OBSERVATIONS ON THE VANISHING VISCOSITY LIMIT
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ABSTRACT. Whether, in the presence of a boundary, solutions of the
Navier-Stokes equations converge to a solution to the Euler equations
in the vanishing viscosity limit is unknown. In a seminal 1983 paper,
Tosio Kato showed that the vanishing viscosity limit is equivalent to
having sufficient control of the gradient of the Navier-Stokes velocity in
a boundary layer of width proportional to the viscosity. In a 2008 paper,
the present author showed that the vanishing viscosity limit is equivalent
to the formation of a vortex sheet on the boundary. We present here
several observations that follow on from these two papers.
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The Navier-Stokes equations for a viscous incompressible fluid in a domain
Q CRY d > 2, with no-slip boundary conditions can be written,

ou+u-Vu+Vp=vAu+ f in €,
(NS) divu =0 in €,
u=0 onl:=00Q.
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The Euler equations modeling inviscid incompressible flow on such a domain
with no-penetration boundary conditions can be written,
ou+u-Vu+Vp=f inQ,
(FE) divu=0 in Q,

u-n=0 onl.

Here, u = u, and @ are velocity fields, while p and p are pressure (scalar)
fields. The external forces, f, f, are vector fields. (We adopt here the
notation of Kato in [14].) We assume throughout that € is bounded and I'
has C? regularity, and write m for the outward unit normal vector.

The limit,

(VV)  w—min L®(0,T; L*(Q)),

we refer to as the classical vanishing viscosity limit. Whether it holds in
general, or fails in any one instance, is a major open problem in mathematical
fluids mechanics.

In his seminal paper [14], Tosio Kato establishes a necessary and sufficient
condition for (V'V') to hold based upon the magnitude of Vu in a layer near
the boundary of width proportional to v (see (1.6)). In this condition, Vu
can be replaced with the vorticity (curlu) for both necessity and sufficiency
as shown in [16]. Moreover, it is shown in [17] that (V'V') is equivalent to the
vorticity accumulating on the boundary to form a vortex sheet in the limit
of vanishing viscosity. (This is in sympathy with Chorin’s approximation
of solutions to the Navier-Stokes equations by vortex sheets in [9]; see also
[8, 7, 6].)

In the present work, we return to, and to an extent integrate, the themes
explored in [14, 16, 17]: vorticity accumulation in the whole domain, in a
boundary layer, and on the boundary itself.

We start in Section 1 with the notation and definitions we will need, and
a summary of the pertinent results of [14, 16, 17].

Section 2 through Section 5 apply to all dimensions 2 and higher. In these
sections we do not analyze the behavior of solutions in a boundary layer or
on the boundary in detail. Rather, we obtain information concerning the
global behavior of solutions given that (V'V') holds or, conversely, obtain
further information about the nature of the vanishing viscosity limit given
that certain global conditions hold.

We re-express in a specifically 3D form the condition for vorticity accu-
mulation on the boundary from [17] in Section 2. In Section 3, we show that
if (VV) holds then the LP norms of the vorticity for solutions to (N.S) must
blow up for all p > 1 as v — 0 except in very special circumstances. This
leaves only the possibility of control of the vorticity’s L' norm. Assuming
such control, we show in Section 4 that when (V'V') holds we can characterize
the accumulation of vorticity on the boundary as a convergence of Radon
measures, which is a stronger convergence than that obtained in [17].

In Section 5, we show that the arguments in [17] lead to the conclusion
that some kind of convergence of a subsequence of the solutions to (N.S)
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always occurs in the limit as v — 0, but not necessarily to a solution to the
Euler equations.

The remaining sections, Section 6 through Section 10, are concerned ex-
clusively with 2D solutions. This simplifies the analysis substantially, in
large part because the energy equality is known to hold for 2D weak so-
lutions to the Navier-Stokes equations. This makes it easier to prove the
necessity of conditions that imply (VV). It is also helpful that in 2D vor-
ticity is transported by solutions to the Euler equations. In these sections
we will consider in detail the behavior of solutions in a boundary layer and
on the boundary. (Some of the results in these sections can, however, be
extended, with greater difficulty, to higher dimension.)

In Section 6, we return to the theme of controlling the L' norm of the
vorticity, showing that if we measure the width of the boundary layer by
the size of the L'-norm of the vorticity then the layer has to be wider than
that of Kato if (V'V') holds. We push this analysis further in Section 7 to
obtain the theoretically optimal convergence rate when the initial vorticity
has nonzero total mass, as is generic for non-compatible initial data. We turn
a related observation into a conjecture concerning the connection between
the vanishing viscosity limit and the applicability of the Prandtl theory.

We derive in Section 8 a condition on the solution to (/N.S) on the bound-
ary that is equivalent in 2D to (V'V'), giving a number of examples to which
this condition applies in Section 9.

In Section 10 we discuss some interesting recent results of Bardos and Titi
that they developed using dissipative solutions to the Euler Equations. We
show how weaker, though still useful, 2D versions of these results can be
obtained using direct elementary methods.

1. DEFINITIONS AND PAST RESULTS
We define the classical function spaces of incompressible fluids,
H:{UELZ(Q)d:divuzoinQ,u-nzOonF}
with the L?-norm and
V= {u e (HH Q) : diva =0 in Q}
with the H'-norm. For scalar functions, f,g, we define (f,g) := Jo fg- If v,
w are vector fields then (v, w) := (v',w"), where we use here and below the

common convention of summing over repeated indices. Similarly, if M, N
are matrices of the same dimensions then M - N := MY N% and

(M,N) = (M%¥, N%) :/QM-N.

In all that follows, we assume that v and w satisfy the same initial condi-
tions,

u(0) =g, u(0) =wug, ug€C(QNH
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for some € € (0,1), where k = 1 for two dimensions and k = 2 for 3 and
higher dimensions, and that

=T € Cloe(R; C1(92)).

Then as shown in [19] (Theorem 1 and the remarks on p. 508-509), there is
some T > 0 for which there exists a unique solution,

@ in C1([0,T]; C**e(Q)), (1.1)

to (F'E). In two dimensions, T can be arbitrarily large, though it is only
known that some positive T exists in three and higher dimensions.

With such initial velocities, we are assured that there are classical solu-
tions to (N.S) for all time in 2D. In 3D, however, the known lower bounds on
the time of existence vanish with the viscosity (see, for instance, the remarks
in the introduction to [24]); we will use only properties of weak solutions to
(NS), so this does not represent any real difficulties. Such weak solutions
are unique in 2D, but uniqueness is not known to hold in higher dimensions.
So by u = u,, we mean any of these solutions chosen arbitrarily.

We write

M(Q) for the space of Radon measures on €. (1.2)

That is, M(Q) is the dual space of C'(Q2). We let p in M () be the measure
supported on I' for which u|r corresponds to Lebesgue measure on I' (arc
length for d = 2, area for d = 3). Then u is also a member of H'(2)*, the
dual space of H(Q).

We define the vorticity w(u) to be the d x d antisymmetric matrix,

w(u) = % [Vu — (Vu)T] , (1.3)

where Vu is the Jacobian matrix for u: (Vu)¥ = d;u’. When working
specifically in two dimensions, we alternately define the vorticity as the scalar
curl of u:

w(u) = ou® — dau'. (1.4)
Letting w = w(u) and @ = w(u), we define the following conditions:

(A4) u — u weakly in H uniformly on [0, 77,

(A" u — T weakly in L*(Q)? uniformly on [0, 7],

(B) u—win L>(0,T; H),

() Vu — Va — ((-) - n,au) in (H'(Q)P4)* uniformly on [0, 77,
(D) Vu — V@ in H~1(Q)44 uniformly on [0, T7,

(E) w—w— 1 ((-— Iy n,up) in (H'(Q)4*4)* uniformly on [0, T7,

2
(F) w — @ in H~1(Q)¥*4 uniformly on [0, T7.

We stress that H'(Q)* is the dual space of H!(f2), in contrast to H (),
which is the dual space of HE(Q).
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The condition in (B) is the classical vanishing viscosity limit of (VV).
We will make the most use of condition (FE), which more explicitly means

that for any M in H'(Q)?*¢,
(w(t), M) — (w(t), M) — % /((M — MT) . n)-a(t) in L>=([0,T]). (1.5)
r

The condition (C') has a similar interpretation.
In two dimensions, defining the vorticity as in Equation (1.4), we also
define the following two conditions:

(E2) w—w@— (T-7)p in HY(Q)* uniformly on [0, 77,
(F») w — @ in H~Y() uniformly on [0, T7.

Here, 7 is the unit tangent vector on I' that is obtained by rotating the
outward unit normal vector n counterclockwise by 90 degrees.

Theorem 1.1 is proved in [17] ((A) = (B) having been proved in [14]),
to which we refer the reader for more details.

Theorem 1.1 ([17]). Conditions (A), (A’), (B), (C), (D), and (E) are
equivalent (and each implies condition (F')). In two dimensions, condition
(E2) and, when Q is simply connected, (F>) are equivalent to the other con-
ditions."

Theorem 1.1 remains silent about rates of convergence, but examining the
proof of it in [17] easily yields the following:

Theorem 1.2. Assume that (VV') holds with
[ =l Lo (0,7, L2(02)) < F(¥)
for some fired T > 0. Then
() = 7)) e o.zy) < F ) [0l 2y for all v € LH(Q)?
and

1w(t) = B0, )l oy < FW) [Vl for all o € HY(S).

Remark 1.3. Theorem 1.2 gives the rates of convergence for (A) and (F»);
the rates for (C), (D), (E), and (E2) are like those given for (F») (though
the test function, ¢, will lie in different spaces).

In [14], Tosio Kato showed that (V'V') is equivalent to

T
V/|WMQﬁ%Dﬁ%O%V%O
0
and to

T
y/|WMﬂ@m”ﬁ%0%uéO (1.6)
0

IThe restriction that © be simply connected for the equivalence of (F2) was not, but
should have been, in the published version of [17].
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Here, and in what follows, I's is a boundary layer in €2 of width é > 0:
s = {z € Q: dist(z,00) < d}.

In [16] it is shown that in (1.6), the gradient can be replaced by the
vorticity, so (VV) is equivalent to

T
I//o lw(s)lI72(r,,) dt — 0 as v — 0. (1.7)

Note that the necessity of (1.7) follows immediately from (1.6), but the
sufficiency does not, since on the inner boundary of I'.,, there is no boundary
condition of any kind.

We also mention the works [29, 30], which together establish conditions
equivalent to Equation (1.6), with a boundary layer slightly larger than that
of Kato, yet only involving the tangential derivatives of either the normal or
tangential components of u rather than the full gradient. These conditions
will not be used in the present work, however.

2. A 3D VERSION OF VORTICITY ACCUMULATION ON THE BOUNDARY

In Theorem 1.1, the vorticity is defined to be the antisymmetric gradient,
as in (1.3). When working in 3D, it is usually more convenient to use the
language of three-vectors in condition (E). This leads us to the condition
(E') in Proposition 2.1.

Proposition 2.1. In 3D, the condition (E) in Theorem 1.1 is equivalent to
(E) curlu — curl@ + (@ x n)p in (H'(Q)®)* uniformly on [0,T),
by which we mean that for any o in H(Q)3,

(curlu(t), o) — (curlT(t), ) + /F (@(t) x n) - @ in L=([0,T]).

Proof. If A is an antisymmetric 3 x 3 matrix then
M—MT
5 .

Thus, since w and @ are antisymmetric, referring to Equation (1.5), we see
that (E) is equivalent to

A-M=A-

(w(t), M) — (w(t), M) — /(Mn) ~a(t) in L([0,T7)
r
for all antisymmetric matrices M € (H'(£2))3*3.
Now, for any three vector ¢ define

0 —@3 P2
Ple)=| w3 0 —p
-2 P1 0
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Then P is a bijection from the vector space of three-vectors to the space of
antisymmetric 3 x 3 matrices. Straightforward calculations show that

P(p)-P(y) =2¢-¢,  Plp)v=pxuv
for any three-vectors, ¢, 1, v. Also, P(curlu) = 2w and P(curlu) = 2w.
For any ¢ € (H'(2))3 let M = P(p). Then

(w, M) = = (P(curlu), P(p)) = (curlu, ),

N — N -

(w, M) = = (P(curlm), P(p)) = (curlu, ),

(Mn) @ = (P(p)n) - = (p x 1) T = —(@x n)- .
Because P is a bijection, this gives the equivalence of (F) and (E’). O

3. LP-NORMS OF THE VORTICITY BLOW UP FOR p > 1

Theorem 3.1. Assume that u is not identically zero on [0,T] x I'. If any
of the equivalent conditions of Theorem 1.1 holds then for all p € (1, 00],
lim sup [|wl| 00 (g 77,10y — 00 (3.1)
v—0t
Proof. We prove the contrapositive. Assume that the conclusion is not true.
Then for some ¢’ € (1,00] it must be that for some Cy > 0 and vy > 0,

HwHLOO(O,T;Lq/) < (Cp for all 0 < v < 1. (3.2)

Since 2 is a bounded domain, if (3.2) holds for some ¢’ € (1, 0] it holds for
all lower values of ¢/ in (1, 00|, so we can assume without loss of generality
that ¢’ € (1, 00).
Let g =¢'/(¢ — 1) € (1,00) be Holder conjugate to ¢ and p=2/g+1 €
(1,3). Then p, q, ¢ satisfy the conditions of Corollary A.3 with (p—1)q = 2.
Applying Corollary A.3 gives, for almost all ¢ € [0,T],

1—1 1
lu(®) =@l oy = Cult) =T ) [Vult) = Va@l Ly o

1-1 1
< Clult) = a®) ) (V) o + IVl L) ?

< Cllu(t) = Tl oy (C(@) [0l + VT )P

1

1—1
< C Ju(t) (1) yaipy

for all 0 < v < 1y. Here we used (3.2) and the inequality, ||Vu||Lq/(Q) <
C(q) HwHLq/(Q) for all ¢ € (1,00) of Yudovich [31]. Hence,

Ju — u”LOO(O,T;LP(F)) <Cllu— U’HLOOP(O’T;LQ(Q)) =0
as v — 0. But,

e =@l 07,200y = Wl o111 # 0
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so condition (B) cannot hold and so neither can any of the equivalent con-
ditions in Theorem 1.1. O

Observe that we used nothing about u being a solution to (NS) or to
any other equation in the proof of Theorem 3.1, only that u converges in
L>(0,T; L?) to some vector field, u, with Vu € L°([0,T] x Q).

Remark 3.2. It was shown in [26] (remark at the end of Appendix A) that
if u is a solution to dyu = vAwu with u(t) = 0 on the boundary for ¢ > 0 then
Vu cannot be bounded in L? for any p > 1 if u(0) # 0 on the boundary.

4. IMPROVED CONVERGENCE WHEN VORTICITY BOUNDED IN L!

In Section 3 we showed that if the classical vanishing viscosity limit holds
then the LP norms of w must blow up as v — 0 for all p € (1, co]—unless
the Eulerian velocity vanishes identically on the boundary. This leaves open
the possibility that the L' norm of w could remain bounded, however, and
still have the classical vanishing viscosity limit. This happens, for instance,
for radially symmetric vorticity in a disk (Examples la and 3 in Section 9),
as shown in [21].

In fact, as we show in Corollary 4.1, when (VV) holds and the L' norm
of w remains bounded in v, the convergence in condition (F) is stronger;
namely, weak® in measure uniformly over time (as in [21]). (See (1.2) and
the comments after it for the definitions of M(Q) and pu.)

Corollary 4.1. Suppose that uw — @ in L*°(0,T; H) and curlu is bounded
in L>(0,T; LY(Q)) uniformly in v. Then in 8D,

curlu — curlu + (@ x n)p weak™ in M(Q) uniformly on [0,T], (4.1)
by which we mean that for any o in C(Q)3,

(curlu(t), ) — (curlu(t), p) + /F(u(t) xn) - in L=([0,T]).

Similarly, (C), (E), and (E3) hold with weak® convergence in M(Q) rather
than in H*(Q)*.

Proof. We prove (4.1) explicitly for 3D solutions, the results for (C), (E),
and (Fs) following in the same way.
Let 1 € C(Q2)3. What we must show is that

(curlu(t) — curlw(t),v) — /F(u(t) xm) -1 in L>([0,T7]).

So let € > 0 and choose ¢ € H*(Q)¢ with ||y — ¢llo@) < € We can always
find such a ¢ because H'(Q) is dense in C(£2). Let

M = max { [eurlu — curl@| oo (o 1,11 (02)) » W|Loo([o,T]xsz)} ;
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which we note is finite since [curlul| ;o 7.11(q)) and [lewrl || oo 7.11(q)
are both finite. Then

(curlu(t) — curlw(t),y) — /1“(U(t) X n) - ¢‘

< |(curlu(t) — curlw(t), v — @) — /F(U(t) xmn)- (Y — 90)’
+ |(curlu(t) — curlu(t), ¢) — /F(u(t) X m) - @’
< 2Me + |(curlu(t) — curlw(t), p) — /F(u(t) Xm)-p|.

By Theorem 1.1 and Proposition 2.1, we can make the last term above
smaller than, say, €, uniformly over ¢ in [0,7] by choosing v sufficiently
small, which is sufficient to give the result. O

Remark 4.2. Suppose that we have the slightly stronger condition that Vu
is bounded in L*(0,T; L*(2)) uniformly in v. If we are in 2D, W1(Q)
is compactly embedded in L?(Q2). This is sufficient to conclude that (V'V)
holds, as shown in [13].

5. SOME KIND OF CONVERGENCE ALWAYS HAPPENS

Assume that v is a vector field lying in L>(0,T; H'(£2)). An examination
of the proof given in [17] of the chain of implications in Theorem 1.1 shows
that all of the conditions except (B) are still equivalent with @ replaced by
v. That is, defining,

Ay) u — v weakly in H uniformly on [0,77],
) u — v weakly in L?(Q)¢ uniformly on [0, 77,
) u—vin L*(0,T; H),
) Vu — Vo — ((-) - n,vp) in (HY(Q)P*Y)* uniformly on [0, T],
D,) Vu — Vo in H Q)4 uniformly on [0, T7,
)
)

w—w(v) — % ((-— Ty, n,vp) in (H'(Q)4*4)* uniformly on [0, T7,

w— w) — (v-7)pin H(Q)* uniformly on [0, T7,

(Fa) w — w(v) in H1(Q) uniformly on [0, 7],

we have the following theorem:

Theorem 5.1. Conditions (Ay), (AL), (Cy), (Dy), and (E,) are equivalent.
In 2D, conditions (Es,) and, when Q is simply connected, (Fs,) are equiv-
alent to the other conditions. Also, (By) implies all of the other conditions.

Finally, the same equivalences hold if we replace each convergence above with
the convergence of a subsequence.

But we also have the following;:
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Theorem 5.2. There exists v in L>°(0,T; H) such that a subsequence (u,)
converges weakly to v in L*(0,T; H).

Proof. The argument for a simply connected domain in 2D is slightly simpler
so we give it first. The sequence (u,) is bounded in L*(0,7; H) by the
basic energy inequality for the Navier-Stokes equations. Letting 1), be the
stream function for u, vanishing on I', it follows by the Poincare inequality
that (1) is bounded in L°°(0,T; H}(Q)). HI(Q) is weakly compact so
there exists a subsequence, which we relabel as (¢™), converging weakly in
L>®(0,T; HY () to some 1 lying in L>®(0,T; H}(Q)). Let u® = Viyn,
v = V+19. Then (u") converges weakly to v in L>(0,T; H), since for any
g € L>=(0,T; H) (so that curlg € L>(0,T; H-1(Q2))),
(u",g) = (V" g) = —(Vy", g") = (", = divg™) = (4", curl g)
— (¢, curlg) = (v, g).

In dimension d > 3, let M,, in (Hg(Q))? satisfy u, = div M,; this is possi-
ble by Corollary 7.5 of [17]. Arguing as before it follows that there exists a
subsequence, which we relabel as (M™), converging weakly in L°°(0, T'; H}(Q2))
to some M that lies in L>(0, T; (H}(9))%*?). Let v = div M.

Let g be any element of L>°(0,7; H). Then

(uy,g) = (div M", g) = —=(M",Vg) = —(M,Vg) = (v,9),
establishing convergence as before. O

It follows from Theorems 5.1 and 5.2 that all of the convergences in The-
orem 1.1 hold except for (B), but for a subseqgence of solutions and the
convergence is to some velocity field v lying only in L*°(0,7; H) and not
necessarily in L>(0,T; H N H(Q)) . In particular, we do not know if v is
a solution to the Euler equations, and, in fact, there is no reason to expect
that it is.

6. WIDTH OF THE BOUNDARY LAYER: 2D

Working in two dimensions, make the assumptions on the initial velocity and
on the forcing in Theorem 1.1, and assume in addition that the total mass
of the initial vorticity does not vanish; that is,

m:= / wo = (wo, 1) # 0. (6.1)
Q
(In particular, this means that ug is not in V'.) The total mass of the vorticity
of the Euler solution is conserved so
(W(t),1) =m for all t € R. (6.2)

The Navier-Stokes velocity, however, is in V for all positive time, so its total
mass is zero; that is,

(w(t),1) =0 for all ¢ > 0. (6.3)
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Let us suppose that the vanishing viscosity limit holds. Fix § > 0 and let
s be a smooth cutoff function equal to 1 on I's and equal to 0 on 2\ T'ys.
Then by (F») of Theorem 1.1 and using (6.2),

(W, 1 =5) =m| = |(@,1 = @5) —m| = [m — (@, ;) —m| < C5,
the convergence being uniform on [0,7]. Thus, for all sufficiently small v,
|(w, 1 —@s) —m| < C46. (6.4)

In (6.4) we must hold 0 fixed as we let v — 0, for that is all we can obtain
from the weak convergence in (F3). Rather, this is all we can obtain without
making some assumptions about the rates of convergence, a matter we will
return to in the next section.

We can, however, show that the total mass of the vorticity (in fact, its
L'-norm) in any layer smaller than that of Kato goes to zero and, if the
vanishing visocity limit holds, then the same holds for Kato’s layer. This is
the content of the following theorem.

Theorem 6.1. For any positive function § = §(v),

6(7/) 1/2

[l 20 msni gy < C () . (6.5)

If the vanishing viscosity limit holds and
0
lim sup —(V) < 00
v—0t v

then

||w||L2(0,T;L1(F6(V))) — 0 as vV — 0 (66)

Proof. By the Cauchy-Schwarz inequality,

1/2
||w||L1(F§(V>) < ||1HL2(F5(V>) ||wHL2(F5(V>) < o) / ||w||L2(F5(V))
SO

C

2 2
= el ) < 103y

and
CV 2 2
5 HWHL2(0,T;L1(I‘5(D))) <v ”(’UHL2(07T;L2(F5(V))) )
By the basic energy inequality for the Navier-Stokes equations, the right-
hand side is bounded, giving Equation (6.5), and if the vanishing viscosity
limit holds, the right-hand side goes to zero by (1.7), giving Equation (6.6).
O

Remark 6.2. In Theorem 6.1, we do not need the assumption in Equa-
tion (6.1) nor do we need to assume that we are in dimension two. The
result is of most interest, however, when one makes these two assumptions.
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Remark 6.3. Equation (6.6) also follows from condition (iii”) in [16] that
v fOT ||w(u)\|%2(rw) — 0 by applying the Cauchy-Schwarz inequality in the
manner above, but that is using a sledgehammer to prove a simple inequality.
Note that Equation (6.6) is necessary for the vanishing viscosity limit to hold,
but is not (as far as we can show) sufficient.

7. OPTIMAL CONVERGENCE RATE: 2D

Still working in two dimensions, let us return to (6.4), assuming as in the
previous section that the vanishing viscosity limit holds, but bringing the
rate of convergence function, F', of Theorem 1.2 into the analysis. We will
now make § = §(v) — 0 as v — 0, and choose ps slightly differently,
requiring that it equal 1 on I'g« and vanish outside of I's for some 0 < §* =
d*(v) < 0. We can see from the argument that led to (6.4), incorporating
the convergence rate for (Fy) given by Theorem 1.2, that

[(w, 1= p5) = m| < C6+ [|Ves]| 20y F(v)-

Because 92 is C?, we can always choose s so that |[Ves| < C(§ — 6*)7L.
Then for all sufficiently small §,

C \? (5 —6%)2 1
< - =C— = — & )
Vsl r2q) < (/Fé\ré* <5_5*> ) Cs =C(—07)

We then have

ol

(w,1— pg) —m| <C [5+(5—5*)—%F<y> . (7.1)

For any measurable subset € of €, define
M(Y) = / w,

the total mass of vorticity on €. Then

M) = (@1-po)+ [ om

Fg\Fé*

where

r§ :=Q\T;s
SO
[(w,1— @5) = M(T§)| < [wll L2(m 150y 193]l L20g\ P50
a1
< C(6—0%)2 [lwll 2y -

From these observations and those in the previous section, we have the
following:

(7.2)

Theorem 7.1. Assume that the classical vanishing viscosity limit in (VV')
holds with a rate of convergence, F(v) = o(v'/?). Then in 2D the initial
mass of the vorticity must be zero.
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Proof. From (7.1) and (7.2),
Mg = [m — M(T5)| < [m — (w,1 — ¢5)| + [(w, 1 = p5) = M(TF)]
<Cl5+ - EFW)| +C06 -8 |l aqry) -
Choosing (1) = v, 6*(v) = 1/2, we have
M, <O |v+v20(r2)] + OV il

uniformly over [0,7]. Squaring, integrating in time, and applying Young’s
inequality gives

T T
M2 027 = /0 M2 < OT(2 + o(1)) + C /0 202,20, — O
as v — 0 by (1.7). Then,
lm — M) p20.17) < |lm — M(F§)||L2([0,T]) F M T L2 0.1)

< ||MV||L2([0,T]) + ||W||L2(0,T;L1(Fu)) —0

as v — 0 by Theorem 6.1. But u(t) lies in V so M(2) = 0 for all ¢ > 0.
Hence, the limit above is possible only if m = 0. U

For non-compatible initial data, that is for ug ¢ V, the total mass of
vorticity will generically not be zero, so C'y/v should be considered a bound
on the rate of convergence for non-compatible initial data. As we will see
in Remark 8.2, however, a rate of convergence as good as C'\/v is almost
impossible unless the initial data is fairly smooth, and even then it would
only occur in special circumstances.

Now let us assume that the rate of convergence in (VV) is F(v) = Cv®
for some a < 1/4. As we will see in Section 9, this is a more typical rate
of convergence for the simple examples for which (VV') is known to hold.
Letting § = v#, 6* = (1/2)1° for B > 0, (7.1) gives

(w,1= pyo) =m| < C [ +1°75].

/ PysW

s\I's*

/ PrsW
Fé\l—‘é*

This suggests that as long as 8 < 2q, the total mass of vorticity converges
to m outside a layer of width v# (we cannot conclude this rigorously, since
we cannot bound the last term above). On the other hand, the total mass of
vorticity for all positive time is zero, and the total mass in the Kato Layer,
T',, goes to zero in the manner indicated by Theorem 6.1.

If « = 1/4 so that 5 < 1/2, this suggests that there is a sharp transition in
the behavior of the vorticity in the region between the Kato layer and a layer

Thus,

IM(I'7s) —m| < [(w,1—¢,s) —m| +

<C |:I/6 +V°‘_§} +
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just outside the Prandtl layer, a region in which the total mass of vorticity
would need to be —m. If o < 1/4 so that 8 = 1/2 + € for some ¢ > 0,
it suggests that the transition in vorticity extends well outside the Prandtl
layer. This does not directly contradict any tenet of the Prandtl theory,
but it suggests that for small viscosity the solution to the Navier-Stokes
equations matches the solution to the Euler equations only well outside the
Prandtl layer. This leads us to the following conjecture:

Conjecture 7.2. If the vanishing viscosity limit in (VV') holds at a rate
slower than Cvi in 2D then the Prandtl theory fails.

We conjecture no further, however, as to whether the Prandtl equations
become ill-posed or whether the formal asymptotics fail to hold rigorously.

8. A CONDITION ON THE BOUNDARY EQUIVALENT TO (VV): 2D
Theorem 8.1. For (VV') to hold in 2D it is necessary and sufficient that
t
1// /wu~7’—>0 as v — 0 uniformly over [0,T). (8.1)
0o Jr

Proof. Since the solution is in 2D and f € L*(0,T;H) 2 CL.(R;C1(Q)),
Theorem I11.3.10 of [28] gives

Viu e L*(0,T; H*(Q)) N L®(0,T; V),
Vtdw € L2(0,T; H),

so w(t) is defined in the sense of a trace on the boundary. This shows that
the condition in (8.1) is well-defined.

For simplicity we give the argument with f = 0. We perform the calcu-
lations using the d-dimensional form of the vorticity in (1.3), specializing to
2D only at the end. (The argument applies formally in higher dimensions;
see Remark 8.3.)

Subtracting (F'E) from (N.S), multiplying by w = u — @, integrating over
), using Lemma 8.4 for the time derivative, and using u(t) € H(Q), t > 0,
for the spatial integrations by parts, leads to

(8.2)

1d
5= lwllzz +v |Vl 72
(8.3)
= —(w- Vu,w) +v(Vu,Vu) — y/(Vu ‘n) - a.
r
Now,
. T
(Vu-n) -7 =2V (Vo) n) T
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/((VU/ u/@u]nju = /8 u-n)u
V(u-n)-uw=0

since v = 0 on I' and @ is tangent to I'. Hence,

/F(Vu-n)'u:Q/F(w(u)-n)-u (8.4)

But,

and

5 77 1wllz + v [Vl
2dt

—(w - Vu,w) + v(Vu, Vu) — 21//(w(u) ‘n) - .
r
By virtue of Lemma 8.4, we can integrate over time to give

T T T
w) s +2 [ IVl =2 [ (w- Va0 +2 [ (Vu.Va)
0 0

0 .
_QJ//OT/F(w(u) n >

In two dimensions, we have (see (4.2) of [15])
(Vu-n)-u=((Vu-n)-m)(u-7)=w)u- T, (8.6)

and (8.5) can be written

T T T
w) e +20 [ IVl =2 [ (w Va0 + 2 [ (VuvE)
0 0

0 (8.7)
—V/[]T/quu T

The sufficiency of Equation (8.1) for the vanishing viscosity limit (V'V')
to hold (and hence for the other conditions in Theorem 1.1 to hold) follows
from the bounds,

(w0 V,w)| < [V oo ey 0l < C ]2

T
v /0 (Y, V)| < V7 IVl L2011 V7 IVl 2 0 210 < OV

and Gronwall’s inequality.

Proving the necessity of Equation (8.1) is just as easy. Assume that (V'V')
holds, so that [|w||je(g7.12()) — 0- Then by the two inequalities above,
the first two terms on the right-hand side of Equation (8.7) vanish with the
viscosity as does the first term on the left-hand side. The second term on the
left-hand side vanishes as proven in [14] (it follows from a simple argument
using the energy equalities for (NS) and (E)). It follows that, of necessity,
Equation (8.1) holds. O
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Remark 8.2. It follows from the proof of Theorem 8.1 that in 2D,

T 3
/ /wu-r
0 JI

Suppose that g is smooth enough that Aw € L*°([0,T] x ). Then before
integrating to obtain (8.3) we can replace the term v(Au, w) with v(Aw, w)+
v(ATu,w). Integrating by parts gives

v(Aw,w) = v||Vuw|s,

Hu(t) - ﬂ(t)HLz < C I/i + 1/% eCt‘

and we also have,

v(AT,w) < v||AU| [[w] 2 < HA 172 + 5 HwHLz-
This leads to the bound,

1
et
Wwu-T
0 r

(and also [[u — | 2o 1, 1) < Cv'/2eCt). Thus, the bound we obtain on the

rate of convergence in v is never better than O(v'/*) unless the initial data
is smooth enough and the boundary integral vanishes (as in Example 1 in
Section 9).

lu(t) —a(t)||2 < C |v+wv2

Remark 8.3. Formally, the argument in the proof of Theorem 8.1 would
give in any dimension the condition

/ / w(u) -u — 0 as v — 0 uniformly over [0, 7.

In 3D, one has w(u) -n = (1/2)d x n, so the condition could be written

//wxn -u=v // (uxn)—>0asv—0,

uniformly over [0, 7], where & is the 3-vector form of the curl of u. We can
only be assured, however, that u(t) € V for all ¢ > 0, which is insufficient to
define & on the boundary. (The normal component could be defined, though,
since both ¢(t) and diva(t) = 0 lie in L2.) Even assuming more compatible
initial data in 3D, such as ug € V, we can only conclude that u(t) € H? for
a short time, with that time decreasing to 0 as v — 0 (in the presence of
forcing; see, for instance, Theorem 9.9.4 of [10]).

The condition in Equation (8.1) indicates that there are two mechanisms
by which the vanishing viscosity limit can hold: Either the blowup of w on
the boundary happens slowly enough that

T
1// [wllprqry = 0asv—0 (8.8)
0
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or the vorticity for (N.S) is generated on the boundary in such a way as to
oppose the sign of @ - 7. (This latter line of reasoning is followed in [11],
leading to a new condition in a boundary layer slightly thicker than that of
Kato.) In the second case, it could well be that vorticity for (N.S) blows
up fast enough that Equation (8.8) does not hold, but cancellation in the
integral in Equation (8.1) allows that condition to hold.

We used Lemma 8.4 in the proof of Theorem 8.1.

Lemma 8.4. Assume that v € L>=(0,T;V) with 0yv € L*(0,T; V") as well
as \tOyw € L?(0,T; H). Then v € C([0,T]; H),
1d

5 [0l 22 = (Byv,v) in D'((0,T)) with Vt(w,v) € L*(0,T),

and

T
d
/0 — Ie@)72 dt = [lo(T) 72 = [[0(0)][72

Proof. Follows from the results of Sections III.1.1 and III.1.4 of [28] (or see
Section 5.9 of [12]). O

9. EXAMPLES WHERE CONDITION ON THE BOUNDARY HOLDS: 2D

All 2D examples where the vanishing viscosity limit is known to hold have
some kind of symmetry—in geometry of the domain or the initial data—or
have some degree of analyticity.

Since Equation (8.1) is a necessary condition, it holds for all of these
examples. But though it is also a sufficient condition, it is not always prac-
ticable to apply it to establish the limit. We give here examples in which it
is practicable. This includes all known 2D examples having symmetry. In
all explicit cases, the initial data is a steady solution to the Euler equations.

Example 1: Let uw be any solution to the Euler equations for which w =0
on the boundary. The integral in Equation (8.1) then vanishes for all v.
From Remark 8.2, the rate of convergence (here, and below, in v) is Ci/4
or, for smoother initial data, C'v.

Example la: Example 1 is not explicit, in that it is not given by a
formula in closed form. As a first example of an explicit solution, let D
be the disk of radius R > 0 centered at the origin and let wy € L*°(D) be
radially symmetric. Then the associated velocity field, wug, is given by the
Biot-Savart law. By exploiting the radial symmetry, ug can be written,

L rlel
up(z) = 2/ wo(r)rdr, (9.1)
|z[* Jo
where we abuse notation a bit in writing w(r). Since ug is perpendicular to
Vwy it follows from the vorticity form of the Euler equations that w = g is
a steady solution to the Euler equations.
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Now assume that the total mass of vorticity,

m = /R2 wo, (9.2)

is zero. We see from Equation (9.1) that on I', up = 0, giving a steady
solution to the Euler equations with velocity vanishing on the boundary.

(Note that m = 0 is equivalent to ug lying in the space V' of divergence-free
vector fields vanishing on the boundary.)

Example 1b: Let wy € L' N L°(R?) be a compactly supported radially
symmetric initial vorticity for which the total mass of vorticity vanishes; that
is, m = 0. Then the expression for ug in Equation (9.1), which continues to
hold throughout all of R?, shows that uy vanishes outside of the support of
its vorticity.

If we now restrict such a radially symmetric wy so that its support lies
inside a domain (even allowing the support of wy to touch the boundary of
the domain) then the velocity uy will vanish on the boundary. In particular,
ug - = 0 so, in fact, ug is a steady solution to the Euler equations in
the domain, being already one in the whole plane. In fact, one can use a
superposition of such radially symmetric vorticities, as long as their supports
do not overlap, and one will still have a steady solution to the Euler equations
whose velocity vanishes on the boundary.

Such a superposition is called a superposition of confined eddies in [22],
where their properties in the full plane, for lower regularity than we are
considering, are analyzed. These superpositions provide a fairly wide variety
of examples in which the vanishing viscosity limit holds.

In [23], Maekawa considers initial vorticity supported away from the bound-
ary in a half-plane. We note that the analogous result in a disk, even were
it shown to hold, would not cover this Example 1b when the support of the
vorticity touches the boundary.

Example 2 [2D shear flow]: Let ¢ solve the heat equation,
Op(t,z) = v0,.6(t,z) on [0,00) x [0, 00),
¢(t,0) =0 forallt >0, (9.3)
$(0) = do.
Assume for simplicity that ¢g € W1((0,00)). Let ug = (¢o,0) and

U(t, .%') = (¢(t7 xZ)v 0)
Let Q = [-L, L] x (0,00) be periodic in the x;-direction. Then up-n =0
and u(t) =0 for all £ > 0 on 092 and

Owu(t, x) = v(0pyz, d(t, x2),0) = vAu(t, x),
(u- Vu)(t,z) = @fj g;:;i) (f;) = (82@5(2,362) 8) <¢<tbx2)>

0 1
N (a2¢(t,l“2)¢(t,x2)> = §V¢(t, x32).
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It follows that u solves the Navier-Stokes equations on ) with pressure,
b= —%(ﬁ(t,l'g).

Similarly, letting @ = ug, we have dyu = 0, w- Vu = %Vgﬁo SO U= up is a
steady solution to the Euler equations.

Now, w = 01u? — dut = —0a¢(t, 12) s0

L
/ W= — / D2(t, 2) g—00(0) = — 0 (0) / Duy (1t 23) a0 diy
T T

-L
= —L¢0(0)02,0(t, 22) s =0-
The explicit solution to Equation (9.3) is

z—y)2 z 2
o(t,z) TW [ —ERE e }sbo(y) dy

(see, for instance, Section 3.1 of [27}) Thus,

0.6(t,2)ls0 =~ m I [ L fe 4"t]¢0( ) dy
(y) dy

e — e_m
yt\/47r1/ / Y b0

2

—2ut) —e 4utgz50
i (y) dy

I/t\/47TI/ /
1 [e.e] d 2
= - _ 41/t

Vot Jy agt W

|0+ [ s

C
’8272 ¢(t7 x2) ‘3:2:0‘ < —.

Vot

so that

We conclude that
T T

v / /wu-‘r §Cﬁ/ Y24t = CVUT.
o Jr 0

The condition in Equation (8.1) thus holds (as does (8.8)). From Remark 8.2,

the rate of convergence is Cyt (even for smoother initial data).

Example 3: Consider Example 1a of radially symmetric vorticity in the
unit disk, but without the assumption that m given by Equation (9.2) van-
ishes. This example goes back at least to Matsui in [25]. The convergence
also follows from the sufficiency of the Kato-like conditions established in
[29], as pointed out in [30]. A more general convergence result in which the
disk is allowed to impulsively rotate for all time appears in [21]. A simple
argument to show that the vanishing viscosity limit holds is given in Theo-
rem 6.1 [18], though without a rate of convergence. Here we prove it with a
rate of convergence by showing that the condition in Equation (8.1) holds.
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Because the nonlinear term disappears, the vorticity satisfies the heat
equation, though with Dirichlet boundary conditions not on the vorticity
but on the velocity:

(9.4)

Oww = VvAw in €,
u=0 onl.

Unless ug € V, however, w ¢ C([0,T]; L?), so we cannot easily make sense
of the initial condition this way.
An orthonormal basis of eigenfunctions satisfying these boundary condi-
tions is
J1(Jwr) JikJo(Jikr)
(r,0) = 7560, wk(r,b)=—"o—"",
w2 | Jo(g1k)] w2 | Jo(g1k)]
where Jy, J; are Bessel functions of the first kind and jy, is the k-th positive
root of Ji(x) = 0. (See [18] or [20].) We normalize the (uy) so that?
luelly =1, llwkll L2 = Jik-
We can write,

o
uy = Zakuk, luoll? = Zak < 0.
k=1
We claim that
o0
—vj% t
= Zake 1k Uk
k=1

provides a solution to the Navier-Stokes equations, (N.S). To see this, first
observe that u € C([0,T]; H), so u(0) = up makes sense as an initial condi-
tion. Also, u(t) € V for all ¢t > 0. Next observe that

o0
w(t) :=w(u(t)) = Zake_”j%ktwk
k=1
for all t > 0, this sum converging in H™ for all n > 0. Since each term
satisfies (9.4) so does the sum. Taken together, this shows that w satisfies

(9.4) and thus u solves (NS).
The condition in Equation (8.1) becomes

/ /wu T=vV / /ake Vit WU - T dt
_ Vit m
=v ake woglr=1 [ w-Tdt
k=1 0 r

Jiedo(j

_ 16Jo(J1k) oI

= mv E ikt dt.
pct 2 Jo(u)| Jo

2This differs from the normalization in (18], where ||uk||; = jl_kl, lwell 2 = 1.
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In the final equality, we used

/u-r_—/uL-n_—/divuL_/w_m.
T N Q Q

(Because vorticity is transported by the Eulerian flow, m is constant in time.)

Then,
T
//wu-T
o Jr

oo

m| Z lag| . 1—e v
= |m|v J1k 5
k=1 mi/? YI1k

m s 3 [0 _ e Vit T2 2
(5 ()

2
k=1 1k

1
Im| <°° (1— e whT)2 2
= Fluolla [ Y. ———] -

2
k=1 1k

(e 9]

’ak’ . T 2
< |m)| Vzm]”f i e Vitkt ¢
k=1

v

Classical bounds on the zeros of Bessel functions give 1+ k < jij, < 7(3+k)
(see, for instance, Lemma A.3 of [18]). Hence, with M = (vT)™%, a > 0 to
be determined, we have

o0 ;2 [e'e] 2
(1 _ e—uglkT)z (1 _ e—ukz T)Q
P ) B s
k=1 1k k=1
M —vx2T\2 [e'e) —vz?T\2
<(1 e”T)2+/ u 62 )d:c—l—/ u 62 )d:c
k=1 €z k=M+1 x
M $4 00 1
§y2T2+1/2T2/ 2dm+/ —Qdac
k=1 % k=M+1 T

1 1 1
< 272 2722 3_q < 272 272 13
<VvT? +v 3(M )+M_u +VTEM + o

= 272 AT L (W) = V2T 4 (D)2 4 (VT
as long as vM?T < 1 (used in the third inequality); that is, as long as
(V)2 < 1. (9.5)

Thus (8.1) holds (as does (8.8)), so (VV') holds.

The rate of convergence in (VV) is optimized when (vT)?73% = (vT)°,
which occurs when a = % The condition in Equation (9.5) is then satisfied
with equality. Remark 8.2 then gives a rate of convergence in the vanishing
viscosity limit of Cvi (even for smoother initial data), except in the special

case m = (0, which we note reduces to Example 1a.
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Return to Example la: Let us apply our analysis of Example 3 to the
special case of Example 1a, in which ug € V. Now, on the boundary,

Vp-T=0@w+u-Vu+Vp) - 7=vAu-7=vAut - (—n) = —vViw-n.

But Vp = 0 so the left-hand side vanishes. Hence, the vorticity satisfies
homogeneous Neumann boundary conditions for positive time. (This is an
instance of Lighthill’s formula.) Since the nonlinear term vanishes, in fact, w
satisfies the heat equation, dyw = vAw with homogeneous Neumann bound-
ary conditions and hence w € C([0, T]; L(9)).

Moreover, multiplying 0;w = vAw by w and integrating gives

t
lo()I1Z2 + 2V/0 IVw(s)lz2 ds = || Vewollz: -

We conclude that the L?-norm of w, and so the LP-norms for all p € [1,2],
are bounded in time uniformly in v. (In fact, this holds for all p € [1,c0].)
This conclusion is not incompatible with Theorem 3.1, since w =0 on I

This argument for bounding the LP-norms of the vorticity fails for Ex-
ample 3 because the vorticity is no longer continuous in L? down to time
zero unless ug € V. It is shown in [21] (and see [13]) that such control is
nonetheless obtained for the L' norm.

10. ON A RESULT OF BARDOS AND TiTI: 2D

Bardos and Titi in [5, 1] (and see [3]), also starting from, essentially, Equa-
tion (8.5) make the observation that for the vanishing viscosity limit to hold,
it is necessary and sufficient that vw (or, equivalently, v[0nu|+) converge to
zero on the boundary in a weak sense. (They do this in dimension > 2.) In
their result, the boundary is assumed to be C'°°, but the initial velocity is
assumed to only lie in H. Hence, the sufficiency condition does not follow
immediately from Equation (8.5).

Their proof of sufficiency involves the use of dissipative solutions to the
Euler equations. (The use of dissipative solutions for the Euler equations
in a domain with boundaries was initiated in [2]. See also [4].) We present
here the weaker version of their results in 2D that can be obtained without
employing dissipative solutions. The simple and elegant proof of necessity
is as in [1], simplified further because of the higher regularity of our initial
data.

Theorem 10.1 (Bardos and Titi [5, 1]). Working in 2D, assume that OS2
is C% and that w € C1([0,T] x ). Then for u — @ in L>(0,T; H) to hold
it 1s necessary and sufficient that

t
1// /wgo — 0 as v — 0 uniformly over [0,T)
0o JIT

for any ¢ € C1([0,T] x T).

(10.1)

Proof. Sufficiency of the condition follows immediately from setting ¢ =
(w- 7)|r in Theorem 8.1.
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To prove necessity, let ¢ € C1([0,7] x T'). We will need divergence-free
vector fields vs € C1([0, T]; H N C*°(Q)) such that vs - T = ¢. Moreover, we
require of vs that it satisfy the same bounds as the boundary layer corrector
of Kato in [14]; in particular,

1005l 10 120y < €% Vsl oo o2y < €672 (10.2)

These vector fields can be constructed along the lines given in [14, 16].
The proof now proceeds very simply. We multiply the Navier-Stokes equa-
tions by vs and integrate over space and time to obtain, for any ¢ € [0, 77,

/t(atu vs) + /t(u Vu,vs) + V/t(Vu Vus)

_,,//vun v(;_y//w”_u//w

Here, we used Equation (8.6) with vs in place of @, and we note that no
integrations by parts were involved.

Now, assuming that the vanishing viscosity limit holds, Kato shows in [14]
that setting 6 = cv—and using the bounds in Equation (10.2)—each of the
terms on the left hand side of Equation (10.3) vanishes as v — 0, uniformly
in t. By necessity, then, so does the right hand side, giving the necessity of
the condition in Equation (10.1). O

(10.3)

To establish the necessity of the stronger condition in Theorem 10.1, we
used (based on Bardos’s [1]) a vector field supported in a boundary layer of
width cv, as in [14]. We used it, however, to extend to the whole domain
an arbitrary cutoff function defined on the boundary, rather than to correct
the Eulerian velocity as in [14].

Remark 10.2. In this proof of Theorem 10.1 the time regularity in the test
functions could be weakened slightly to assuming that 9, € L'(0,T;C(T)),
for this would still allow the first bound in Equation (10.2) to be obtained.

Remark 10.3. Using the results of [5, 4] it is possible to change the con-
dition in Equation (10.1) to apply to test functions ¢ in C1([0,T]; C°°(T))
([1]). Moreover, this can be done without assuming special time or spatial
regularity of the solution to the Euler equations, but only that the initial
velocity lies in H.

APPENDIX A. A TRACE LEMMA

Corollary A.3, which we used in the proof of Theorem 3.1, follows from
Lemma A.1.

Lemma A.1 (Trace lemma). Let p € (1,00) and ¢ € [1,00] be chosen
arbitrarily, and let ¢’ be Holder conjugate to q. There exists a constant
C = C(9) such that for all f € Wl’p(Q) N Wlﬁq,(Q)

11 Loy < CHfHL<p g ||f||W1q
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If f € WYP(Q) has mean zero or f € Wl’p(Q) then

1l oy <CIIJ"IIL<p e HVfH

Proof. We prove this for f € C*°(2), the result followmg from the density of
C>(Q) in WhP(Q)NW4 (Q). We also prove it explicitly in two dimensions,
though the proof extends easily to any dimension greater than two.

Let X be a tubular neighborhood of I" of uniform width §, where § is half
of the maximum possible width. Place coordinates (s,7) on X where s is arc
length along I' and r is the distance of a point in ¥ from I', with negative
distances being inside of Q. Then 7 ranges from —¢ to J, with points (s,0)
lying on I'. Also, because X is only half the maximum possible width, |J] is
bounded from below, where

J = det

is the Jacobian of the transformation from (z,y) coordinates to (s,r) coor-

dinates.
Let p € C*(Q2) equal 1 on I' and equal 0 on © \ 3. Then

Vof[? = psgu(ef) o fIP V(ef),

since p > 1 and ¢ f is smooth. This shows that V |¢f|” is continuous. Hence,
letting a be the arc length of I', we can calculate

a 0 )
ey = [ ] 5 leh) s, ar s

i
// l(of)(s,m)P| drds
() [ [ en 101 aras

—1 a 0
= <s&§§¢lﬂ) /0 / VI nIFI1] dr ds

=¢ [ Vi@n @yl drdy
YN

< CIVIefPllpa

_ p—1

= |l VN, o,

< Op|lef P, IVl o

[(of)(s,7)[P| drds

o [ [ tertrs ] 19
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=Cp H‘Pf”L(p Da(Q HSDVf + Vol 1o Q)
<ommmnq|mmu@

The first inequality then follows from raising both sides to the % power and

using p/P < /€. The second inequality follows from Poincare’s inequality.
0

Remark A.2. The trace inequality in Lemma A.1 is a folklore result, most
commonly referenced in the special case where p = ¢ = ¢ = 2. We proved it
for completeness, since we could not find a proof (or even clear statement)
in the literature. We also note that a simple, but incorrect, proof of it (for
p=q = ¢ = 2)is to apply the invalid trace inequality from H> () to L(T)
then use Sobolev interpolation.

Note that in Lemma A.1 it could be that (p — 1)g € (0, 1), though in our
application of it in Section 3, via Corollary A.3, we have (p — 1)q = 2.

Corollary A.3. Let p,q,q be as in Lemma A.1. For any v € H,

1 1
oy < €0l gy IV
and for any v € V. N H*(Q),
1 1
[eurlvl| oy < C ||cu1rlv||L(p Da( ||V Curlv||" @

Proof. If v € H, then

/U—/’U Vi, =— /dlvvxz+/(v-n)xi20.
T

If v € V then
/curlv:—/diva:—/ vt omn = 0.
Q Q o2

Thus, Lemma A.1 can be applied to v1,ve, and curlwv, giving the result. [J
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