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Bounded vorticity and the Euler equations

For initial vorticity in L1 ∩ L∞(R2) there exists a unique weak
solution, (v , p), to the Euler equations,{

∂tv + v · ∇v +∇p = 0,
div v = 0.

Vorticity (ω = ω(v) = ∂1v 2 − ∂2v 1) is transported by the flow,
and there exists a unique mapping ψ (the classical flow),
continuous from R× R2 to R2, such that

ψ(t, x) = x +

∫ t

0
v(s, ψ(s, x)) ds.

This is due to Yudovich 1963.
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The flow map

Moreover, both v and ψ have an explicit modulus of continuity
(MOC) in the space variables:

|v(t, x)− v(t, y)| ≤ µ(|x − y |),
|ψ(t, x)− ψ(t, y)| ≤ Γt(|x − y |),

for all (t, x , y) ∈ R× R2, with

µ(r) = −Cr log r , r < 1/2,

Γt(r) = Cr e−Ct
, r suff. small.

The function µ, which is independent of time, can be derived from
potential theory using the conservation of the Lp-norms of the
vorticity; Γt comes from the proof of the existence of a classical
flow for a log-Lipschitz velocity field.
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The flow map: Hölder continuity

It follows from

|ψ(t, x)− ψ(t, y)| ≤ Γt(|x − y |) = C |x − y |e
−Ct

that for fixed t > 0, the map ψ(t, ·) lies in the Hölder space,

Cα, α = e−Ct .

(Sorry for the dual use of “C.”)

This leads to the question of whether this upper bound on the
Hölder continuity of the flow map is ever achieved.
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Bahouri & Chemin 1994

Theorem (Bahouri & Chemin 1994)

For the initial vorticity, ω0 = 2π1[0,1]×[0,1], the flow map ψ(t, ·) lies
in no Hölder space, Cα, for α > e−t .

x1

x2

2−2

2 −2
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Unbounded vorticity and the Euler equations

Definition

Let θ : [p0,∞)→ R+ for some p0 in [1, 2). We say that θ is
admissible if the function β : (0,∞)→ [0,∞) defined by

β(x) := inf
{

(x1−ε/ε)θ(1/ε) : ε in (0, 1/p0]
}
,

where C is a fixed absolute constant, satisfies∫ 1

0

dx

β(x)
=∞.

Examples of admissible bounds on vorticity are

θ0(p) = 1, θ1(p) = log p, . . . , θm(p) = log p · log2 p · · · logm p,

for which

βm(x) ≤ Cxθm+1(1/x).
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Definition

We say that a vector field v has Yudovich vorticity if for some
admissible function θ : [p0,∞)→ R+ with p0 in [1, 2),
‖ω(v)‖Lp ≤ θ(p) for all p in [p0,∞).

Roughly speaking, the Lp–norm of a Yudovich vorticity can grow in
p only slightly faster than log p and still be admissible.

Such growth in the Lp–norms arises, for example, from a point
singularity of the type log log(1/ |x |).
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Theorem (Yudovich 1995)

First part: For any initial velocity having Yudovich vorticity there
exists a unique weak solution to the Euler equations.
Second part: The vector field has a unique continuous flow, along
which the vorticity is transported. Let

µ(r) = β(r 2)/r ,

and let Γt : [0,∞)→ [0,∞) with Γt(0) = 0 and, for s > 0,∫ Γt(s)

s

dr

µ(r)
= t or equivalently

∫ Γt(s)2

s2

dr

β(r)
= t.

Then for all (t, x , y) in R× R2,

|v(t, x)− v(t, y)| ≤ µ(|x − y |),
|ψ(t, x)− ψ(t, y)| ≤ Γt(|x − y |).

Jim Kelliher Euler equations and the flow



Bounded vorticity

The bounds on the modulus of continuity of the velocity field and
the flow when specialized to bounded vorticity go as follows:

θ(p) = 1

and, for r sufficiently small,

β(r) = −r log r ,

µ(r) = β(r 2)/r = −r 2 log(r 2)/r = β(r),

Γt(r) = r e−Ct
,

ψ(t, ·) ∈ Cα, α = e−Ct .

(We have ignored unimportant constants here and elsewhere.)

This reproduces the upper bound on α for bounded vorticity.

Jim Kelliher Euler equations and the flow



Hölder space continuity for unbounded vorticity

The obvious question is what happens for the higher Yudovich
vorticities, especially whether the upper bound on the modulus of
continuity of the flow given by Yudovich is achieved by a specific
example.

We will find that for the next Yudovich example, θ(p) = log p,
there exists initial vorticities for which the flow map, ψ(t, ·), lies in
no Hölder space of positive exponent for any t > 0.

The ultimate goal of this kind of analysis is to construct initial
Yudovich vorticities for which the flow map has an arbitrarily poor
modulus of continuity. Were this demonstrated, it would suggest
that some aspect of uniqueness breaks down when going beyond
Yudovich vorticities. Maybe.
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Symmetry by quadrant

Definition

We say that a compactly supported Yudovich vorticity ω is
symmetric by quadrant, or SBQ, if ω(x) = ω(x1, x2) is odd in x1

and x2; i.e, ω(−x1, x2) = −ω(x1, x2) and ω(x1,−x2) = −ω(x1, x2).
(So also ω(−x) = ω(x).)

x1

x2

 x1, x2

−x1,−x2 −x1,−x2

−−x1, x2
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Biot-Savart law

The divergence-free velocity field, v , can be recovered from its
vorticity, ω, by the Biot-Savart law:

v = K ∗ ω, K (x) =
x⊥

2π |x |2
.

Lemma

Let ω be SBQ. Then there exists a unique divergence-free vector
field, v , in (L2(R2))2 with ω(v) = ω, and v satisfies the following:

1 v2(x1, 0) = 0 for all x1 in R;

2 v1(0, x2) = 0 for all x2 in R;

3 v(0, 0) = 0;

4 If ω ≥ 0 in Q1 then v1(x1, 0) ≥ 0 for all x1 ≥ 0.
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SBQ vector field

SBQ is preserved by the flow. Therefore:
1 The origin remains fixed.
2 The quadrants do not mix.
3 ω ≥ 0 in Q1 is preserved by the flow.

x1

x2

 x1, x2

−x1,−x2 − x1,−x2

−−x1, x2
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Our approach

1 Let ω be SBQ with ω = 2π1[0,1]×[0,1]. Then Bahouri and
Chemin showed that v1(x1, 0) ≥ Cx1 log(1/x1) ∀ x1 ≥ C .

2 Scale Bahouri and Chemin’s result to show that for
ω = 2π1[0,r ]×[0,r ], r < 1, λ < 1, one has

v1(x1, 0) ≥ Cλx1 log(1/x1) ∀ xλ1 ≤ r .

3 Construct an SBQ initial vorticity, ω0, that decreases in Q1
from a singularity at the origin by summing an infinite number
of vorticities as in Step 2. Such a vorticity has “square
symmetry,” and we obtain a lower bound on v 0

1 (x1, 0).

4 Use the upper bound on the modulus of continuity of the flow
to bound ω(t) below by a square symmetric vorticity, ω(t).
The bound in step 3 then gives a lower bound on v1(t, x1, 0).

5 Use the lower bound on v1(t, x1, 0) = v1(t, x1, 0)− v1(t, 0, 0)
to obtain a lower bound on
|ψ(t, x1, 0)| = |ψ(t, x1, 0)− ψ(t, 0, 0)|.
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Bahouri and Chemin’s example redux

Lemma

Let ω be SBQ with ω = 2π1[0,r ]×[0,r ] on Q1 for some r in (0, 1).
Then for any λ in (0, 1) there is a right neighborhood N = Nλ of
0 for which

V (r , x1) := v1(x1, 0) ≥ 0,

where
V (r , x1) ≥ Cx1 log(1/x1)

for all x1 in N for which xλ1 ≤ r . (The neighborhood, N , depends
only upon λ; in particular, it is independent of r .)

Observe that the bound on V (r , x1) does not depend upon r , but
the domain on which it is bounded by the lemma shrinks as r
shrinks. This lemma can be got from Bahouri and Chemin’s bound
for r = 1 by scaling.
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Square-symmetric vorticities

Definition

We say that ω is square-symmetric if ω is SBQ and
ω(x1, x2) = ω(max{x1, x2}, 0) on Q1.

That is, the vorticity is SBQ and is constant in absolute value
along the boundary of any square centered at the origin.

Lemma

Assume that ω is square-symmetric, finite except possibly at the
origin, and ω(x1, 0) is nonnegative and non-increasing for x1 > 0.
Then for any λ in (0, 1) and any λ′ in (0, λ)

v1(x1, 0) ≥ C (1− λ′)ω(xλ1 , 0)x1 log(1/x1)

for all x1 in the neighborhood N = Nλ,λ′ , where C = 2/π.
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Proof.

Write ω on Q1 as

ω(x) = 2π

∫ 1

0
α(r)1[0,r ]×[0,r ](x) dr ,

for some α : (0, 1)→ [0,∞). In particular,

ω(x1, 0) = 2π

∫ 1

x1

α(r) dr .

Because the Biot-Savart law is linear,

v1(x1, 0) =

∫ 1

0
α(r)V (r , x1) dr .
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Proof continued.

So,

v1(x1, 0) =

∫ 1

0
α(r)V (r , x1) dr

=

∫ xλ
1

0
α(r)V (r , x1) dr +

∫ 1

xλ
1

α(r)V (r , x1) dr

≥
∫ 1

xλ
1

α(r)V (r , x1) dr

≥ 2π

(∫ 1

xλ
1

α(r) dr

)
4

2π
(1− λ′)x1 log(1/x1)

=
2

π
(1− λ′)ω(xλ1 , 0)x1 log(1/x1).

In the final inequality, V (r , x1) is bounded as in the previous
lemma because xλ1 ≤ r in the integrand.
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Letting the vorticity flow

Theorem

Assume that ω0 is square-symmetric, finite except possibly at the
origin, and ω0(x1, 0) is nonnegative and non-increasing for x1 > 0.
Then for any λ in (0, 1) and any λ′ in (0, λ),

v1(t, x1, 0) ≥ C (1− λ′)ω0(Γt(2λ/2xλ1 ), 0)x1 log(1/x1)

for all x1 in the neighborhood N = Nλ,λ′ and all time t ≥ 0.
Further, let L(t, x1) be any continuous lower bound on v1(t, x1, 0),
for instance, the one above. Then if x1(t) is the solution to

dx1(t)

dt
= L(t, x1)

with x1(0) = a > 0 in N , then ψ1(t, a, 0) ≥ x1(t) for all t ≥ 0.
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Idea of the proof

Idea of the proof.

The vorticity, ω(t), remains SBQ at t > 0, but is no longer
square-symmetric. But |ω(t)| can be bounded below by |ω(t)|,
with ω(t) square-symmetric, by using the bound, Γt , on the
modulus of the continuity of the flow to control how much the
square-symmetric initial vorticity can be distorted in time t. The
differential equation for x1 follows from the definition of the flow,
using ψ(t, 0, 0) = 0 for all t (the origin is fixed by the flow).

For Bahouri and Chemin’s example, ω0 = 2π1[0,1]×[0,1], the proof
of this part is quite simple: the flow maps an open ball containing
the origin homeomorphically into an open set and the image of the
origin must lie in its interior.
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Bounded vorticity

Returning to the ω = 2π1[0,1]×[0,1] example,

v 1(t, x1, 0) ≥ C (1− λ′)ω0(2(2λ/2xλ1 /2)e−Ct
, 0)x1 log(1/x1)

≥ C (1− λ′)x1 log(1/x1).

Solving dx1(t)/dt = C (1− λ′)x1 log(1/x1) with x1(0) = a gives

ψ1(t, a, 0) ≥ x1(t) = aexp(−C(1−λ′)t),

which applies for sufficiently small a. Since ψ(t, 0, 0) = 0,

|ψ(t, a, 0)− ψ(t, 0, 0)|
aα

=

∣∣ψ1(t, a, 0)
∣∣

aα
≥ aexp(−C(1−λ′)t)−α,

which is infinite for any α > exp(−C (1− λ′)t). This shows that
the flow can be in no Hölder space Cα for α > exp(−C (1− λ′)t).
But this is true for any λ′ in (0, 1), so the flow can be in no Hölder
space Cα for α > e−Ct , reproducing, up to a constant, the result
of Bahouri and Chemin.
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Yudovich’s next example

Letting ω0 be square-symmetric with ω0(x1, 0) = log log(1/x1) for
0 < x1 < 1/e and zero for x1 ≥ 1/e gives

θ(p) = C log p,

β(r) ≤ Cr log r log log(1/r).

Rather than solving for Γt , one shows that

log log(1/Γt(s)) ≥ 1

2
e−Ct log log(1/s).

Then, for x1 > 0 sufficiently small,

v 1(t, x1, 0) ≥ C (1− λ′)ω0(Γt(2λ/2xλ1 ), 0)x1 log(1/x1)

≥ C (1− λ′) log log(1/Γt(2λ/2xλ1 ))x1 log(1/x1)

≥ Ce−Ct log log(1/2λ/2xλ1 )x1 log(1/x1)

≥ Ce−Ct log log(1/x1)x1 log(1/x1).
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Solving for

dx1(t)

dt
= Ce−Ct log log(1/x1)x1 log(1/x1) (1)

with x1(0) = a, we get

log3(1/x1(t)) = log3(1/a) + C
(

e−Ct − 1
)
,

so

ψ1(t, a, 0) ≥ x1(t) = exp
(
−(− log a)exp(C(e−Ct−1))

)
= e−(− log a)γ

,

where γ = exp
(
C (e−Ct − 1)

)
.
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We had,

ψ1(t, a, 0) ≥ e−(− log a)γ
,

where γ = exp
(
C (e−Ct − 1)

)
< 1 for all t > 0. Thus, for any α in

(0, 1) and all t > 0,

‖ψ‖Cα ≥ lim
a→0+

ψ1(t, a, 0)− ψ1(t, 0, 0)

aα
= lim

a→0+

ψ1(t, a, 0)

aα

≥ lim
a→0+

e−(− log a)γ

e(− log a)α
= lim

u→∞

e−uγ

e−αu
= lim

u→∞
eαu−uγ

=∞.

(2)

We conclude that the flow lies in no Hölder space of positive
exponent for all positive time.
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Problem with higher Yudovich vorticities

For the higher Yudovich vorticities,

θm(p) = log p · log2 p · · · logm p, m < 2,

the initial vorticity is distorted too much at time t > 0 to obtain a
square-symmetric lower bound for the vorticity at time t that
blows up fast enough at the origin. Either more refined estimates,
or something clever, are needed.
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