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Fixing notation

(NS)


∂tu + u · ∇u +∇p = ν∆u + f in Ω,

div u = 0 in Ω,
u = 0 on Γ := ∂Ω,

u(0) = u0.

(EE)


∂tu + u · ∇u +∇p = f in Ω,

div u = 0 in Ω,
u · n = 0 on Γ,

u(0) = u0.

Here, u = uν , u, f , and f are vector fields, while p and p are pressure
(scalar) fields. (We are using here the notation of [Kato 1983].)

We assume Ω is bounded, connected, and simply connected; Γ has C2

regularity; we write n for the outward unit normal vector.
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The vanishing viscosity limit

The limit,

(VV ) u → u in L∞(0,T ; H),

we refer to as the classical vanishing viscosity limit. Whether it
holds in general, or fails in any one instance, is a major open
problem in mathematical fluids mechanics.

H :=
{

u ∈ L2(Ω)d : div u = 0 in Ω, u · n = 0 on Γ
}
,

V :=
{

u ∈ (H1
0 (Ω))d : div u = 0 in Ω

}
.

For simplicity I will describe 2D only, and assume that f ≡ 0 and
u0 ∈ H ∩ C1,α, α > 0.
Define the vorticity as the scalar curl of u, u:

ω := ∂1u2 − ∂2u1,

ω := ∂1u2 − ∂2u1.
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Kato 1983

Kato showed that the following conditions are equivalent:

u → u weakly in L2(Ω) uniformly on [0,T ],

u → u in L∞(0,T ; H),

ν

∫ T

0
‖∇u‖2L2(Ω) dt → 0,

ν

∫ T

0
‖∇u‖2L2(Γcν) dt → 0,

u(T )→ u(T ) in L2(Ω),

where Γδ is the boundary strip of width δ > 0.

In the fourth condition, ω can replace ∇u [K 2007].
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Temam & Wang (1998), Wang (2001)

At the expense of increasing the size of the boundary layer slightly,
one need only consider the tangential derivatives of the tangential
components of the velocity or the tangential derivatives of the normal
components of the velocity.

(VV) is equivalent to

ν

∫ T

0
‖∇τ uτ (s)‖2L2(Γδ(ν)) ds → 0 as ν → 0,

ν

∫ T

0
‖∇τ un(s)‖2L2(Γδ(ν)) ds → 0 as ν → 0,

where

δ(ν)→ 0, δ(ν)/ν →∞ as ν → 0.

So Γδ(ν) is just slightly thicker than Γcν .

4 of 20



K 2008

(VV) is equivalent to

ω → ω − (u · τ )µ in H1(Ω)∗ uniformly on [0,T ],

ω → ω in H−1(Ω) uniformly on [0,T ].

Here, τ is the unit tangent vector on Γ that is obtained by rotating
n counterclockwise by 90 degrees.

H1(Ω) is the dual space to H1(Ω), not to H1
0 (Ω).

The first condition expresses that (VV ) holds if and only if a vortex
sheet of a specific type forms on the boundary.

The second condition holds for Ω simply connected.
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When the vanishing viscosity limit is known to hold

All examples where (VV ) is known to hold have some kind of
symmetry—in geometry of the domain or the initial data—or have
some degree of analyticity.

In the case of radially symmetric initial vorticity in a disk:
ω = ων remains bounded in L∞([0,∞); L1(Ω)) uniformly over ν > 0
[Lopes Filho, Mazzucato, Nussenzveig Lopes, Taylor 2008].

The vorticity is not bounded uniformly over ν > 0 in
L∞([0,∞); Lp(Ω)) for any p > 1, however, unless the initial velocity
(and hence u for all time) vanishes on the boundary. (Equivalent to
u0 ∈ V for radially symmetric initial vorticity.)

This is, in fact, a more general phenomenon, as can be very
simply shown.
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Lp norms of the vorticity

Theorem

Assume that u is not identically zero on [0,T ]× Γ. If (VV ) holds then

lim sup
ν→0+

‖ω‖L∞(0,T ;Lp) →∞ for all p ∈ (1,∞].

Proof: We prove the contrapositive. Assume that the conclusion is not
true. Then for some q′ ∈ (1,∞] it must be that for some C0 > 0 and
ν0 > 0,

‖ω‖L∞(0,T ;Lq′ ) ≤ C0 for all 0 < ν ≤ ν0.

Since Ω is a bounded domain we can assume that q′ ∈ (1,∞).
Let q be Hölder conjugate to q′ and p = 2/q + 1 ∈ (1,3). Note that

(p − 1)q = 2.
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Trace lemma

So by a simple trace lemma (p,q′ ∈ (1,∞) is important)

‖u(t)− u(t)‖Lp(Γ) ≤ C ‖u(t)− u(t)‖
1− 1

p

L2(Ω)
‖∇u(t)−∇u(t)‖

1
p

Lq′ (Ω)

≤ C ‖u(t)− u(t)‖
1− 1

p

L2(Ω)

(
‖∇u(t)‖Lq′ + ‖∇u(t)‖Lq′

) 1
p

≤ C ‖u(t)− u(t)‖
1− 1

p

L2(Ω)

(
C(q′)‖ω(t)‖Lq′ + ‖∇u(t)‖Lq′

) 1
p

≤ C ‖u(t)− u(t)‖
1− 1

p
H

for all 0 < ν ≤ ν0.

Lemma
Let p ∈ (1,∞) and q ∈ [1,∞] be chosen arbitrarily, and let q′ be Hölder
conjugate to q. For any v ∈ H,

‖v‖Lp(Γ) ≤ C ‖v‖
1− 1

p

L(p−1)q(Ω)
‖∇v‖

1
p

Lq′ (Ω)
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From

‖u(t)− u(t)‖Lp(Γ) ≤ C ‖u(t)− u(t)‖
1− 1

p
H

holds for almost all t ∈ [0,T ], we have

‖u − u‖L∞(0,T ;Lp(Γ)) ≤ C ‖u − u‖
1− 1

p
L∞(0,T ;H) → 0

as ν → 0. But,

‖u − u‖L∞(0,T ;Lp(Γ)) = ‖u‖L∞(0,T ;Lp(Γ)) 6= 0,

so u(t)− u(t) 6→ 0 in H.
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Consequence of vorticity being bounded in L1

As an aside, control on the L1 norm of the vorticity yields convergence
as a true vortex sheet—that is, when (VV ) holds.

Theorem (3D form)
Suppose that u → u in L∞(0,T ; H) and curl u is bounded in
L∞(0,T ; L1(Ω)) uniformly in ν. Then in 3D,

curl u → curl u + (u × n)µ weak∗ inM(Ω) uniformly on [0,T ],

by which we mean that for any ϕ in C(Ω)3,

(curl u(t), ϕ)→ (curl u(t), ϕ) +

∫
Γ
(u(t)× n) · ϕ in L∞([0,T ]).
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Vorticity in the boundary layer

The total mass of the vorticity (in fact, its L1-norm) in any layer smaller
than that of Kato goes to zero—and also for Kato’s layer if (VV ) holds.
This is the content of the following theorem.

Theorem

For any positive function δ = δ(ν),

‖ω‖L2(0,T ;L1(Γδ(ν))) ≤ C
(
δ(ν)

ν

)1/2

.

If (VV ) holds and lim sup
ν→0+

δ(ν)

ν
<∞ then

‖ω‖L2(0,T ;L1(Γδ(ν))) → 0 as ν → 0.
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Proof.
By the Cauchy-Schwarz inequality,

‖ω‖L1(Γδ(ν)) ≤ ‖1‖L2(Γδ(ν)) ‖ω‖L2(Γδ(ν)) ≤ Cδ1/2 ‖ω‖L2(Γδ(ν))

so

C
δ
‖ω‖2L1(Γδ(ν)) ≤ ‖ω‖

2
L2(Γδ(ν))

and

Cν
δ
‖ω‖2L2(0,T ;L1(Γδ(ν))) ≤ ν ‖ω‖

2
L2(0,T ;L2(Γδ(ν))) .

By the basic energy inequality for the Navier-Stokes equations, the
right-hand side is bounded, and if (VV ) holds, the right-hand side goes
to zero by [Kato 1983].
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Mass of vorticity

We can use this control on the vorticity in the boundary layer to make
an observation concerning the optimal rate of convergence in (VV ) for
non-compatible initial data—that is, for u0 /∈ V .

Assume that

m :=

∫
Ω
ω0 = (ω0,1) 6= 0.

(In particular, this means that u0 /∈ V .) The total mass of the vorticity of
the Euler solution is conserved so

(ω(t),1) = m for all t ∈ R.

The Navier-Stokes velocity, however, is in V for all positive time, so its
total mass is zero; that is,

(ω(t),1) = 0 for all t > 0.
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Now assume that (VV ) holds. Fix δ > 0 and let ϕδ be a smooth cutoff
function equal to 1 on Γδ and equal to 0 on Ω \ Γ2δ. Then,

|(ω,1− ϕδ)−m| → |(ω,1− ϕδ)−m| = |m − (ω, ϕδ)−m|
= |(ω, ϕδ)| ≤ ‖ω‖L∞ ‖ϕδ‖L1 ≤ Cδ,

the convergence being uniform on [0,T ]. Convergence holds because
1− ϕδ ∈ H1

0 (Ω) and (VV ) holds, and we used (ω(t),1) = m.

So the mass of vorticity must build up outside any layer of fixed width δ
to be as least as large in magnitude as |m| − Cδ, counterbalancing the
mass of vorticity with opposite sign in the layer itself.

To say anything for δ = δ(ν) we need to bring in the rate of
convergence in (VV ).

14 of 20



Rate of weak convergence

Theorem (Follows from K 2008)
Assume that (VV) holds with

‖u − u‖L∞(0,T ;H) ≤ F (ν)

for some fixed T > 0. Then

‖(u(t)− u(t), v)‖L∞([0,T ]) ≤ F (ν) ‖v‖L2(Ω) for all v ∈ L2(Ω)d

and

‖(ω(t)− ω(t), ϕ)‖L∞([0,T ]) ≤ F (ν) ‖∇ϕ‖L2 for all ϕ ∈ H1
0 (Ω).
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Theorem

Assume that (VV ) holds with a rate of convergence, F (ν) = o(ν1/2).
Then in 2D the initial mass of the vorticity must be zero.

Proof: Returning to the derivation of |(ω,1− ϕδ)−m| ≤ Cδ, we now
make δ = δ(ν)→ 0 as ν → 0, and choose ϕδ so that for some
δ∗ = δ∗(ν) to be chosen later with 0 < δ∗ < δ,

ϕδ = 1 on Γδ∗ , ϕδ = 0 on ΓC
δ := Ω \ Γδ.

It follows from the rate of weak convergence theorem that

|(ω,1− ϕδ)−m| ≤ C
[
δ + (δ − δ∗)−

1
2 F (ν)

]
.
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For any measurable subset Ω′ of Ω, define

M(Ω′) :=

∫
Ω′
ω,

the total mass of vorticity on Ω′. Then

M(ΓC
δ ) = (ω,1ΓC

δ
) = (ω,1− ϕδ) +

∫
Γδ\Γδ∗

ϕδω

so ∣∣∣(ω,1− ϕδ)−M(ΓC
δ )
∣∣∣ ≤ ∣∣∣∣∣

∫
Γδ\Γδ∗

ϕδω

∣∣∣∣∣
≤ ‖ϕδ‖L2(Γδ\Γδ∗ ) ‖ω‖L2(Γδ\Γδ∗ )

≤ C(δ − δ∗)
1
2 ‖ω‖L2(Γδ) .
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Thus,

Mδ :=
∣∣∣m −M(ΓC

δ )
∣∣∣ ≤ |m − (ω,1− ϕδ)|+

∣∣∣(ω,1− ϕδ)−M(ΓC
δ )
∣∣∣

≤ C
[
δ + (δ − δ∗)−

1
2 F (ν)

]
+ C(δ − δ∗)

1
2 ‖ω‖L2(Γδ) .

Choosing δ(ν) = ν, δ∗(ν) = ν/2, we have

Mν ≤ C
[
ν + ν−

1
2 o(ν

1
2 )
]

+ Cν
1
2 ‖ω‖L2(Γν) → 0

uniformly over [0,T ].

Squaring, integrating in time, and applying Young’s inequality gives

‖Mν‖2L2([0,T ]) =

∫ T

0
M2
ν ≤ CT (ν2 + o(1)) + Cν

∫ T

0
‖ω‖2L2(0,T ;L2(Γν)) → 0

as ν → 0 since F (ν) = o(ν1/2) by assumption and since (VV ) holds.
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Then,

‖m −M(Ω)‖L2([0,T ]) ≤
∥∥∥m −M(ΓC

ν )
∥∥∥

L2([0,T ])
+ ‖M(Γν)‖L2([0,T ])

= ‖Mν‖L2([0,T ]) + ‖M(Γν)‖L2([0,T ])

≤ ‖Mν‖L2([0,T ]) + ‖ω‖L2(0,T ;L1(Γν)) → 0

as ν → 0, since ‖Mν‖L2([0,T ]) → 0 as we just showed and
‖ω‖L2(0,T ;L1(Γν)) → 0 by our control on the L1 norm in the boundary
layer.

But u(t) lies in V so M(Ω) = 0 for all t > 0. Hence, the limit above is
possible only if m = 0.
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