div θε = 0, θε
∣

∣

z=0,1
= −v0

∣

∣

z=0,1
.

We have suppressed the term γ(T ε − T 0)k on the right-hand side of the
first equation because to first order we expect no boundary layer in the
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temperature. We will prove that the resulting corrector we derive in this
section (or rather the approximation of it given in Section 4) is accurate to
first order, thereby justifying dropping this term.

Concentrating on the boundary layer at z = 0 for the moment, we use the
stretched coordinate, Z = zε−α, and assume that

θε(x, y, z; t) = θ(x, y, Z; t), qε(x, y, z; t) = q(x, y, Z; t).

We deduce for the horizontal velocities, after neglecting terms of the order
of ε, that the components, θj, j = 1, 2, of θε satisfy

−ε1−2α ∂
2θj

∂Z2
+ θj +

∂q

∂xj
= 0, x1 = x, x2 = y.

Since the viscous term must be effective in the boundary layer, and since
the other terms are of order one, we surmise that the only rational choice of
α is

α =
1

2
.

The convergence theorems below (Theorems 5.1 and 5.2) demonstrate that
this choice of α is adequate. Pursuing this line of thought, we see that the
incompressibility condition div θε = 0 implies that θε

3 must be of the order
of

√
ε since we have assumed that θ1, θ2 are of order one. Therefore, the

Prandtl type equation for the corrector at z = 0 is given by

−∂
2θ1
∂Z2

+ θ1 +
∂q

∂x
= 0,

−∂
2θ2
∂Z2

+ θ2 +
∂q

∂y
= 0,

∂q

∂Z
= 0,

∂θ1
∂x

+
∂θ2
∂y

+
1√
ε

∂θ3
∂Z

= 0,

θ
∣

∣

Z=0
= −v0

∣

∣

z=0
,

θj

∣

∣

Z=∞ = 0, j = 1, 2,

q
∣

∣

Z=∞ = 0.

The last two boundary conditions at infinity come from the assumption
that the viscous and inviscid solutions match each other far away from the
boundary and hence the difference of the two should be approximately zero
far away from the boundary. No far field boundary condition is imposed
on θ3 since only one boundary condition is needed for a first order equation
(that is, the incompressibility condition).
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This set of Prandtl type equations can be solved exactly, giving

q0 ≡ 0,

θ0,j(x, y, Z; t) = −v0
j (x, y, 0; t)e

−Z , j = 1, 2,

θ0,3(x, y, Z; t) =
√
ε(
∂v0

1(x, y, 0; t)

∂x
+
∂v0

2(x, y, 0; t)

∂y
)(1 − e−Z).

Notice that θ3 is of the order of
√
ε for large Z. Hence, if this Prandtl type

equation is valid (we will establish this in the next section), it implies that
we need correction of the order of

√
ε in the interior of the domain (not

completely restricted to the boundary as for classical elliptic and parabolic
equations [31]). This fact was noticed earlier for the Stokes problem [52].

Likewise, the corrector needed for the boundary at z = 1 can be approxi-
mated by

q1 ≡ 0,

θε
1,j(x, y, z; t) = −v0

j (x, y, 1; t)e
− 1−z√

ε , j = 1, 2,

θ1,3(x, y, z; t) =
√
ε(
∂v0

1(x, y, 1; t)

∂x
+
∂v0

2(x, y, 1; t)

∂y
)(1 − e

− 1−z√
ε ).

As stated above, we will now show that the proposed correctors encompass
the H1 singularity of vε − v0 and pε − p0, thus allowing us to establish
convergence results in this space.

4. Approximate solution to the Prandtl type equation

The exact solution to the Prandtl type equation in Section 3 is not very
useful for the convergence analysis since the corrector θε does not satisfy
the boundary condition exactly. (The corrector at z = 0 does not match
the boundary condition at z = 1, and the corrector at z = 1 does not
match the boundary condition at z = 0.) As an alternative, we utilize a
truncated version of the solution to the Prandtl type equation following a
similar approach for the case of Stokes equations and Oseen type equations
[52], as well as the Navier-Stokes equations with non-characteristic boundary
conditions [57, 58]; see a different approach in [16, 17]. The truncation will be
done at the stream function level in order to avoid the difficulty of estimating
the pressure.

We illustrate the process here through the 2D case (suppressing the de-
pendence on y and the second component). Let ρ be a cut-off function
satisfying

ρ ∈ C∞[0,∞), supp(ρ) ⊂ [0,
1

2
], ρ(z) ≡ 1 for z ∈ [0,

1

4
].

Letting

ψε(x, z; t) =
√
εv0

1(x, 0; t)(1 − e
− z√

ε )ρ(z),
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we define an approximation, θε
0, of the solution to the Prandtl type equation

for the boundary layer at z = 0 by

θε
0 = (θε

0,1, θ
ε
0,3) = ∇⊥ψε = (−∂ψ

ε

∂z
,
∂ψε

∂x
).

Thus,

θε
0,1(x, z; t) = a(t, x)e−z/

√
ερ(z) −

√
εa(t, x)(1 − e−z/

√
ε)ρ′(z),

θε
0,3(x, z; t) =

√
ε∂xa(t, x)(1 − e−z/

√
ε)ρ(z),

(4.1)

where a(t, x) = −v0
1(x, 0; t). The approximate solution, θε

1, to the Prandtl
type equation for the boundary layer at z = 1 is entirely analogous.

Because θε
0 and θε

1 match the boundary condition, θε = −v0, exactly
at their respective boundaries and vanish in a fixed neighborhood of the
opposite boundary, the sum of the two correctors,

θε = θε
0 + θε

1,

matches the boundary conditions exactly and is identical to the exact correc-
tor in a boundary layer of fixed width 1/4. Moreover θε is an approximation
throughout Ω of the order of

√
ε in L∞ of the exact solution to the Prandtl

type equation.
We infer from (4.1) that θε satisfies the equation for vε−v0 approximately

in the sense that






−ε∆θε + θε = f ε on (0, t∗) × Ω,
div θε = 0 on (0, t∗) × Ω,
θε = −v0 on (0, t∗) × ∂Ω.

(4.2)

Here, f ε = f ε
1 + f ε

2 , where f ε
1 = (gε, hε) with

gεez/
√

ε = ε3/2∆(aρ′)
[

ez/
√

ε − 1
]

+ ε
[

aρ′′ − ∆(aρ)
]

− ε1/2aρ′
[

ez/
√

ε − 1
]

,

hεez/
√

ε = ε3/2∆(∂xaρ)
[

ez/
√

ε − 1
]

+ ε∂xaρ
′ + ε1/2∂xaρ

and f ε
2 has an analogous form. Letting τ be the unit tangent vector, it

follows that

‖f ε‖ ≤ Cε
1

2 ,

as long as ∂3
x(v0 · τ ) lies in L∞([0, T ];L2(∂Ω)), which follows from (2.3).

In fact, because derivatives in t and x act only on v0
1(x, 0; t), it also follows

that

‖∂m
t ∂

n
x f ε‖L∞(0,t∗;L2) ≤ Cε1/2, (4.3)

for all nonnegative integers m and n as long as ∂m
t ∂

3+n
x (v0 · τ ) lies in

L∞(0, t∗;L2(∂Ω)), which it does when we assume (2.3) and m+ n+ 3 ≤ k.
In particular, there is no pressure in (4.2). This equates to the approxi-

mate pressure being identically zero.
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Although the expression for the approximate corrector, θε, in (4.1) was
derived using the stream function, it is clear that in three dimensions we can
set the components of θε

0 to

θε
0,1(x, y, z; t) = a(t, x, y)e−z/

√
ερ(z) −

√
εa(t, x, y)(1 − e−z/

√
ε)ρ′(z),

θε
0,2(x, y, z; t) = b(t, x, y)e−z/

√
ερ(z) −

√
εb(t, x, y)(1 − e−z/

√
ε)ρ′(z),

θε
0,3(x, y, z; t) =

√
ε(∂xa(t, x, y) + ∂yb(t, x, t))(1 − e−z/

√
ε)ρ(z),

where a(t, x) = −v0
1(x, y, 0; t) and b(t, x) = −v0

2(x, y, 0; t), with an analogous
formula for θε

1. Then div θε = 0 on Ω and θε = −(v0
1 , v

0
2 , 0) = −v0 on ∂Ω,

and it is easy to see that (4.2) continues to hold and that in place of (4.3)
we have

∥

∥

∥
∂m

t ∂
n
x∂

l
yf

ε
∥

∥

∥

L∞(0,t∗;L2)
≤ Cε1/2, (4.4)

for all nonnegative integersm, n, and k as long as ∂m
t ∂

l+n
x (v0·τ )+∂m

t ∂
n+l
y (v0·

τ ) lies in L∞(0, t∗;L2(∂Ω)) which follows from (2.3) provided m+n+ l+3 ≤
k.

5. Statement of main results

Let θε satisfying (4.1), (4.2) be the approximate solution to the Prandtl type
equation derived in Section 4 and let

wε
v = vε − v0 − θε, wε

T = T ε − T 0. (5.1)

We view θε as a “corrector” that, among other things, makes wε
v vanish on

the boundary.
In the bounds below, we make the assumption that

ε ≤ 1, (5.2)

reducing the complexity of the expressions for some of the bounds that result.
Since we only care about small ε, no significant information is lost.

In Theorem 5.1, we establish convergence of wε
v and wε

T in the classical
energy space.

Theorem 5.1. The assumptions are (2.3), (4.1), (4.2), and (5.1). Then

‖wε
v‖L∞(0,t∗;L2) ≤ Cε1/2,

‖wε
v‖L∞(0,t∗;H1) ≤ C,

‖wε
T ‖L∞(0,t∗;L2) ≤ Cε1/2,

‖wε
T ‖L2(0,t∗;H1) ≤ Cε1/2

(5.3)

and
∥

∥∇pε −∇p0
∥

∥

L∞(0,t∗;L2)
≤ Cε1/2. (5.4)

Each of the constants, C, in (5.3), (5.4) depends only on T0, f , and t∗.
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More precise information on the convergence of the velocity is given in
Theorem 5.2, where we consider uniform convergence in [0, T ] × Ω.

Theorem 5.2. The assumptions are as in Theorem 5.1 and d = 2. Then

‖wε
T ‖L∞(0,t∗;H1) , ‖∂tw

ε
T ‖L2(0,t∗;L2) ≤ Cε1/4, (5.5)

and

‖wε
v‖L∞((0,t∗)×Ω) ≤ Cε1/8, (5.6)

‖wε
T ‖L∞((0,t∗)×Ω) ≤ Cε3/8. (5.7)

Each of the constants, C, in (5.5), (5.6) depends only on T0, f , and t∗.

Remark 5.3. A useful observation that is universal to convergence with a
good corrector is the optimal convergence rate at vanishing viscosity. Apply-
ing the triangle inequality to the expression, vε−v0 = wε

v +θε, it follows by
virtue of (5.3)1 and a straightforward estimate on the corrector (4.1) that,
as ε → 0, there exist constants C1 and C2 depending only on T0, f , and t∗

such that

C1ε
1/4 ≤ ‖θε‖L∞(0,t∗;L2) − ‖wε

v‖L∞(0,t∗;L2)

≤
∥

∥vε − v0
∥

∥

L∞(0,t∗;L2)

≤ ‖θε‖L∞(0,t∗;L2) + ‖wε
v‖L∞(0,t∗;L2)

≤ C2ε
1/4 (5.8)

for all sufficiently small ε. This applies as long as v0 is not identically zero
on [0, t∗] × ∂Ω so that θε is not identically zero, and gives the optimal rate
of convergence in the vanishing viscosity limit. (The upper bound in (5.8)
was established in [43].)

Remark 5.4. Another observation that is universal to H1 convergence with
a boundary layer is the existence of a vortex sheet at vanishing viscosity.
Indeed, let

χε(x; t) =
[

v0
1(x, 0; t)e

−z/
√

ε + v0
1(x, 1; t)e

−(1−z)/
√

ε
]

ε−1/2, (5.9)

which captures the leading order of the core of the curl of the corrector
θε (4.1); we see that the vorticity ω(vε) = ∇⊥ · vε, satisfies the following
relation thanks to (5.3)2, (4.1) and (5.9),

‖ω(vε) − χε‖L∞(0,t∗;L2) ≤ C, (5.10)

χε(x; t) → v0
1(x, 0; t)δ(z) + v0

1(x, 1; t)δ(z − 1) as ε→ 0. (5.11)

This proves the existence of a vortex sheet along the boundary. A similar
observation was made in [24] for the Navier-Stokes system at vanishing vis-
cosity. The same result holds for d = 3 with a more complicated expression
for χε. The constants in these expressions depend on T0 and t∗.

We prove Theorem 5.1 in Section 6 and Theorem 5.2 in Section 7.
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6. Convergence of wε
v and wε

T in the energy norm

In this section we prove Theorem 5.1. In Section 6.1 we establish the conver-
gence of wε

v and wε
T as in (5.3) then, in Section 6.2, we establish convergence

of the pressure.

6.1. Convergence of wε
v and wε

T . Because wε
v and wε

T both vanish at
z = 0, 1 and are periodic in the horizontal direction(s), the various boundary
integrals that appear when integrating by parts disappear, making it much
simpler to obtain energy bounds. The tradeoff is that extra terms appear
because of the corrector θε, and these must each be carefully bounded.

Subtracting the equations for v0 in (2.2) from that for vε in (2.1) gives

vε − v0 − ε∆(vε − v0) + ∇pε −∇p0 = γkwε
T + ε∆v0. (6.1)

Define wε
v and wε

T as in (5.1), noting that wε
v = 0 at z = 0 and z = 1 and

is periodic in the x- and, when d = 3, y-directions. Subtracting (4.2)1 from
(6.1) gives

−ε∆wε
v + wε

v + ∇rε = γkwε
T + ε∆v0 − f ε, (6.2)

where rε = pε − p0 and f ε is as in (4.2)1.
Similarly, subtracting the temperature equations in (2.1), (2.2) gives

∂tw
ε
T + vε · ∇T ε − v0 · ∇T 0 = ∆wε

T .

Now, if we write

vε·∇T ε − v0 · ∇T 0

= vε · ∇T 0 − θε · ∇T 0 − v0 · ∇T 0 + vε · ∇T ε − vε · ∇T 0 + θε · ∇T 0

= (vε − v0 − θε) · ∇T 0 + θε · ∇T 0 + vε · ∇wε
T

= wε
v · ∇T 0 + θε · ∇T 0 + vε · ∇wε

T ,

we obtain

∂tw
ε
T + vε · ∇wε

T + wε
v · ∇T 0 = ∆wε

T − θε · ∇T 0. (6.3)

Multiplying (6.2) by wε
v and integrating over the domain gives

ε ‖∇wε
v‖2 + ‖wε

v‖2 = γ(wε
T k,wε

v) − ε(∇v0,∇wε
v) − (f ε,wε

v)

≤ γ ‖wε
T ‖ ‖wε

v‖ + ε
∥

∥∇v0
∥

∥ ‖∇wε
v‖ + ‖f ε‖ ‖wε

v‖

≤ (γ ‖wε
T ‖ + ‖f ε‖) ‖wε

v‖ +
ε

2

∥

∥∇v0
∥

∥

2
+
ε

2
‖∇wε

v‖2 ,

leading to

ε ‖∇wε
v‖2 + 2 ‖wε

v‖2 ≤ Cε+ 2 (γ ‖wε
T ‖ + ‖f ε‖) ‖wε

v‖ .
Then

ε ‖∇wε
v‖2 + 2 ‖wε

v‖2 ≤ Cε+ C ‖wε
T ‖2 +

1

2
‖wε

v‖2 +C ‖f ε‖2 +
1

2
‖wε

v‖2 ,

so, using (4.3) or (4.4),

ε ‖∇wε
v‖2 + ‖wε

v‖2 ≤ Cε+ C ‖wε
T ‖2 . (6.4)
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We now use (6.3) to close the inequality in (6.4).
Multiplying (6.3) by wε

T , integrating over the domain, using the decom-
position of θε in Lemma 6.1, below, and the following Lemma 6.3, we have

1

2

d

dt
‖wε

T ‖2 + ‖∇wε
T ‖2 = −(wε

v · ∇T 0, wε
T ) − (θε · ∇T 0, wε

T )

≤
∥

∥∇T 0
∥

∥

L∞ ‖wε
v‖ ‖wε

T ‖ +
∥

∥∇T 0
∥

∥

L∞ ‖θε
I‖ ‖wε

T ‖
+
∥

∥∇T 0
∥

∥

L∞ ‖zθε
B‖ ‖wε

T /z‖

≤ C
(

‖wε
v‖ + ε1/2

)

‖wε
T ‖ + Cε1/2 ‖∇wε

T ‖

≤ C
(

‖wε
v‖2 + ‖wε

T ‖2
)

+ Cε+
1

2
‖∇wε

T ‖2

≤ Cε+ C ‖wε
T ‖2 +

1

2
‖∇wε

T ‖2 .

(6.5)

The second inequality holds since T 0 lies in L∞(0, T ;C1(Ω)). In the last
inequality we used (6.4). Applying Gronwall’s inequality,

‖wε
T (t)‖2 +

∫ t

0
‖∇wε

T ‖2 ≤ CteCtε.

Returning to (6.4) we then have

ε ‖∇wε
v‖2 + ‖wε

v‖2 ≤ C(1 + teCt)ε.

We conclude that (5.3) holds.

Lemma 6.1. There exists a decomposition θε = θε
B + θε

I such that

‖zθε
B‖L∞(0,t∗;L2) , ‖θε

I‖L∞(0,t∗;L2) ≤ Cε1/2. (6.6)

Proof. We assume that d = 2, the situation for d = 3 being quite similar.
Let

θε
B0

= (a(t, x)e−z/
√

ερ(z), 0),

θε
I0 = (−

√
εa(t, x)(1 − e−z/

√
ε)ρ′(z),

√
ε∂xa(t, x)(1 − e−z/

√
ε)ρ(z)).

It follows from (4.1) that θε
0 = θε

B0
+ θε

I0
.

Now,
∥

∥θε
I0

∥

∥ ≤ C
∥

∥θε
I0

∥

∥

L∞ ≤ C
√
ε, (6.7)

and

∥

∥zθε
B0

∥

∥ ≤ C‖ze−z/
√

ερ(z)‖ ≤ C |∂Ω|1/2

(

∫ 1/2

0
z2e−2z/

√
ε dz

)1/2

≤ C
(

ε3/2
)1/2

= Cε3/4 ≤ Cε1/2.

Defining θε
B1

and θε
I1

similarly and letting θε
B = θε

B0
+θε

B1
, θε

I = θε
I0

+θε
I1

,
(6.6) follows. �
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Remark 6.2. It is easy to see that for all q in [1,∞),

C1ε
1/2q ≤ ‖θε‖L∞(0,t∗;Lq) ≤ C2ε

1/2q (6.8)

for some constant C1 and C2 depending on T0 and (unless f ≡ 0) on t. The

rate of ε1/4 for q = 2 is insufficient, however, and led us to split θε into
a boundary layer part and an interior part, as in Lemma 6.1. This same
approach was taken in [58].

We used above the following version of Hardy’s inequality:

Lemma 6.3 (Hardy’s inequality). There exists a constant C = C(Ω) such
that for all g in H1

0,per(Ω),

‖g/z‖ + ‖g/(1 − z)‖ ≤ C ‖∇g‖ .
6.2. Convergence of the pressure. First, write (6.2) as

−ε∆wε
v + ∇rε = F,

where

F = Fε = −wε
v + γkwε

T + ε∆v0 − f ε.

From (5.3) with (4.3) or (4.4), we have

‖F‖L∞(0,t∗;L2) ≤ Cε1/2.

Then for almost all t in (0, t∗) from Proposition 2.2 in Chapter I of [50] and
the remark following it (applied to εwε

v),

ε ‖wε
v(t)‖H2 + ‖∇rε(t)‖ ≤ c0 ‖F(t)‖ ,

the constant c0 depending only on Ω. We conclude that

‖wε
v‖L∞(0,t∗;H2) ≤ Cε−1/2,

‖∇rε‖L∞(0,t∗;L2) ≤ Cε1/2,
(6.9)

giving the convergence of the pressure as in (5.4) and control on the blowup
of ∆wε

v.
Because full spatial derivatives (specifically, those in the normal direction)

of f ε bring in a factor of ε−1/2, we cannot apply Proposition 2.2 in Chapter
I of [50] to higher derivatives to obtain stronger convergence of the pressure.
(This is a limitation in obtaining stronger convergence of the velocity and
temperature as well.)

It is interesting, however, that if we take the divergence of both sides of
(6.1), we obtain

∆(pε − p0) = div(kwε
T ) = γ∇wε

T · k.
Then from (5.3),

∥

∥∆(pε − p0)
∥

∥

L2(0,t∗;L2)
≤ Ct1/2ε1/2.
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This bound does not, however, give pε → p0 in L2(0, t∗;H2). To obtain
such a convergence, we would need to have convergence of the boundary
values for pε and p0. The problem with this latter approach is that while

∇p0 · n = γT 0k · n = ±γf (6.10)

on the upper and lower boundaries,

∇pε · n = ±γf + ε∆vε · n, (6.11)

which brings in ∆vε, albeit with an ε in front of it.

7. Uniform convergence of wε
v

In this section we prove Theorem 5.2. In Section 7.1 we obtain convergence
of wε

T in L∞([0, t];H1) and use it in Section 7.2, along with the anisotropic
embedding inequality of Lemma 7.2 that two of the authors developed earlier
[52, 58], to obtain convergence of wε

v uniformly in time and space.

7.1. Improved convergence of wε
T . Using the two-dimensional Agmon’s

inequality with (5.3), (6.9), we have

‖wε
v‖L∞((0,t∗)×Ω) ≤ C ‖wε

v‖
1/2
L∞(0,t∗;L2)

‖wε
v‖

1/2
L∞(0,t∗;H2)

≤ C
(

ε1/2
)1/2 (

ε−1/2
)1/2

≤ C.

Since v0 and θε are uniformly bounded in L∞((0, t∗) × Ω), it follows that

‖vε‖L∞((0,t∗)×Ω) ≤ C. (7.1)

Multiplying (6.3) by ∂tw
ε
T and integrating over the domain gives

1

2

d

dt
‖∇wε

T ‖2 + ‖∂tw
ε
T ‖2

= −(vε · ∇wε
T , ∂tw

ε
T ) − (wε

v · ∇T 0, ∂tw
ε
T ) − (θε · ∇T 0, ∂tw

ε
T ).

Integrating in time,

1

2
‖∇wε

T (t)‖2 +

∫ t

0
‖∂tw

ε
T ‖2

≤
∫ t

0

{

|(vε · ∇wε
T , ∂tw

ε
T )| +

∣

∣(wε
v · ∇T 0, ∂tw

ε
T )
∣

∣

+
∣

∣(θε · ∇T 0, ∂tw
ε
T )
∣

∣

}

.

(7.2)

In this integration we used the fact that T ε lies in C([0, t∗];H1) by The-
orem 2.1. Since this is also true of T 0 and θε, it follows that ∇wε

T (t) →
∇wε

T (0) = 0 in L2(Ω) as t→ 0.
Using Hölder’s and Young’s inequalities,

∫ t

0
|(vε · ∇wε

T , ∂tw
ε
T )| ≤

∫ t

0
‖vε‖L∞ ‖∇wε

T ‖ ‖∂tw
ε
T ‖

≤ 3

2

∫ t

0
‖vε‖2

L∞ ‖∇wε
T ‖2 +

1

6

∫ t

0
‖∂tw

ε
T ‖2 .

(7.3)
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Similarly,
∫ t

0

∣

∣(wε
v · ∇T 0, ∂tw

ε
T )
∣

∣ ≤
∫ t

0

∥

∥∇T 0
∥

∥

L∞ ‖wε
v‖ ‖∂tw

ε
T ‖

≤ C

∫ t

0
‖wε

v‖ ‖∂tw
ε
T ‖

≤ C

∫ t

0
‖wε

v‖2 +
1

6

∫ t

0
‖∂tw

ε
T ‖2 ≤ Cε+

1

6

∫ t

0
‖∂tw

ε
T ‖2 ,

(7.4)

and
∫ t

0

∣

∣(θε · ∇T 0, ∂tw
ε
T )
∣

∣ ≤
∫ t

0

∥

∥∇T 0
∥

∥

L∞ ‖θε‖ ‖∂tw
ε
T ‖

≤ C

∫ t

0
‖θε‖ ‖∂tw

ε
T ‖

≤ C

∫ t

0
‖θε‖2 +

1

6

∫ t

0
‖∂tw

ε
T ‖2 ≤ Cε1/2 +

1

6

∫ t

0
‖∂tw

ε
T ‖2 ,

where we used (5.3), (6.8).
Collecting these bounds gives

‖∇wε
T (t)‖2 +

∫ t

0
‖∂tw

ε
T ‖2 ≤ Cε1/2 +

3

2

∫ t

0
‖vε‖2

L∞ ‖∇wε
T ‖2 .

Applying Gronwall’s inequality and using (7.1) gives (5.5). The first of the
bounds in (5.5) improves on the final bound in (5.3) (though the result is
specific to two dimensions).

7.2. Convergence of wε
v. Taking ∂x of (6.2), multiplying by ∂xw

ε
v, and

integrating over the domain gives

−(ε∆∂xw
ε
v, ∂xw

ε
v) + (∂xw

ε
v, ∂xw

ε
v) + (∇∂xr

ε, ∂xw
ε
v)

= (γk∂xw
ε
T , ∂xw

ε
v) + (ε∂x∆v0, ∂xw

ε
v) − (∂xf

ε, ∂xw
ε
v).

Integrating by parts,

ε ‖∇∂xw
ε
v‖2 + ‖∂xw

ε
v‖2

≤ γ ‖∇wε
T ‖ ‖∂xw

ε
v‖ + ε‖v0‖H3 ‖∂xw

ε
v‖ + ‖∂xf

ε‖ ‖∂xw
ε
v‖

≤ C
(

‖∇wε
T ‖ + ε1/2

)

‖∂xw
ε
v‖ .

In the last inequality we used (5.2), (4.3).
Hence, using Young’s inequality,

2ε ‖∇∂xw
ε
v‖2 + ‖∂xw

ε
v‖2 ≤ Cε+ C ‖∇wε

T ‖2 .

We conclude, using (5.5), that

‖∂xw
ε
v‖L∞(0,t∗;L2) ≤ Cε1/4,

‖∂xw
ε
v‖L∞(0,t∗;H1) ≤ Cε−1/4.

(7.5)
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Applying the anisotropic imbedding Lemma 7.2, we obtain

‖wε
v‖L∞((0,t∗)×Ω) ≤ C(‖wε

v‖
1/2
L∞(0,t∗;L2)

‖wε
v‖

1/2
L∞(0,t∗;H1)

+ ‖wε
v‖

1/2
L∞(0,t∗;H1)

‖∂xw
ε
v‖

1/2
L∞(0,t∗;L2)

+ ‖wε
v‖

1/2
L∞(0,t∗;L2)

‖∇∂xw
ε
v‖

1/2
L∞(0,t∗;L2)

)

≤ C

(

(

ε
1

2

)
1

2

+
(

ε1/4
)1/2

+
(

ε1/2ε−1/4
)1/2

)

≤ Cε1/8,

where we used (5.3), (7.5). This gives (5.6).

Remark 7.1. Heuristically, we suspect that the rate of convergence in
(5.6) should be

√
ǫ. Therefore the result we have derived here is sub-

optimal. Optimal convergence rates can be derived via higher order cor-
rectors. There are two possibly different avenues in pursuing higher order
correctors. One method is to follow the approach that we adopted here
and look for higher order correctors that correct the error introduced by
the truncation as well. A more systematic alternative approach is perhaps
to consider the following modified Prandtl type equation (only the leading
order corrector η = (η1, η2, η3) is presented here) that satisfies the desired
boundary condition exactly:















−ε∂2ηj

∂z2 + ηj + ∂jq = 0, j = 1, 2,
div η = 0,

η|z=0,1 = −v0|z=0,1,

∂x

∫ 1
0 η1(x, y, z) dz + ∂y

∫ 1
0 η2(x, y, z) dz = 0 for all x, y.

(7.6)

This and other related topics will be studied elsewhere.

To state the anisotropic embedding inequality employed above, we define

K =
{

g = g(z) : g ∈ L2(0, 1)
}

which is a closed subspace of L2(Ω). (K coincides with all elements of L2(Ω)
that are independent of x, or those elements in L2(Ω) whose kth Fourier
coefficients in x are identically zero for k 6= 0.) Let K⊥ be the orthogonal
complement of K in L2. K⊥ is exactly all those elements in L2(Ω) whose 0th

Fourier coefficient in x is identically zero (or zero horizontal average).
We first recall the following lemma which is proved in [52] (Remark 4.2):

Lemma 7.2. For all u in H1
0,per ∩K⊥,

‖u‖L∞(Ω) ≤ C ‖∂zu‖1/2
L2 ‖∂xu‖1/2

L2 + C ‖u‖1/2
L2 ‖∂x∂zu‖1/2

L2 ,

where one or both sides of the inequality could be infinite.

This anisotropic embedding inequality is applicable to the velocity field
since all components of our velocity field vε,v0 belong to the space K⊥.
Indeed, the horizontal velocity equations in (1.4) and (1.2) imply that the
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horizontal velocity belong to K⊥ (for the Darcy-Brinkman-Boussinesq (1.2)
we need to utilise the no-slip boundary condition). Then the incompressibil-
ity condition together with the no penetration boundary condition implies
that the vertical velocity also belongs to K⊥.

The above anisotropic embedding can be easily generalised to cover the
case where the average in the horizontal direction may not vanish. For this
purpose, we observe that the orthogonal projection in L2 onto K is explicitly
given by

(PKu)(z) =
1

2π

∫ 2π

0
u(x, z) dx.

It is then easy to verify that this projection is an orthogonal projection in
various subspaces of H1

0,per as well, and hence we have, with the help of
Fourier representation in x if necessary,

‖PKu‖L2 ≤ ‖u‖L2 ,

‖u− PKu‖L2 ≤ ‖u‖L2 ,

‖∂zPKu‖L2 ≤ ‖∂zu‖L2 ,

‖∂z(u− PKu)‖L2 ≤ ‖∂zu‖L2 .

Combining these estimates, the lemma above, and the triangle inequality
we deduce

Corollary 7.3. For all u ∈ H1
0,per(Ω)

‖u‖L∞(Ω) ≤ C(‖u‖
1

2

L2 ‖∂zu‖
1

2

L2 + ‖∂zu‖1/2
L2 ‖∂xu‖1/2

L2 + ‖u‖1/2
L2 ‖∂x∂zu‖1/2

L2 ),

where one or both sides of the inequality could be infinite.

Proof. We first notice that for u ∈ H1
0,per, PKu ∈ K ∩ H1

0,per, and hence

u− PKu ∈ K⊥ ∩H1
0,per. Therefore

‖u‖L∞(Ω) ≤ ‖PKu‖L∞(Ω) + ‖u− PKu‖L∞(Ω)

≤ C ‖PKu‖
1

2

L2 ‖∂zPKu‖
1

2

L2

+C(‖∂z(u− PKu)‖1/2
L2 ‖∂x(u− PKu)‖1/2

L2

+ ‖u− PKu‖1/2
L2 ‖∂x∂z(u− PKu)‖1/2

L2 )

≤ C(‖u‖
1

2

L2 ‖∂zu‖
1

2

L2 + ‖∂zu‖1/2
L2 ‖∂xu‖1/2

L2 + ‖u‖1/2
L2 ‖∂x∂zu‖1/2

L2 ).

�

8. Uniform convergence of wε
T

In this section we prove the uniform convergence of the temperature field
(5.7). The idea is very much the same as the proof of the convergence
of the velocity field: anisotropic embedding plus estimates on tangential
derivatives.

We recall that ‖·‖ denotes the L2 norm unless otherwise specified.
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For this purpose we differentiate (6.2) and we arrive at the following equa-
tion

− ε∆∂xw
ε
v + ∂xw

ε
v + ∇∂xr

ε = γk∂xw
ε
T + ε∆∂xv

0 − ∂xf
ε. (8.1)

Multiplying this equation by ∂xw
ε
v, integrating over the domain and utlizing

the estimate on f ε we deduce

ε ‖∇∂xw
ε
v‖2 + ‖∂xw

ε
v‖2 ≤ C ‖∂xw

ε
v‖ (‖∂xw

ε
T ‖ + ε

1

2 ), (8.2)

much as in Section 7.2. After utilizing the L2(H1) estimates on wε
T , this

implies that,

‖∂xw
ε
v‖L2(0,t∗;L2) ≤ Cε

1

2 , (8.3)

‖∂xw
ε
v‖L2(0,t∗;H1) ≤ C. (8.4)

Utilizing the first estimate above in equation (8.1) together with the esti-
mates on f ε, the L2(H1) estimate on wε

T and elliptic regularity for Stokes
operator we have

‖∂xw
ε
v‖L2(0,t∗;H2) ≤ Cε−

1

2 . (8.5)

This further implies, when combined with the L2(L2) estimate on ∂xw
ε
v and

Agmon’s inequality

‖∂xw
ε
v‖L2(0,t∗;L∞) ≤ C(‖∂xw

ε
v‖L2(0,t∗;H2) ‖∂xw

ε
v‖L2(0,t∗;L2))

1

2 ≤ C. (8.6)

Combining this with the estimate on the corrector θε we have

‖∂xv
ε‖L2(0,t∗;L∞)

≤ ‖∂xw
ε
v‖L2(0,t∗;L∞) +

∥

∥∂xv
0
∥

∥

L2(0,t∗;L∞)
+ ‖∂xθε‖L2(0,t∗;L∞) ≤ C.(8.7)

Next we focus on the temperature equation (6.3). We differentiate (6.3)
in x and we arrive at the following equation

∂t∂xw
ε
T − ∆∂xw

ε
T = −∂xv

ε · ∇wε
T − vε · ∇∂xw

ε
T − ∂xw

ε
v · ∇T 0 (8.8)

−wε
v · ∂x∇T 0 − ∂xθε · ∇T 0 − θε · ∇∂xT

0.

Multiplying this equation by ∂xw
ε
T and integrating over the domain we de-

duce
1

2

d

dt
‖∂xw

ε
T ‖2 + ‖∂x∇wε

T ‖2

≤ ‖∂xv
ε‖L∞ ‖∇∂xw

ε
T ‖ ‖wε

T ‖ + C ‖∂xw
ε
T ‖ (‖∂xw

ε
v‖ + ‖wε

v‖)
+C(‖θε

I‖ ‖∂xw
ε
T ‖ +

∥

∥zθε
B,0

∥

∥ ‖∂xw
ε
T /z‖ +

∥

∥(1 − z)θε
B,1

∥

∥ ‖∂xw
ε
T /(1 − z)‖)

+C(‖∂xθε
I‖ ‖∂xw

ε
T ‖ +

∥

∥z∂xθε
B,0

∥

∥ ‖∂xw
ε
T /z‖

+
∥

∥(1 − z)∂xθε
B,1

∥

∥ ‖∂xw
ε
T /(1 − z)‖)

≤ 1

2
‖∂x∇wε

T ‖2 + C(‖∂xw
ε
T ‖2 + ε ‖∂xv

ε‖2
L∞ + ‖∂xw

ε
v‖2 + ε),

where we have utilized the smoothness of the ”inviscid” temperature T 0,
applied Hölder and Young’s inequality, performed integration by parts and
utilized the incompressibility of the velocity field, used the decomposition of
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the corrector θε into an interior and boundary parts, Hardy’s inequality, the
L∞(L2) estimate on wε

T and wε
v, and explicit estimates on the corrector θε.

A simple application of Gronwall’s inequality leads to

‖∂xw
ε
T ‖L∞(0,t∗;L2) ≤ Cε

1

2 , (8.9)

‖∂xw
ε
T ‖L2(0,t∗;H1) ≤ Cε

1

2 , (8.10)

where we have utilized the L2(L∞) estimate on ∂xv
ε and then L2(L2) esti-

mate on ∂xw
ε
v.

This L∞(L2) estimate on ∂xw
ε
T , together with the energy estimate (8.2)

gives us

‖∂xw
ε
v‖L∞(0,t∗;L2) ≤ Cε

1

2 , (8.11)

‖∂xw
ε
v‖L∞(0,t∗;H1) ≤ C. (8.12)

We combine the ‖∂xw
ε
v‖L∞(0,t∗;L2) and ‖∂xw

ε
T ‖L∞(0,t∗;L2) estimates, together

with (8.1), explicit estimate on f ε and elliptic regularity for the Stokes and
we obtain

‖∂xw
ε
v‖L∞(0,t∗;H2) ≤ Cε−

1

2 . (8.13)

This further implies, when combined with the L∞(L2) estimate on ∂xw
ε
v and

Agmon’s inequality
‖∂xw

ε
v‖L∞(0,t∗;L∞) ≤ C. (8.14)

Combining this with the estimate on the corrector θε together with the
smoothness assumption on v0 we find

‖∂xv
ε‖L∞(0,t∗;L∞) ≤ C. (8.15)

Next, we multiply (8.9) by ∂t∂xw
ε
T and integrate over the domain. We

deduce, after utilizing the explicit formula for the corrector (boundary layer
function) θε, and the smoothness of the ”inviscid” solution (T 0,v0),

‖∂t∂xw
ε
T ‖2 +

1

2

d

dt
‖∇∂xw

ε
T ‖2

≤ ‖∂t∂xw
ε
T ‖ (‖∂xv

ε‖L∞ ‖∇wε
T ‖ + ‖vε‖L∞ ‖∇∂xw

ε
T ‖

+
∥

∥∇T 0
∥

∥

L∞ ‖∂xw
ε
v‖ +

∥

∥∂x∇T 0
∥

∥

L∞ ‖wε
v‖

+
∥

∥∇T 0
∥

∥

L∞ ‖∂xθε‖ +
∥

∥∂x∇T 0
∥

∥

L∞ ‖θε‖)

≤ 3

4
‖∂t∂xw

ε
T ‖2 + ‖∂xv

ε‖2
L∞ ‖∇wε

T‖2 + ‖vε‖2
L∞ ‖∇∂xw

ε
T ‖2

+C(‖∂xw
ε
v‖2 + ‖wε

v‖2 + ε
1

2 ).

Applying Gronwall’s inequality and utilizing the unfiorm L∞(L∞) esti-
mates on vε and ∂xv

ε, the L2(L2) estimates on wε
T , ∂xw

ε
T , ∂xw

ε
v,w

ε
v, we

deduce
‖∂xw

ε
T ‖L∞(0,t∗;H1) ≤ Cε

1

4 . (8.16)

Combining this with the L∞(L2) estimates on wε
T , ∂xw

ε
T ,∇wε

T as well as
the anisotropic embedding presented in corollary (7.3), we have the desired
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uniform convergence estimate of the temperature as stated in (5.7). This
ends the proof of Theorem 5.2.

Many other miscellaneous estimates can be obtained as well, and we will
not elaborate on these minor improvements.
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[3] C. Bardos. Existence et unicité de la solution de l’équation d’Euler en dimension deux.
J. Math. Anal. Appl., 40:769–790, 1972. 2

[4] C. Bardos. Solution de l’équation d’Euler en dimension 2. In Actes du Colloque
d’Analyse Fonctionnelle de Bordeax (Univ. Bordeaux, 1971), pages 39–40. Bull. Soc.
Math. France, Mém. No. 31–32. Soc. Math. France, Paris, 1972. 2

[5] J. L. Bona and J. Wu. The zero-viscosity limit of the 2D Navier-Stokes equations.
Stud. Appl. Math., 109(4):265–278, 2002. 2

[6] R. Caflisch and M. Sammartino. Navier-Stokes equations on an exterior circular do-
main: construction of the solution and the zero viscosity limit. C. R. Acad. Sci. Paris
Sér. I Math., 324(8):861–866, 1997. 2

[7] N. V. Chemetov and S. N. Antontsev. Euler equations with non-homogeneous Navier
slip boundary conditions. Phys. D, 237(1):92–105, 2008. 2

[8] W. Cheng and X. Wang. A discrete Kato type theorem on inviscid limit of Navier-
Stokes flow. Journal of Mathematical Physics, 48(6), 2007. 2
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[27] N. Kim. Large friction limit and the inviscid limit of 2-D Navier-Stokes equations
under Navier friction condition. To appear, SIAM Math Analysis. 2

[28] A. V. Kuznetsov, M. Xiong, and D. A. Nield. Thermally developing forced convection
in a porous medium: circular duct with walls at constant temperature, with longitudi-
nal conduction and viscous dissipation effects. Transp. Porous Media, 53(3):331–345,
2003. 3

[29] C. D. Levermore, M. Oliver, and E. S. Titi. Global well-posedness for models of shallow
water in a basin with a varying bottom. Indiana Univ. Math. J., 45(2):479–510, 1996.
2
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