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Abstract. We employ the simple corrector used by Tosio Kato in his
seminal 1983 paper to establish necessary and sufficient conditions for
the solutions to the Navier-Stokes equations to converge to a solution
to the Euler equations in the presence of a boundary as the viscosity is
taken to zero. We extend conditions developed by various authors for no-
slip boundary conditions to allow non-homogeneous Dirichlet boundary
conditions, establishing a few new conditions along the way. Finally,
we make a few speculations and conjectures on the strong vanishing
viscosity limit.
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1. Introduction

Let Ω be a bounded domain in Rd, d ≥ 2. We consider solutions to

(NSg)


∂tug + ug · ∇ug +∇pg = ν∆ug on Ω,

div ug = 0 on Ω,

ug(0) = u0 on Ω,

ug = g on ∂Ω.

Here, ν > 0 is the constant viscosity and u0 is the divergence-free initial
velocity with u0 · n = 0 on the boundary, ∂Ω, where n is the outward unit
normal vector. The function g is defined on ∂Ω, with g · n = 0.

Minimal regularity requirements are not a topic of this paper, so for
simplicity of presentation, we assume that u0 ∈ C∞(Ω), ∂Ω is C∞, and
g ∈ (C∞([0,∞)× ∂Ω))d.

The vector field g induces a type of boundary forcing that influences
the solution near the boundary, its effects spreading over time through the
body of the fluid. A simple example would be a constant-magnitude g that
describes the rotation of a circular boundary, as analyzed in [9, 10]. Our use
of g, however, will be as a tool to try to better understand the key special
case in which g ≡ 0.1 This yields the Navier-Stokes equations with their
classical, no-slip boundary conditions, u = 0 on the boundary:

(NS)


∂tu0 + u0 · ∇u0 +∇p0 = ν∆u0 on Ω,

div u0 = 0 on Ω,

u0(0) = u0 on Ω,

u0 = 0 on ∂Ω.

Note that u0, like ug, depends upon ν, though we suppress ν in our notation.
When ν = 0, (NSg), for any g, formally reduces to the Euler equations

with no-penetration boundary conditions:

(E)


∂tu+ u · ∇u+∇p = 0 on Ω,

div u = 0 on Ω,

u(0) = u0 on Ω,

u · n = 0 on ∂Ω.

A longstanding open question in incompressible fluid mechanics is whether
u0 converges to u as ν → 0 and, if so, in what manner. That u0 has
some weak limit in L2(0, T ;L2(Ω)) is assured by the uniform-in-ν bound in
the space of weak solutions (as in (1.4)). Recently, the work of Constanin
and Vicol in [6] has brought renewed interest in weak convergence to weak
solutions. We say a few words on this in Section 8, but in this paper, we

1Most of the literature that follows in the tradition of Kato assumes g ≡ 0. A notable
exception is Xiaoming Wang’s [36], whose setting is similar to the one we have here.
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will be concerned with the question of whether or not what we will call the
strong vanishing viscosity limit,

‖ug(t)− u(t)‖2 + ν

∫ t

0
‖∇(ug(s)− u(s))‖2 ds→ 0 as ν → 0, (1.1)

holds for all t ∈ [0, T ] for some fixed T > 0. Here and throughout,

‖·‖ := ‖·‖L2(Ω) .

We are most interested in (1.1) in the special case of no-slip boundary
condition, in which g ≡ 0. It was shown by Tosio Kato in [17] that when u
is sufficiently regular, (1.1) is implied for g ≡ 0 by the weaker condition,

u0 → u in L∞(0, T ;L2(Ω)) as ν → 0, (1.2)

which is often referred to as the classical vanishing viscosity limit. This
equivalence comes from the observation that if (1.2) holds it necessarily
follows that

lim sup
ν→0

ν

∫ t

0
‖∇u0‖2 = 0. (1.3)

(If the limsup is positive, we say the sequence (u0)ν>0 has an energy defect.)
That (1.2) implies (1.3), and hence implies (when u is sufficiently regular)

(1.1), when g ≡ 0 is clear: if (1.2) is to hold, then the energy for u0 must
converge to the energy for u, which is conserved over time. By the classical
energy equality for (NS) ((1.4), below) this can only happen if (1.3) holds.
The situation for g 6≡ 0 is more complicated, as we will see, because of the
more complicated energy bound in (1.5).

We require that the initial velocities be the same for all solutions, so that
the vanishing viscosity limit has some chance to hold. (It is also possible
to allow ug(0) → u0 as ν → 0.) As a consequence, unless u0|∂Ω = g(0), a
condition we do not impose, ug has an initial boundary layer in that there
is an immediate discrepancy in boundary values after the initial time.

We restrict our arguments to dimension d = 2, which yields four related
simplifications. First, because we assume smooth data, all of our weak
solutions (for all ν ≥ 0) will actually be smooth, globally in time (being
2D), which makes it easy to justify all of our energy arguments. Second, the
various energy equalities that we obtain would only be energy inequalities
in higher dimension, which would require additional work to properly treat.
Third, for d ≥ 3, weak solutions would have only a type of weak continuity
to time zero. Fourth, the vorticity, ωg = curl(ug) := ∂1u

2
g − ∂2u

1
g, is a scalar

in 2D, which simplifies the form of certain expressions. We do not use the
vorticity formulation of the equations, however, so this simplification is more
cosmetic than fundamental, as vortex stretching would never be (directly)
encountered.

Nonetheless, most of our analyses and results would apply to all d ≥ 3
up to the time of existence of smooth solutions to the Euler equations, with
only minor, technical adaptations.
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The well-posedness of (NS) and (E) are classical (uniqueness being for
short time in dimensions 3 and higher). We have, in particular, that u ∈
C1([0, T ];C∞(Ω)) for some T > 0, with any T <∞ in 2D. We have, as well,
the basic energy equalities,

‖u0(t)‖2 + ν

∫ t

0
‖∇u0‖2 = ‖u0‖2,

‖u(t)‖ = ‖u0‖.
(1.4)

These equalities hold for weak solutions to (NS) and (E) in 2D and strong
solutions to (E) for any dimension (up to the time of existence, of course).
In 3D and higher, the equality for (NS) becomes an inequality (≤).

For (NSg), we have well-posedess as stated in Proposition 1.2. Its proof
is standard, but we include it in Section 9 because of the specific form of
the energy inequality that we use. To obtain it, we need to extend g as in
Lemma 1.1 (also proved in Section 9).

Lemma 1.1. There exists a divergence-free extension of g to C∞([0,∞)×Ω)
(which we continue to call g). If u0|∂Ω = g(0) then we can have g(0) = u0.

Proposition 1.2. There exists a (unique) smooth solution to (NSg) on
some time interval, [0, T ) for some time T > 0. In 2D, T =∞. Moreover,
extending g as in Lemma 1.1, we have

‖ug(t)‖2 + 2ν

∫ t

0
‖∇ug‖2 ≤ 2

(
‖g(t)‖2 + 2ν

∫ t

0
‖∇g‖2

)
+ 2

(
2‖u0‖2 + C(ν, t)

)
et+2

∫ t
0 (‖∇g‖L∞),

(1.5)

where

C(ν, t) := 2 ‖g(0)‖2 +

∫ t

0
‖Fg‖2 ,

Fg := ν∆g − ∂tg − g · ∇g.
Because g is independent of ν, both (1.4) and (1.5) yield an energy bound

that is independent of the viscosity. When g ≡ 0, the energy inequality in
(1.5) reduces to the inequality arising from (1.4) with an additional factor
of 4et. Hence, the bound is not optimal in terms of g, an issue that we will
find closely connected to the strong vanishing viscosity limit itself (see the
discussion at the end of Section 10).

We will not make use of the special case of compatible initial data, u0|∂Ω =
g(0), except in the extreme case where we set g ≡ u0|∂Ω, as in Theorem 10.1.

Now let us consider the geometry of Ω. Since ∂Ω is C∞ there exists a
tubular neighborhood (in Ω) of width δ > 0.

Definition 1.3. For any δ we define

Γδ = {x ∈ Ω: dist(x, ∂Ω) < δ}.
Remark 1.4. Throughout this paper, we always assume without comment
that δ ∈ (0,min{δ/2, 1}).
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Let (n, τ ) be the unit normal, tangent vectors ∂Ω chosen so that (n, τ )
is in the standard orientation of (e1, e2). Each component of ∂Ω has its
own component of Γδ. We define coordinates on Γδ, and hence on each Γδ,
component-by-component.

Fix an arbitrary point b in a given component of ∂Ω and let a be any point
in the corresponding component of Γδ. Then let a′ be the closest point to a
on ∂Ω. We define coordinates (x1, x2) for the point a by

x1 = the arc length along ∂Ω from b to a′ in the τ direction,

x2 = |a− a′|.
Another way of expressing this is that (x1, x2) are coordinate values in the
(τ ,−n) coordinate frame with (τ ,−n) extended from ∂Ω to Γδ in the nat-
ural way.

Although we focus on a bounded domain in 2D, our results apply as well
to a half-plane, {(x1, x2) : x2 > 0}, or a channel periodic in the x1-direction.
(In particular, note that our only use of Poincaré’s inequality is through
Lemma 4.1, which remains valid in these settings.)

The basic theme of this paper is that, as regards the strong vanishing
viscosity limit for no-slip boundary conditions having no special symmetries,
everything that has been learned about it fits neatly into Kato’s original
approach using his original corrector. There have been refinements, most
notably those of Xioaming Wang in [36] building on his work with Roger
Temam in [35] (these two papers seem to have revived interest in [17]). See
also [5, 3, 19, 20, 21, 23]. Nonetheless, none of these works can be said
to push the envelope of Kato’s fundamental result very far—unsurprising,
given the difficulty of this problem without added simplifications.

The main concrete thing we accomplish in this paper is to turn Kato’s
energy argument using his original corrector—specifically in 2D with smooth
data, where lessened technicalities make the structure of the argument clearer—
into a tool, Theorem 3.3, that can be applied to obtain the various existing
conditions for the strong vanishing viscosity limit to hold. In this, we have
been greatly aided by a surprisingly recently discovered decomposition in
[3] of one of the key terms appearing in Kato’s energy argument: this de-
composition simplifies a number of arguments considerably. We then apply
this tool to rederive the existing conditions in [36, 19, 20], and a few other
conditions along the way. Note that only [36] works with what we are calling
ug, so in re-deriving the conditions from [19, 20], we are also extending them
to non-homogeneous boundary conditions. (The conditions in [3] can also
be simply derived using Theorem 3.3.)

Kato’s insight was to clearly identify the balance of the two, uncontrollable
terms appearing in his energy argument and to understand that the only
feasible thing to do was to create from them a single necessary and sufficient
condition to control them both. Yet at its core, Kato’s argument is a simple
energy argument that almost anyone exploring the vanishing viscosity limit
for the first time would attempt. Hence, one cannot say that the use of
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energy arguments in the vanishing viscosity limit or related singular limits,
natural as they are, necessarily means that the author is following in the
tradition of Kato. But there is by now a fairly sizeable literature going
beyond the study of the strong vanishing viscosity limit, the topic of this
paper, that is clearly very influenced by his approach, adapting his argument
and philosophy to a greater or lesser extent.

This literature includes, to this author’s knowledge, papers where the
boundary condition is (directly or indirectly) changed [37, 31], the domain
is expanded to the whole space or shrunk to a point or points [24, 13], there
is some special symmetry to the geometry and initial data [29, 22], or the
argument is applied to slightly different equations with sometimes different
boundary conditions [27, 32, 38, 1, 25, 26, 33, 39].

Organization of this paper. We start by defining Kato’s corrector in
Section 2, using this corrector in Section 3 to develop a tool we use through-
out most of the remainder of the paper to develop necessary and sufficient
conditions for the strong vanishing viscosity limit to hold. In sections Sec-
tions 4 to 6 we apply this tool using Kato’s original layer and then using
the infinitesimally wider layer to reproduce the result of Xiaoming Wang’s
in [36]. We explain in Section 7 how the result from [20] on the formation
of a vortex sheet on the boundary continues to hold for non-homogeneous
boundary conditions. We say a few words in Section 8 on the recent result
of Constantin and Vicol on weaker convergence in the vanishing viscosity
limit. We give the proof of Lemma 1.1 and Proposition 1.2 in Section 9.
Finally, in Section 10 we make a few speculations and conjectures on the
strong vanishing viscosity limit.

Appendix A proves the estimates on Kato’s corrector stated in Section 2,
and Appendix B contains two utility lemmas used earlier in the paper.

2. Kato’s corrector

We will find that the very simple corrector defined by Kato in [17] will be
sufficient for all of our results. We describe it here and state the estimates,
leaving the detailed derivation of these estimates to Appendix A.

Definition 2.1. Define ϕ : [0,∞) → [0, 1] to be a C∞ function with ϕ ≡ 1
on [0, 1/2] and ϕ ≡ 0 on [1,∞]. Define ϕδ(·) = ϕ(·/δ).

Let g be as in Lemma 1.1. We define the corrector separately in each
component of Γδ. Let ψ be the stream function for

v := g − u, (2.1)

so that v = ∇⊥ψ and chosen so that ψ = 0 on the given component of Γδ.
Define

z(x1, x2) = zδ(x1, x2) := ∇⊥(ϕδ(x2)ψ(x1, x2)). (2.2)
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Kato defined his corrector to have a width δ that was constant in time,
shrinking only in viscosity. We will also allow δ to vary with time. For
clarity, we make an explicit definition:

Definition 2.2. Assume that either:

(1) δ = δ(ν) is continuous at ν = 0 with δ(0) = 0 or
(2) δ = δ(t, ν) is continuous at ν = 0 with δ(t, 0) = 0 and δ increasing

in ν.

Remark 2.3. Definition 2.2 (2) is a generalization of (1), though only when
we assume that δ(0, ν) = 0 does it extend (1) in a meaningful way. Also, we
cannot assume in (2) any regularity of δ beyond continuity at ν = 0, because
we will find the need to construct a δ in a manner for which we cannot
insure regularity, only monotonicity (see (6.8)). This will be sufficient to
take time derivatives of δ, however, as we note in the derivation of (2.5),
below. Although in practice one would typically choose δ to be increasing in
ν, this is not strictly needed.

Remark 2.4. As mentioned near the end of Section 1, we always assume
that δ(ν) or δ(t, ν) lies in (0,min{δ/2, 1} without explicitly commenting on
that fact. In practice, this means that ν must be sufficiently small, how small
depending upon the choice of the δ function.

Theorem 2.5. Assume that δ is independent of time (though it may depend
upon viscosity, for instance, as in Definition 2.2 (1)). We have the following
estimates for the Kato corrector as defined in (2.2):∥∥∥∂j1∂k2∂mt z1

∥∥∥
Lp(Ω)

≤ Cδ
1
p
−k
,
∥∥∥∂j1∂k2∂mt z2

∥∥∥
Lp(Ω)

≤ Cδ
1
p

+1−k
(2.3)

for any p ∈ [1,∞], j, k ≥ 0, m = 0, 1, any t ∈ [0, T ]. The constants are
independent of p and depend only upon the initial data, T , j, k, and m.

Let δ be as in Definition 2.2 (2). The estimates in (2.3) for m = 0 (no
time derivative) continue to hold. We also have, for all p ∈ [1,∞] and
t ∈ [0, T ], ∥∥∂tz1

∥∥
Lp(Ω)

≤ Cδ
1
p + C∂tδ δ

1
p
−1
,∥∥∂tz2

∥∥
Lp(Ω)

≤ Cδ
1
p

+1
+ C∂tδ δ

1
p ,

‖∂tz‖Lp(Ω) ≤ Cδ
1
p
−1

(δ + ∂tδ).

(2.4)

Proof. We defer the proof to Appendix A. �

A few observations regarding Kato’s corrector are in order, as they will
help guide our strategy in employing it:

(1) Because z is supported on a set of Lebesgue measure Cδ, the bounds
in Lp for p <∞ follow from the bounds in L∞.

(2) Because z2 vanishes on the boundary and grows linearly away from
it, it is small compared to z1, which is merely bounded.
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(3) Derivatives in x1 (tangential direction) are totally benign, having no
effect on the estimates, while each derivative in x2 (normal direction)
increases the bound by a factor of δ−1.

(4) Time derivatives have no effect when δ is independent of time, and
even when δ varies, they are benign as long as we integrate the
estimates in time.

As an application of observation (4), the final bound in (2.4) gives∫ t

0
‖∂sz(s, ν) ds‖ ≤ C

∫ t

0
δ(s, ν)

1
2 ds+ C

∫ t

0
∂s(δ(s, ν)

1
2 ) ds

≤ Ctδ(t, ν)
1
2 + C

[
δ(t, ν)

1
2 − δ(0, ν)

1
2

]
≤ C(1 + t)δ(t, ν)

1
2 ,

(2.5)

where we used that δ(·, ν) is increasing. We also used that for any increasing
function, f : [a, b]→ R, f ′ ≥ 0 exists almost everywhere, and∫ b

a
f ′(s) ds ≤ f(b)− f(a).

The bound in (2.5), which we will apply in (3.6), is the only bound on
∂tz that we will need.

3. Kato’s energy argument

From now until Section 10, we will drop the g subscript on ug, writing

u = ug.

We will return to writing ug in Section 10, where we will be treating ug and
u0 at the same time.

The starting point for almost all of our analysis will be the energy in-
equality we obtain in Proposition 3.1 for

w := u− u.

Proposition 3.1. Let δ be as in Definition 2.2 and let z be the Kato cor-
rector as in (2.2). Then

1

2
‖w(t)‖2 +

ν

2

∫ t

0
‖∇w‖2 = A(t, ν) +B(t, ν) + C

∫ t

0
‖w‖2 , (3.1)

where

A(t, ν) := −
∫ t

0
(u1u2, ∂2z

1) + ν

∫ t

0
(∇u,∇z) (3.2)

and

B(t, ν) ≤ C(1 + t)δ
1
2 .

The constants C depend upon T , u0, and g, though not ν.
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Proof. Recalling Remark 2.3, we will assume that δ = δ(t, ν) is time varying
as in (2) of Definition 2.2.

Let

w̃ := w − z = u− u− z,

and note that w̃ = 0 on ∂Ω. Observe that from (1.5) and Theorem 2.5, we
know up front that at least

‖w̃(t)‖ , ‖w(t)‖ ≤ C(T )

for all t ∈ [0, T ].
Subtracting the Euler equations from the Navier-Stokes equations gives

∂tw +∇(p− p) = ν∆u− u · ∇w − w · ∇u.

Pairing with w̃ and using

(∂tw, w̃) =
1

2

d

dt
‖w‖2 − (∂tw, z),

ν(∆u, w̃) = −ν(∇u,∇w̃) = −ν(∇u,∇w) + ν(∇u,∇z)
= −ν(∇w,∇w)− ν(∇u,∇w) + ν(∇u,∇z)

≤ −ν ‖∇w‖2 + ν ‖∇u‖2 +
ν

2
‖∇w‖2 + ν(∇u,∇z)

≤ Cν − ν

2
‖∇w‖2 + ν(∇u,∇z),

(∇(p− p), w̃) = 0,

−(u · ∇w, w̃) = −(u · ∇w,w) + (u · ∇w, z) = (u · ∇w, z)
= (u · ∇u, z)− (u · ∇u, z)
= −(u · ∇z, u)− (u · ∇u, z)
≤ −(u · ∇z, u) + ‖∇u‖L∞ ‖u‖ ‖z‖

≤ −(u · ∇z, u) + C ‖z‖ ≤ −(u · ∇z, u) + Cδ
1
2 ,

−(w · ∇u, w̃) = −(w · ∇u,w) + (w · ∇u, z)

≤ ‖∇u‖L∞

(
‖w‖2 + ‖w‖ ‖z‖

)
≤ C ‖w‖2 + Cδ

1
2 ,

we have

1

2

d

dt
‖w‖2 +

ν

2
‖∇w‖2 ≤ (∂tw, z) + Cν + Cδ

1
2 + C ‖w‖2

− (u · ∇z, u) + ν(∇u,∇z).
(3.3)

We divide −(u · ∇z, u) into parts as in [3], writing

−(u · ∇z, u) = −(ui∂iz
j , uj)

= −(u1u2, ∂1z
2) + ((u2)2 − (u1)2, ∂1z

1)− (u1u2, ∂2z
1).

(3.4)

Here, we used that div z = 0 so that ∂2z
2 = −∂1z

1.



10 JAMES P. KELLIHER

Now,

−(u1u2, ∂1z
2) ≤

∥∥∂1z
2
∥∥
L∞ ‖u‖2 ≤ C‖u0‖2δ ≤ Cδ,

since
∥∥∂1z

2
∥∥
L∞ ≤ Cδ by Theorem 2.5. Also,

|((uj)2, ∂1z
1)| = |((uj − uj)2, ∂1z

1) + 2(ujuj , ∂1z
1)− ((uj)2, ∂1z

1)|

≤ ‖∂1z
1‖L∞ ‖w‖2 + 2 ‖u‖L∞

∥∥∂1z
1
∥∥ ‖u‖+ ‖u‖2L∞ ‖∂1z

1‖L1

≤ C ‖w‖2 + Cδ
1
2 + Cδ ≤ Cδ

1
2 + C ‖w‖2 .

Hence,

((u2)2 − (u1)2, ∂1z
1) ≤ Cδ

1
2 + C ‖w‖2 ,

so that

−(u · ∇z, u) ≤ Cδ
1
2 + C ‖w‖2 − (u1u2, ∂2z

1). (3.5)

Returning to (3.3), then, we have

1

2

d

dt
‖w‖2 +

ν

2
‖∇w‖2 ≤ (∂tw, z) + Cν + Cδ

1
2 + C ‖w‖2

− (u1u2, ∂2z
1) + ν(∇u,∇z).

Integrating in time and using (2.5), we have∫ t

0
(∂tw, z) =

∫
Ω

∫ t

0
∂tw · z =

∫
Ω

[
w(t) · z(t)−

∫ t

0
w∂tz

]
≤ ‖w(t)‖ ‖z(t)‖+

∫ t

0
‖w‖ ‖∂tz‖ ≤ C ‖z(t)‖+ C

∫ t

0
‖∂tz‖ ≤ Cδ

1
2 .

(3.6)

Then,

1

2
‖w(t)‖2 +

ν

2

∫ t

0
‖∇w‖2 ≤ C(1 + t)δ

1
2 + Cνt

−
∫ t

0
(u1u2, ∂2z

1) + ν

∫ t

0
(∇u,∇z) + C

∫ t

0
‖w‖2 ,

(3.7)

which can be re-expressed in the form of (3.1). Note that we used here that∫ t

0
δ

1
2 (s, ν) ds ≤ δ

1
2 (t, ν)t = δ

1
2 t,

since δ(s, ν) is increasing in s. �

Proposition 3.1 leads to Theorem 3.3, which gives general necessary and
sufficient criteria for the vanishing viscosity limit to hold. But we will need
first the following lemma, also useful in its own right:

Lemma 3.2. Assume that g ≡ 0. If (1.2) holds then (1.1) holds—and

hence, ν
∫ T

0 ‖∇u‖
2 , ν

∫ T
0 ‖∇w‖

2 → 0 as ν → 0.
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Proof. This is proved in [17] using only the energy inequality for the Navier-
Stokes equations. The argument in 2D, where the energy equality holds is
slightly simpler: We have, from (1.4),

‖u(t)‖2 − ‖u(t)‖2 + 2ν

∫ t

0
‖∇u‖2 = 0.

If (1.2) then ‖u(t)‖2 − ‖u(t)‖2 → 0, hence, ν
∫ t

0 ‖∇u‖
2 → 0. But also

ν
∫ t

0 ‖∇u‖
2 → 0, and we conclude that ν

∫ t
0 ‖∇w‖

2 → 0. �

Theorem 3.3. If there exists some δ as in Definition 2.2 (1) or (2) for
which A(·, ν) → 0 in L∞([0, T ]) as ν → 0, with A as defined in (3.2), then
the strong vanishing viscosity limit as in (1.1) holds.

Conversely, if (1.1) holds (when g ≡ 0 we only require (1.2)) then A(·, ν)→
0 in L∞([0, T ]) as ν → 0 for any δ as in Definition 2.2 (1) or (2).

Furthermore, we can equivalently define A = A1 +A2, where A1 is either

A1
1 := −

∫ t

0
(u1u2, ∂2z

1) or A2
1 := −

∫ t

0
(u · ∇z, u)

and A2 is either

A1
2 := ν

∫ t

0
(∇u,∇z) or A2

2 := ν

∫ t

0
(curlu, curl z).

Also equivalently, we can add to A either

a1ν

∫ t

0
‖∇u‖2 + a2ν ‖w‖2 or a1ν

∫ t

0
‖∇w‖2 + a2ν ‖w‖2 (3.8)

for any a1 < 1
2 and any a2 ∈ R without affecting the conclusions of the

theorem.

Remark 3.4. The function δ appears implicitly in this theorem through A,
which contains the δ-dependent corrector, z.

Proof of Theorem 3.3. Assume that A(·, ν)→ 0 in L∞([0, T ]) as ν → 0, with
A as defined in (3.2), for some choice of δ as in Definition 2.2. Applying
Gronwall’s inequality to (3.7), we conclude that

1

2
‖w(t)‖2 +

ν

2

∫ t

0
‖∇w‖2

≤
[∥∥A(·, ν)L∞([0,T ])

∥∥+ C(1 + t)tδ
1
2 + Cνt2

]
eCt,

which vanishes as ν → 0 since δ(ν)→ 0 or δ(t, ν)→ 0 as ν → 0. This gives
(1.1).

Either of the terms in (3.8) can be added to A since they can be absorbed
in the energy inequality in (3.7).

Conversely, assume that the vanishing viscosity limit holds. Then by

Lemma 3.2 when g ≡ 0 or otherwise by assumption, t 7→ ν
∫ t

0 ‖∇w‖
2 → 0 in

L∞([0, T ]). For any δ as in Definition 2.2, B(·, ν) → 0 in L∞([0, T ]), with



12 JAMES P. KELLIHER

B as in Proposition 3.1, since δ(ν)→ 0 or δ(t, ν)→ 0 as ν → 0. This leaves
only the term A(·, ν) in (3.1), which therefore must vanish as ν → 0 as well.

Note also that the terms in (3.8) also vanish if (1.2) holds by Lemma 3.2.
The equivalence of A1

1 and A2
1 follows from (3.5). For the equivalence of

A1
2 and A2

2, we apply Lemma B.1, which gives

ν(∇u,∇z) = ν(curlu, curl z) + ν

∫
∂Ω

(curl(z2)(z · τ )− κz · u).

Then,

ν

∫
∂Ω

(curl(z2)(z · τ )− κz · u) = ν

∫
∂Ω

(curl(z2)((g − u) · τ )− κ(g − u) · g),

which is bounded by Cν, since z2, g, and u are each bounded independently
of ν on the boundary. Hence, A1

2 and A2
2 are interchangeable. �

Remark 3.5. Since the converse in Theorem 3.3 holds for any δ it follows
that so, too, does the forward direction of the theorem in the sense that if
A(·, ν) → 0 in L∞([0, T ]) for one choice of δ then A vanishes in the same
manner for any other choice of δ. (All δ’s must be as in Definition 2.2,
of course.) A priori, however, the forward direction is stronger with “there
exists δ” rather than “for all δ.”

In applying Theorem 3.3, the key is the control of the two terms A1 and
A2 in A, regardless of which form is used. The term A1 originates in the
convective terms in the Navier-Stokes and Euler equations, A2 from the
effect of the boundary on the viscous term in the Navier-Stokes equations.
Either term can be controlled individually: Without the convective term we
have the Stokes equation (the Euler equations becoming stationary) and the
vanishing viscosity limit holds as shown in [12]. Without the boundary, the
vanishing viscosity limit holds as shown in many contexts ([34, 15, 16, 4, 28],
for instance). Ideally, one could handle the combined effect of these terms,
but no such technique is currently available. We have little choice, then, but
to handle the two terms separately.

Thus, if we wish to establish sufficient condition for the vanishing viscosity
limit to hold, we require that∫ t

0
(u1u2, ∂2z

1)→ 0 as ν → 0 (3.9)

and

ν

∫ t

0
(∇u,∇z)→ 0 as ν → 0. (3.10)

In his seminal paper [17], Tosio Kato chose to set (with g ≡ 0)

δ = ν.

In this case, (3.9) and (3.10) are both critical in the sense that they can
be shown to be bounded by the basic energy inequality for the Navier-
Stokes equations, but the energy inequality is insufficient to show that these
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integrals vanish with viscosity. Kato shows that both of these conditions
(though not making the nice division of (u ·∇z, u) into parts as in (3.4) that
originated in [3], as we did above) can be replaced by

ν

∫ t

0
‖∇u‖2L2(Γν) → 0 as ν → 0.

Following in this same spirit, [19] gives two other ways to find a common
condition that applies to (3.9) and (3.10) (also not making the nice division
of (u ·∇z, u) into parts). These are the conditions in (4.2) and (4.3) that we
discuss in Section 4, along with an improvement that comes from dividing
(u · ∇z, u) as in [3].

Definition 3.6. The boundary layer, Γν , is called the Kato (boundary) layer
and ν is called the Kato width.

Kato actually used Γcν , but there is no loss of generality in setting c = 1:
only the rates of convergence change.

Alternately, we can allow δ to be infinitesimally larger than ν, though
still vanishing as ν → 0. This approach, in the full generality in which we
will use it (except for being time-independent), was first taken by Xiaoming
Wang in [36] (see [35] for an earlier, less general version of this idea). We
define it as follows:

Definition 3.7. Let δ be as in Definition 2.2 (2) with the additional property
that ∫ T

0

ν

δ(s, ν)
ds→ 0 as ν → 0. (3.11)

The resulting boundary layer, Γδ, we call a Wang (boundary) layer and such
a δ we call a Wang width.

With a Wang layer, (3.10) follows very easily (see the proof of Theo-
rem 6.1). This is because the factor of ν in (3.10) came from the diffusion
term in the Navier-Stokes equations, while the bounds on ∇z improves as δ
increases. This leaves only the condition in (3.9) or an equivalent condition
to be treated.

Although we use the Wang layer, we will employ it with the Kato corrector
rather than the corrector employed by Wang in [36]. We do this in Section 6,
but first we explore the Kato layer in Section 4.

4. Using the Kato layer

The use of the Kato layer of width proportional to ν leads naturally to The-
orem 4.3, the result for (4.2) and (4.3) appearing in [19]. In its proof, and
multiple times in later sections, we will use (through its corollary) the follow-
ing version of Poincaré’s inequality, which is essentially the form that applies
to a domain of given width vanishing on one component of the boundary:
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Lemma 4.1. Fix p ∈ [1,∞] and assume that f ∈ W 1,p(Γδ) with f = 0 on
∂Ω. Then

‖f‖Lp(Γδ)
≤ Cδ ‖∂2f‖Lp(Γδ)

,

where the constant C = C(Ω) is independent of p and δ (recall Remark 1.4).

Corollary 4.2. For all p ∈ [1,∞],

‖u1‖Lp(Γδ) ≤ Cδ
∥∥∂2u

1
∥∥
Lp(Γδ)

+ C ′δ
1
p ,

‖u2‖Lp(Γδ) ≤ Cδ
∥∥∂2u

2
∥∥
Lp(Γδ)

,
(4.1)

where the constant C is as in Lemma 4.1 and C ′ = ‖g‖W 1,∞(Ω) is indepen-

dent of p and δ.

Proof. Since u2 = −g · n = 0 on ∂Ω, the inequality for ‖u2‖Lp(U) follows
directly from Lemma 4.1. For the other inequality, we have

‖u1‖Lp(Γδ) ≤ ‖u
1 − g1‖Lp(Γδ) + ‖g1‖Lp(Γδ)

≤ Cδ‖∂2(u1 − g1)‖Lp(Γδ) + Cδ
1
p ‖g1‖L∞(Ω)

≤ Cδ‖∂2u
1‖Lp(Γδ) + Cδ

1+ 1
p ‖∂2g

1‖L∞(Γδ) + Cδ
1
p ‖g1‖L∞(Ω)

≤ Cδ
∥∥∂2u

1
∥∥
Lp(Γδ)

+ C ‖g‖W 1,∞ δ
1
p ,

where we again applied Lemma 4.1, and used that Ω has finite measure. �

Theorem 4.3. The strong vanishing viscosity limit in (1.1) holds if

ν

∫ t

0
‖curlu‖2L2(Γν) → 0 as ν → 0 (4.2)

or

1

ν

∫ t

0
‖u‖2L2(Γν) → 0 as ν → 0 (4.3)

or

1

ν

∫ t

0

∫
Γν

((u1)2 + |u1u2|)→ 0 as ν → 0. (4.4)

Conversely, if (1.1) holds (or simply (1.2) when g ≡ 0) then (4.2) through
(4.4) hold.

Proof. We prove first the converse—the necessity of (4.2) through (4.4).
Because

1

ν

∫ t

0

∫
Γν

((u1)2 + |u1u2|) ≤ 1

ν

∫ t

0
‖u‖2L2(Γν) ≤

1

ν

∫ t

0
Cν2 ‖∂2u‖2L2(Γν)

≤ Cν
∫ t

0
‖∇u‖2L2(Γν) ,

ν

∫ t

0
‖curlu‖2L2(Γν) ≤ Cν

∫ t

0
‖∇u‖2L2(Γν) ,
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the necessity of all three conditions follows from Lemma 3.2 when g ≡ 0
or, when g 6≡ 0, by the assumption of (1.1), which implies (1.3). The first
bound also shows that the sufficiency of (4.4) implies the sufficiency of (4.3).
It remains, then, to show the sufficiency of (4.2) and (4.4).

First assume (4.2). In place of (3.5), we bound A1 = A2
1 by∣∣∣∫ t

0
(u · ∇z, u)

∣∣∣ =
∣∣∣∫ t

0
(u · ∇u, z)

∣∣∣ =
∣∣∣∫ t

0
(u⊥ curlu, z)

∣∣∣
≤ ‖z‖L∞([0,T ]×Ω)

∫ t

0
‖u‖L2(Γν) ‖curlu‖L2(Γν)

≤ Cν
∫ t

0
‖∇u‖L2(Γν) ‖curlu‖L2(Γν) + Cν

1
2

∫ t

0
‖curlu‖L2(Γν) .

In the second equality we applied Lemma B.2 to exchange ∇u for curlu,
and in the last inequality we applied Corollary 4.2.

For the first term,

Cν

∫ t

0
‖∇u‖L2(Γν) ‖curlu‖L2(Γν)

≤ C
(
ν

∫ t

0
‖∇u‖2L2(Ω) ds

) 1
2
(
ν

∫ t

0
‖curlu‖2L2(Γν) ds

) 1
2

≤ C(T )

(
ν

∫ t

0
‖curlu‖2L2(Γν) ds

) 1
2

.

In the last inequality we applied the energy inequality in (1.5). Also,

Cν
1
2

∫ t

0
‖curlu‖L2(Γν) ≤ t

1
2

(
ν

∫ t

0
‖curlu‖2L2(Γν) ds

) 1
2

,

so ∣∣∣∫ t

0
(u · ∇z, u)

∣∣∣ ≤ C(T )

(
ν

∫ t

0
‖curlu‖2L2(Γν) ds

) 1
2

.

We then bound A2
2 by

ν
∣∣∣∫ t

0
(curlu, curl z)

∣∣∣ ≤ ν ∫ t

0
‖∇z‖ ‖curlu‖L2(Γν)

≤ Cν
1
2

∫ t

0
‖curlu‖L2(Γν) ≤ Ct

1
2

(
ν

∫ t

0
‖curlu‖2L2(Γν)

) 1
2

.

Then (1.1) follows from Theorem 3.3.
Assume now (4.4). We have,

(∇u,∇z) = −(u,∆z) = −(u, ∂2
1z)− (u1, ∂2

2z
1)− (u2, ∂2

2z
2).
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Using Theorem 2.5, we have

ν|(u, ∂2
1z)| ≤ ν ‖u‖

∥∥∂2
1z
∥∥ ≤ Cνν 1

2 = Cν
3
2 ,

ν|(u2, ∂2
2z

2)| ≤ ν ‖u‖
∥∥∂2

2z
2
∥∥ ≤ Cνν− 1

2 = Cν
1
2 .

Therefore, we can write

A(t, ν) = f(t, ν)−
∫ t

0

(
(u1u2, ∂2z

1) + ν(u1, ∂2
2z

1)
)
,

where f(·, ν)→ 0 in L∞(0, T ;L2(Ω)) as ν → 0. But, applying

−(u1u2, ∂2z
1) ≤

∫
Γδ

∥∥∂2z
1
∥∥
L∞ |u1u2| ≤

∫
Γδ

C

δ
|u1u2| (4.5)

with δ = ν, and again using Theorem 2.5,

ν
∣∣∣∫ t

0
(u1, ∂2

2z
1)
∣∣∣ ≤ Cν ∫ t

0

∥∥u1
∥∥
L2(Γν)

∥∥∂2
2z

1
∥∥ ≤ C√

ν

∫ t

0

∥∥u1
∥∥
L2(Γν)

≤ C
(∫ t

0
1

) 1
2
(

1

ν

∫ t

0

∥∥u1
∥∥2

L2(Γν)

) 1
2

.

Then (1.1) follows from Theorem 3.3. �

We might hope to extend Kato’s conditions and the Kato-like conditions
in Theorem 4.3 to use a layer of width νt. We should expect the effect of the
initial layer of vorticity forming at the boundary to take some time to move
into the fluid, so the width of the layer should increase with time. The heat
equation solution depends only upon νt with simple geometries for instance
(though its weak boundary layer is of “width”

√
νt), so such a scaling would

seem reasonable. It is not, however, possible.
To see this, let us consider the condition,

ν

∫ t

0
‖curlu‖2L2(Γνs)

ds→ 0 as ν → 0 (4.6)

in place of (4.2). Certainly this is a necessary condition, being weaker than
the condition in (4.2). To adapt the proof of sufficiency of (4.2) above, we
need only change the width of the layer. Note that this brings powers of
the time into the time integrals. For bounding the convective term in A, we
find (including only the key steps) that

∣∣∣∫ t

0
(u · ∇z, u)

∣∣∣ ≤ ∫ t

0
‖u‖L2(Γνs)

‖curlu‖L2(Γνs)
‖z‖L∞ ds

≤ C
∫ t

0
νs ‖∇u‖L2(Γνs)

‖curlu‖L2(Γνs)
ds+ Cν

1
2

∫ t

0
s

1
2 ‖curlu‖L2(Γν)

≤ Ct
(
ν

∫ t

0
‖curlu‖2L2([0,T ];L2(Γνs))

ds

) 1
2

.
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Here, Poincare’s inequality via Corollary 4.2 brings an additional factor of s
into the integral, which we bound above by t and bring outside the integral.
The end result is a harmless additional factor of t.

The boundary term, however, has a significant problem. To see this, let
us treat this term for a general δ as in Definition 2.2, a bound we will find
useful later in the proof of Theorem 6.1. We have, using A2

2,

ν|
∫ t

0
(curlu, curl z)| ≤ ν

∫ t

0
‖curl z‖ ‖curlu‖L2(Γνs)

ds

≤ Cν
∫ t

0
δ(s, ν)−

1
2 ‖curlu‖L2(Γνs)

ds

≤ C
(∫ t

0

ν

δ(s, ν)
ds

) 1
2
(
ν

∫ t

0
‖curlu‖2L2(Γνt)

) 1
2

.

(4.7)

So the first time integral above must at least be finite for A(t, ν) to have a
chance to vanish with ν. When δ(s, ν) = νs, however, the integral is infinite.

In estimating the convective term, we integrated by parts in the first
step, removing the gradient on z = zδ (δ = ν or νs, here). The estimate for
‖zδ‖L∞ is independent of δ, so this simply leads to an additional factor of t
in the estimate. There appears to be no way to avoid leaving at least part of
the derivative on z in estimating the boundary term, however; in particular,
∂1z

2, which dominates ∇z, seems unavoidable.
It is clear from these estimates that we could use a boundary layer of width

νtα for any α ∈ [0, 1) in (4.2). For (4.3) and (4.4), however, the boundary
term estimate scales in time even more severely, as we must integrate by

parts to get ν
∫ t

0 (u,∆z), in order to make the estimates on the velocity
rather than the vorticity.

5. A little more with Kato’s layer

In [36], Wang gives necessary and sufficient conditions for the vanishing
viscosity limit to hold based upon the magnitude of the tangential derivatives
of either the tangential components of the velocity or the of the normal
component of the velocity. The penalty is that the boundary layer considered
must be infinitesimally larger than that of Kato (as in (3.11)).

We discuss [36] in detail in Section 6, but first we derive in a more sim-
ple manner a result using Kato’s original boundary layer. The conditions
required are stronger than that of [36] in that they each involve a derivative
normal to the boundary. They apply, however, to the thinner boundary
layer of Kato.

Theorem 5.1. If

(1) ν

∫ T

0
‖∂2u‖2L2(Γν) = ν

∫ T

0
‖∂2u

1‖2L2(Γν) + ‖∂2u
2‖2L2(Γν) → 0 as ν → 0

or
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(2) ν

∫ T

0
‖∇u1‖2L2(Γν) = ν

∫ T

0
‖∂1u

1‖2L2(Γν)+‖∂2u
1‖2L2(Γν) → 0 as ν → 0

then the strong vanishing viscosity limit in (1.1) holds. Conversely, if (1.1)
holds (or simply (1.2) when g ≡ 0) then (1) and (2) hold.

Proof. First observe that (1) and (2) are equivalent since u is divergence-free.
That (1.2) when g ≡ 0 =⇒ (1), (2) follows from Lemma 3.2; when g 6≡ 0

they follows directly from the stronger assumption in (1.1).
For the forward implications, assume (1). We will apply Theorem 3.3 to

A as in (3.2).
Setting δ = ν, we have,

(u1u2,∂2z
1) ≤

∥∥∂2z
1
∥∥
L∞

∥∥u1
∥∥
L2(Γν)

∥∥u2
∥∥
L2(Γν)

≤ C

ν

(
ν
∥∥∂2u

1
∥∥
L2(Γν)

+ ν
1
2

)
ν
∥∥∂2u

2
∥∥
L2(Γν)

= Cν
∥∥∂2u

1
∥∥
L2(Γν)

∥∥∂2u
2
∥∥
L2(Γν)

+ Cν
1
2

∥∥∂2u
2
∥∥
L2(Γν)

≤ Cν
(∥∥∂2u

1
∥∥2

L2(Γν)
+
∥∥∂2u

2
∥∥2

L2(Γν)

)
+ Cν

1
2

∥∥∂2u
2
∥∥
L2(Γν)

,

(5.1)

where we used Corollary 4.2.
Next,

−ν(∇u,∇z) = −ν∂izj∂iuj

≤ ν
∑

(i,j) 6=(2,1)

∥∥∂izj∥∥∥∥∂iuj∥∥L2(Γν)
+ ν

∥∥∂2z
1
∥∥∥∥∂2u

1
∥∥
L2(Γν)

≤ νν
1
2 ‖∇u‖+ νν−

1
2

∥∥∂2u
1
∥∥
L2(Γν)

≤ ν

2
+
ν2

2
‖∇u‖2 + ν

1
2

∥∥∂2u
1
∥∥
L2(Γν)

.

Integrating in time, we have

A(t, ν) ≤ Cν
∫ t

0

(∥∥∂2u
1
∥∥2

L2(Γν)
+
∥∥∂2u

2
∥∥2

L2(Γν)

)
+ Cν

1
2

∫ t

0

∥∥∂2u
2
∥∥
L2(Γν)

+
ν

2
t+

ν

2

(
ν

∫ t

0
‖∇u‖2

)
+ ν

1
2

∫ t

0

∥∥∂2u
1
∥∥
L2(Γν)

≤ Cν
∫ t

0

2∑
j=1

∥∥∂2u
j
∥∥2

L2(Γν)
+ C(T )ν +

2∑
j=1

t
1
2

(
ν

∫ t

0

∥∥∂2u
j
∥∥2

L2(Γν)

) 1
2

,

where we used (1.5). The assumption (1) insures that A(t, ν)→ 0 as ν → 0,
which gives (1.1) by Theorem 3.3. �

6. Using a Wang layer

Theorem 3.3 applied to a Wang layer easily yields sufficient conditions for
the vanishing viscosity limit to hold for such a layer, leading to Theorem 6.1.
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Theorem 6.1. Let δ be a Wang width as in Definition 3.7. If∫ t

0

∫
Γδ

1

δ
|u1u2| → 0 or

∫ t

0
(u1u2, ∂2z

1)→ 0 as ν → 0 (6.1)

then (1.1) holds. Conversely, if (1.1) holds (or simply (1.2) when g ≡ 0)
(6.1) holds for any Wang width.

Proof. The two conditions in (6.1) are equivalent by the argument that led

to (4.5). So assume that (6.1) holds along with (3.11). Then, ν
∫ t

0 |(∇u,∇z)|
vanishes as ν → 0 by (4.7). (Note that since δ(·, ν) is increasing, δ(·, ν)→ 0
in L∞(0, T ).) The result then follows by Theorem 3.3. �

A simple and direct use of a Wang layer yields Theorem 6.2.

Theorem 6.2. Let δ be a Wang width as in Definition 3.7. If

1

ν

∫ t

0

∥∥u1
∥∥2

L2(Γδ)
→ 0 or

1

ν

∫ t

0

∥∥u2
∥∥2

L2(Γδ)
→ 0 as ν → 0 (6.2)

then (1.1) holds.

Proof. We have,

|(u1u2,∂2z
1)| ≤

∥∥∂2z
1
∥∥
L∞

∥∥u1u2
∥∥
L1(Γδ)

≤ C

δ

∥∥u1u2
∥∥
L1(Γδ)

≤ C

δ

∥∥u1
∥∥
L2(Γδ)

∥∥u2
∥∥
L2(Γδ)

≤ C

δ

∥∥u1
∥∥
L2(Γδ)

Cδ
∥∥∂2u

2
∥∥
L2(Γδ)

= C
∥∥u1
∥∥
L2(Γδ)

∥∥∂1u
1
∥∥
L2(Γδ)

,

where we used (4.1)2 of Corollary 4.2. Hence,∫ t

0
(u1u2, ∂2z

1) ≤ C
∫ t

0

∥∥u1
∥∥
L2(Γδ)

∥∥∂1u
1
∥∥
L2(Γδ)

≤ C
(∫ t

0

∥∥u1
∥∥2

L2(Γδ)

) 1
2
(∫ t

0

∥∥∂1u
1
∥∥2

L2(Γδ)

) 1
2

= C

(
ν−1

∫ t

0

∥∥u1
∥∥2

L2(Γδ)

) 1
2
(
ν

∫ t

0

∥∥∂1u
1
∥∥2

L2(Γδ)

) 1
2

.

The second factor on the right-hand side is bounded by (1.4) or (1.5). The
result for the first condition in (6.2) thus follows from Theorem 6.1, while the
result for the second condition follows by replacing u1 by u2 in the argument
above (noting that the key use of Poincaré’s inequality is unchanged). �

A more subtle use of the infinitesimally thicker boundary layer leads to
the result of Xiaoming Wang in Theorem 6.4. (Theorem 6.4 extends Wang’s
result to allow a time-varying boundary layer.) Its proof is based upon the
following estimates:
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Lemma 6.3. Let δ as in Definition 2.2 be a the width of a boundary layer.
Then

|(u1u2, ∂2z
1)| ≤ ν

4
‖∇u‖2L2(Γδ)

+
Cν

δ
+ C

(
δ

ν

)2 (
ν‖∂1u

1‖2L2(Γδ)

)
(6.3)

and

|(u1u2, ∂2z
1)| ≤ ν

4
‖∇u‖2L2(Γδ)

+ C ‖w‖2 + Cδ
1
2 +

(
δ

ν
1
4

) 4
3

+ C

(
δ

ν

)4 (
ν‖∂1u

2‖2L2(Γδ)

)
,

(6.4)

Proof. To prove (6.3), we start with (4.5):

|(u1u2, ∂2z
1)| ≤ C

δ

∫
Γδ

|u1u2| ≤ Cδ−1‖u1‖L2(Γδ)‖u
2‖L2(Γδ)

≤ C

δ

(
δ
∥∥∂2u

1
∥∥
L2(Γδ)

+ δ
1
2

)
δ
∥∥∂2u

2
∥∥
L2(Γδ)

= Cν
1
2

∥∥∂2u
1
∥∥
L2(Γδ)

δ

ν
1
2

∥∥∂1u
1
∥∥
L2(Γδ)

+ C
δ

ν
1
2

(ν
δ

) 1
2
∥∥∂1u

1
∥∥
L2(Γδ)

≤ ν

4

∥∥∂2u
1
∥∥2

L2(Γδ)
+ C

δ2

ν

∥∥∂1u
1
∥∥2

L2(Γδ)
+ C

ν

δ
,

where we paralleled the argument in (5.1), but using ∂2u
2 = −∂1u

1 and
applying Young’s inequality asymmetrically.

The proof of (6.4) is more involved. We first make the decomposition,

−(u1u2, ∂2z
1) = (u1∂2u

2, z1) + (∂2u
1u2, z1),

where we integrated by parts, using that u2 = 0 on ∂Ω. For the first term
in −(u1u2, ∂2z

1), we use that div u = 0 to obtain

(u1∂2u
2, z1) = −(u1∂1u

1, z1) = −1

2
(∂1(u1)2, z1) =

1

2
((u1)2, ∂1z

1)

=
1

2
((w1)2, ∂1z

1) + (u1u1, ∂1z
1)− 1

2
((u1)2, ∂1z

1),

where, since we integrated by parts in the tangential variable, we needed no
boundary condition. Hence,

|(u1∂2u
2, z1)| ≤ 1

2
‖w‖2

∥∥∂1z
1
∥∥
L∞ + ‖u‖ ‖u‖L∞

∥∥∂1z
1
∥∥+

1

2
‖u‖L∞ ‖u‖

∥∥∂1z
1
∥∥

≤ C ‖w‖2 + Cδ
1
2 .

For the second term in −(u1u2, ∂2z
1), we have

|(∂2u
1u2, z1)| ≤ ‖∂2u

1‖L2(Γδ)‖u
2z1‖.

Defining β by

β(t, x1, x2) := −
∫ δ(t,ν)

x2

(z1(t, x1, y))2 dy,
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we see that

∂2β = (z1)2

and

‖β‖L∞(Γδ)
≤ δ‖z1‖2L∞ ≤ Cδ,

‖∂1β‖L∞(Γδ)
≤ δ‖∂1z

1‖2L∞ ≤ Cδ.

Then,

‖u2z1‖2 =

∫
Γδ

(u2)2(z1)2 =

∫
∂Ω

∫ δ

0
(u2(t, x1, x2))2∂x2β(t, x1, y) dx2 dx1

= −
∫
∂Ω

∫ δ

0
∂x2(u2(t, x1, x2))2β(t, x1, x2) dx2 dx1

= −
∫

Γδ

∂2(u2)2β = −2

∫
Γδ

u2∂2u
2β = 2

∫
Γδ

u2∂1u
1β

= −2

∫
Γδ

u1∂1(u2β) = −2

∫
Γδ

u1∂1u
2β − 2

∫
Γδ

u1u2∂1β.

In both integrations by parts, we used that u2 = 0 on ∂Ω, the outer compo-
nent of ∂Γδ, while β = 0 on the inner component of ∂Γδ.

Proceeding,

−2

∫
Γδ

u1u2∂1β ≤ 2‖u1‖‖u2‖ ‖∂1β‖L∞(Γδ)
≤ Cδ2‖∂2u

2‖L2(Γδ),

−2

∫
Γδ

u1∂1u
2β ≤ 2‖u1‖‖∂1u

2‖L2(Γδ) ‖β‖L∞(Γδ)
≤ Cδ2‖∂2u

1‖L2(Γδ)

∥∥∂1u
2
∥∥
L2(Γδ)

.

Thus,

‖u2z1‖ ≤ Cδ ‖∇u‖
1
2

L2(Γδ)

(∥∥∂1u
2
∥∥ 1

2

L2(Γδ)
+ 1

)
≤ Cδ ‖∇u‖

1
2

L2(Γδ)

(∥∥∂1u
2
∥∥ 1

2

L2(Γδ)
+ 1

)
and therefore,

|(∂2u
1u2, z1)| ≤ ‖∂2u

1‖L2(Γδ)‖u
2z1‖

≤ Cδ ‖∇u‖
3
2

L2(Γδ)

(∥∥∂1u
2
∥∥ 1

2

L2(Γδ)
+ 1

)
= Cδ ‖∇u‖

3
2

L2(Γδ)

∥∥∂1u
2
∥∥ 1

2

L2(Γδ)
+ Cδ ‖∇u‖

3
2

L2(Γδ)
.

Applying Young’s inequality,

Cδ ‖∇u‖
3
2

L2(Γδ)

∥∥∂1u
2
∥∥ 1

2

L2(Γδ)
= C

(
ν

3
4 ‖∇u‖

3
2

L2(Γδ)

)(
δ

ν
ν

1
4

∥∥∂1u
2
∥∥ 1

2

L2(Γδ)

)
≤ ν

8
‖∇u‖2L2(Γδ)

+
δ4

ν4

(
ν
∥∥∂1u

2
∥∥2

L2(Γδ)

)
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and

Cδ ‖∇u‖
3
2

L2(Γδ)
= C

δ

ν
1
4

ν
1
4 ‖∇u‖

3
2

L2(Γδ)
≤ ν

8
‖∇u‖2L2(Γδ)

+ C

(
δ

ν
1
4

) 4
3

.

Collecting these bounds gives (6.4). �

Theorem 6.4. [Wang [36]] Let δ be a Wang width as in Definition 3.7 with

ν

∫ T

0
‖∂1u

1‖2L2(Γδ(s,ν)) ds→ 0 as ν → 0 (6.5)

or

ν

∫ T

0
‖∂1u

2‖2L2(Γδ(s,ν)) ds→ 0 as ν → 0. (6.6)

Then the strong vanishing viscosity limit in (1.1) holds. Conversely, if (1.1)
holds (or simply (1.2) when g ≡ 0) then (6.5) and (6.6) hold for any Wang
width.

Proof. For each of (6.5) and (6.6), the converse follows immediately from
Lemma 3.2 or the assumption in (1.1), which implies (1.3).

For the forward direction, we know that (3.10) holds simply because δ
is a Wang width (see the comment following Definition 3.7). It remains to
show that (3.9) holds, for it will follow that A→ 0 as in Theorem 3.3.

Assume, first, that (6.5) holds. Integrating (6.3) over time gives∫ T

0
|(∂2u

1u2, z1)| ≤ ν

4

∫ t

0
‖∇u‖2L2(Γδ)

+ Cν

∫ t

0

ds

δ(s, ν)
+ C

δ2

ν2
Fν(δ) (6.7)

(we used here that δ(s, ν) ≤ δ(t, ν)), where

Fν(t, δ) := ν

∫ t

0
‖∂1u

1‖2L2(Γδ)
.

Note that even in 2D, we cannot say that Fν(t, δ) is increasing in ν even for
fixed δ; we would be hard pressed even to show that it is continuous.

Let us agree to call the function δ for which the condition in (6.5) is
assumed to hold, δ0; this means that we are given that Fν(t, δ0(t, ν)) → 0
as ν → 0. We will show that there exists a possibly smaller Wang width,

which we will relabel δ, for which δ2(t,ν)
ν2

Fν(t, δ(t, ν))→ 0 as ν → 0.
As long as δ ≤ δ0 (as functions of ν), we will have

δ2

ν2
Fν(t, δ) ≤ δ2

ν2
Fν(t, δ0).

So let

δ(t, ν) = min

{
δ0(t, ν), inf

s∈[t,T ]

ν

Fν(s, δ0(s, ν))
1
4

}
, (6.8)
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which we note is continuous at ν = 0 with δ(t, 0) = 0, and is increasing in
t. Then,

ν

δ(t, ν)
≤ max

{
ν

δ0(t, ν)
, Fν(t, δ0(t, ν))

1
4

}
→ 0,

δ(t, ν)2

ν2
Fν(t, δ(t, ν)) ≤ δ(t, ν)2

ν2
Fν(t, δ0(t, ν)) ≤

ν2√
Fν(t,δ0(t,ν))

ν2
Fν(t, δ0(t, ν))

=
√
Fν(t, δ0(ν))→ 0

as ν → 0, and the convergence is uniform in time. Also,∫ T

0

ν

δ(t, ν)
dt ≤ max

{∫ T

0

ν

δ0(t, ν)
dt,

∫ T

0
Fν(δ0(t, ν))

1
4 dt

}
.

As ν → 0, the first integral on the right-hand side vanishes because δ0 is
a Wang width, while the second integral vanishes because Fν(δ0(t, ν)) ≤
Fν(δ0(T, ν)) → 0. Hence, we see that δ is a Wang width, so we can apply
Theorem 3.3 to the bound in (6.7) using (3.8) to conclude that (1.1) holds.

Now assume that (6.6) holds. Integrating (6.4) over time, we have

∫ T

0
|(∂2u

1u2, z1)| ≤ ν

4

∫ T

0
‖∇u‖2L2(Γδ)

+ C

(
δ

ν
1
4

) 4
3

T

+ C
δ4

ν4

∫ T

0

(
ν
∥∥∂1u

2
∥∥2

L2(Γδ)

)
.

We can absorb the first term above by virtue of (3.8), and, if needed, we

can always decrease δ to be less than ν
1
4 while still keeping the conditions in

(3.11) and in Definition 2.2 (2), insuring that the second term above vanishes
with ν. The final term we treat in the same manner as we treated the final
term in (6.7), writing it in the form, C δ4

ν4
Fν(δ), where now

Fν(δ) := ν

∫ T

0
‖∂1u

2‖2L2(Γδ)
.

Applying Theorem 3.3 using (3.8) to conclude that (1.1) holds, the proof of
sufficiency of (6.6) is complete. �

Remark 6.5. The construction in (6.8) is a little easier to understand when
δ is time-independent. We set

δ(ν) = min

{
δ0(ν),

ν

Fν(T, δ0(ν))
1
4

}
.
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Then δ is continuous at zero with δ(0) = 0. Then since Fν(T, δ0(ν))→ 0 by
assumption, δ(ν) is a Wang width, and

δ(ν)2

ν2
Fν(t, δ(ν)) ≤ δ(ν)2

ν2
Fν(t, δ0(ν)) ≤

ν2√
Fν(t,δ0(ν))

ν2
Fν(t, δ0(ν))

=
√
Fν(t, δ0(ν)) ≤

√
Fν(T, δ0(ν))→ 0.

Remark 6.6. In [36], Wang uses an energy argument that starts with the
equation for what we are calling w̃ (rather than w, as we did) then multiplies
by w̃ and integrates over time and space. The introduction of Fν and the
use of β, which are at the heart of the proof, are adopted from [36]. Also,
Wang uses a different corrector, though all the necessary estimates hold for
the Kato corrector we are using.

7. Vortex sheet on the boundary

Let M(Ω) be the space of finite Borel signed measures on Ω—M(Ω) is the
dual space of C(Ω). Let µ in M(Ω) be the measure supported on Γ for
which µ|Γ corresponds to Lebesgue measure on Γ (arc length, since d = 2).
Then µ is also a member of H1(Ω)′.

The proof of Theorem 7.1 for g ≡ 0 is given in [20]. Its proof for a general
g requires only the trivial replacement of u by u − g in the arguments in
[20]. Note that the presence or absence of an energy defect as in (1.3) does
not affect the arguments in [20]. In some sense, this is because a corrector
is not employed in [20].

Theorem 7.1. The following conditions are equivalent, when Ω is simply
connected:

(1) (1.1) holds,
(2) ω → ω + ((g − u) · τ )µ in (H1(Ω))′ uniformly on [0, T ],
(3) ω → ω in H−1(Ω) uniformly on [0, T ].

8. Weaker convergence

The question of whether the vanishing viscosity limit in the sense of (1.2)
holds has been a long open problem in mathematical fluid mechanics, and
a satisfactory answer to it appears as out or reach now as it did 100 years
ago. Recently, in [6], Constantin and Vicol initiated a program to consider
whether perhaps a weaker type of convergence to a weaker type of solution
to the Euler equations might hold. As relates to 2D Euler solutions, the
authors of [6] consider the condition:

There exists a positive sequence (νn) converging to zero such
that for any compact K ⊆ Ω there exists EK ≥ 0 such that

‖ωνn‖
2
L∞(0,T ;L2(K)) ≤ EK for all n. (8.1)
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Here, EK can depend on u0, T , and K, but nothing else (in particular, no de-
pendence on ν is allowed). By virtue of u0 having energy bounded uniformly
over ν > 0, there always exist a weak limit of (u0)ν>0 in L2(0, T ;L2(Ω)).
They show that if (8.1) holds then any such weak limit is a very weak solu-
tion to the Euler equations. These solutions satisfy no initial or boundary
conditions and are possibly dissipative, though the energy is bounded. The
condition in (8.1) is sufficient for weak convergence, but not, or at least not
shown to be, necessary.

An assumption on the smoothness of u0 is not needed, and so not made,
in [6], and, indeed, one might expect that if the type of weak convergence
in [6] holds it has nothing to do with the smoothness or lack thereof of
the initial data. Nonetheless, it is interesting that when the initial data
is smooth, (8.1) implies no Kato-like condition, and no Kato-like condition
implies (8.1).

Finally, we note that in [2], Dongho Chae establishes that, in fact, the
vanishing viscosity limit holds for no-slip boundary conditions; the conver-
gence being, however, in a weak sense to a measure-valued solution to the
Euler equations. Measure-valued solutions, a concept developed in [7, 8],
are even weaker than those of [6].

9. Well-posedness of (NSg)

We now give the proof of Lemma 1.1 and use it to prove the existence of
solutions to (NSg), Proposition 1.2.

Proof of Lemma 1.1. Let g solve the stationary Stokes problem,
∇q = ∆g in Ω,

div g = 0 in Ω,

g = g on ∂Ω.

It follows that g ∈ C∞(Ω) (see, for instance, Theorem IV.7.1 of [11].) We see
also that ∂tg satisfies the stationary Stokes problem, ∇∂tq = ∆∂tg,div ∂tg =
0 in Ω, ∂tg = ∂tg on ∂Ω, so g ∈ C∞([0,∞)×Ω), is divergence-free, and equals
g on ∂Ω.

If, in addition, u0|∂Ω = g(0), then g + u0 − g(0) ∈ C∞([0,∞) × Ω), is
divergence-free, equals g on ∂Ω and equals u0 at time zero.

Relabeling by setting g = g or g = g+ u0− g(0) completes the proof. �

Proof of Proposition 1.2. With g as in Lemma 1.1, we can rewrite (NSg)
as

∂tr + ∂tg + r · ∇r + r · ∇g + g · ∇r + g · ∇g +∇pg = ν∆r + ν∆g, (9.1)
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where r := ug − g, noting that r = 0 on ∂Ω. Hence, we look for a weak
solution to

∂tr + r · ∇r + r · ∇g + g · ∇r +∇pg = ν∆r + Fg on Ω,

div r = 0 on Ω,

r(0) = u0 − g(0) on Ω,

r = 0 on ∂Ω.

This is a linear perturbation of the Navier-Stokes equations with the forcing
term, Fg. Existence and, in 2D, uniqueness, is standard (see, for instance,
[14], where a similar perturbation is worked out in detail).

The energy inequality that results we can derive formally by multiplying
the equation for r by r and integrating over Ω:

1

2

d

dt
‖r‖2 + ν ‖∇r‖2 = −(r · ∇g, r) + (Fg, r)

≤ ‖∇g‖L∞ ‖r‖2 + ‖Fg‖ ‖r‖ ≤
‖Fg‖2

2
+

(
‖∇g‖L∞ +

1

2

)
‖r‖2

so that
d

dt
‖r‖2 + 2ν ‖∇r‖2 ≤ ‖Fg‖2 + (2 ‖∇g‖L∞ + 1) ‖r‖2 .

Integrating in time, we see that

‖r(t)‖2 + 2ν

∫ t

0
‖∇r‖2

≤ ‖r(0)‖2 +

∫ t

0
‖Fg‖2 +

∫ t

0
(2 ‖∇g‖L∞ + 1) ‖r‖2 .

Applying Gronwall’s lemma gives

‖r(t)‖2 + 2ν

∫ t

0
‖∇r‖2 ≤

(
‖r(0)‖2 +

∫ t

0
‖Fg‖2

)
e
∫ t
0 (2‖∇g‖L∞+1). (9.2)

Using (9.2) with ‖r(0)‖2 ≤ 2‖u0‖2 + 2 ‖g0‖2 and

‖ug(t)‖2 + 2ν

∫ t

0
‖∇ug‖2 ≤ 2

(
‖r(t)‖2 + 2ν

∫ t

0
‖∇r‖2 + ‖g(t)‖2 + 2ν

∫ t

0
‖∇g‖2

)
yields the bound in (1.5). Moreover, the continuity in time and higher
regularity properties of r follow from (9.2) in the standard way, which yield
the corresponding properties for ug = r + g. �

10. How might convergence happen?

We return to writing ug rather than simply u, as we did in Sections 3 to 7.
If we choose to set g = u|∂Ω, we see that ug = uu = u on ∂Ω. This elimi-

nates the boundary term in the basic energy argument, giving uu → u as in
the boundary-free case (though only in the L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω))-
norm, not in higher norms, since there is still no control of vorticity produc-
tion of uu on the boundary). Thus, we easily obtain Theorem 10.1.
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Theorem 10.1. We have

uu → u in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

with

‖uu(t)− u(t)‖ ≤ CνeCt,
∫ t

0
‖∇(uu(s)− u(s))‖2 ds ≤ Cνt

1
2 eCt.

Proof. Let w = uu − u. Then

(∂tw,w) + (w · ∇u,w) + (uu · ∇w,w) + (∇(q − p), w) = ν(∆uu, w)

= ν(∆w,w) + ν(∆u,w).

The third and fourth terms on the left-hand side vanish after integrating
by parts. Also, w = 0 on ∂Ω so we can integrate the first term on the
right-hand side by parts to obtain

1

2

d

dt
‖w‖2 + ν ‖∇w‖2 = −(w · ∇u,w) + ν(∆u,w)

≤ ν2

2
‖∆u‖2L2 +

1

2
‖w‖2 + ‖∇u‖L∞ ‖w‖2 .

It follows from Gronwall’s inequality that

‖w(t)‖2 + 2ν

∫ t

0
‖∇w‖2 ≤ Cν2teCt

from which the convergence with the stated rates follow. �

(It is also possible to show that if g = g(ν) → u in, say, L∞([0, T ] ×
∂Ω), then ug → u in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) as ν → 0. The
idea is that the bounds on the z1 component of Kato’s corrector decrease
in proportion to ‖g − u‖L∞ ; incorporating these bounds into the energy
argument in Proposition 3.1 gives the convergence.)

A simple corollary of Theorem 10.1 is the following:

Corollary 10.2. We have,

ug → u in L∞(0, T ;L2(Ω)) as ν → 0

if and only if

ug − uu → 0 in L∞(0, T ;L2(Ω)) as ν → 0.

Proof. By the triangle inequality,

‖ug − u‖ ≤ ‖ug − uu‖+ ‖uu − u‖ ,
‖ug − uu‖ ≤ ‖ug − u‖+ ‖uu − u‖ ,

and the result follows from Theorem 10.1. �

The key to the proof of Corollary 10.2 was that (1.1) holds for uu. We
showed in Section 7 that if (1.1) holds for ug then a vortex sheet forms on
the boundary with strength proportional to u− g. Hence, we know that no
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vortex sheet forms in the limit as ν → 0 for uu, which is what distinguishes
it among all possible ug.

Now consider the issue of the convergence of ug−uu to 0. Let w = ug−uu.
Then

(∂tw,w) + (w · ∇uu, w) + (ug · ∇w,w) + (∇(p− q), w) = ν(∆w,w).

The third and fourth terms on the left-hand side vanish after integrating by
parts. We integrate the right-hand side by parts to obtain

1

2

d

dt
‖w‖2 + ν

∫ T

0
‖∇w‖2 = −(w · ∇uu, w) + ν

∫
∂Ω

(∇w · n) · w

= −(w · ∇uu, w)− ν
∫
∂Ω

(∇w · n) · (g − u).

Now, to obtain convergence we need control both on ∇uu in something
close to L1(0, T ;L∞), as well as control on the boundary term. So proving
ug − uu → 0 appears to be even more difficult than proving ug → u.

Moving into the realm of speculation, consider the following opposed pos-
sibilities:

• Positive: (1.1) holds for all smooth u0 and smooth g.
• Negative: (1.1) fails to hold for generic u0 and generic g.

The qualification “generic,” is not meant in any precise technical way, but is
to rule out, for instance, initial data for which u vanishes on the boundary
or which has some degree of analyticity.

Whether one or the other of these possibilities holds (they are not ex-
haustive, so neither may hold) is related to the question, “Is the solution to
(NS) at low viscosity indifferent to the boundary value g, or is it sensitive
to it?” Indifference would support the positive possibility, sensitivity would
support the negative (or at least non-positive) possibility. We can give some
support for each position:

Indifferent : As ν → 0, the imposition of u = g on the boundary
should become less important, since as the fluid becomes less viscous,
the boundary forcing should have less effect on it, so less vorticity
should be shed off the boundary and transported into the bulk of
the fluid. Nonetheless, there is enough shedding of vorticity for a
vortex sheet to form at the boundary. Indeed, this is shown to be
the case for radially symmetric solutions in [9, 10], and is likely the
case for other scenarios in which the non-linearity is weakened or
eliminated (though such examples do not seem to have been worked
out explicitly in the literature, since g = 0 is generally assumed).

Sensitive: When g = u|∂Ω, the shedding of vorticity off the boundary
is shut down (at least at the level seen by the energy of the fluid)
and the vanishing viscosity limit holds.

Weaker than either of the two positions is the following conjecture:
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Conjecture 1. Generically, (1.1) holds for u0 if and only if (1.1) holds for
any g ∈ (C∞([0, T ]× ∂Ω))d with g · n = 0 on ∂Ω.

This conjecture is saying, in effect, that except in very special circum-
stances, the vanishing viscosity limit can hold only if the indifferent position
is correct, though it takes no position on whether the vanishing viscosity
limit holds generically at all. A motivation for this conjecture is that, as we
have seen, the form of the Kato and Kato-like conditions are all indifferent
to the choice of g.

Consider the special case where u0 ≡ 0, so u ≡ 0 is a (stationary) solution
to the Euler equations. There is an incompatibility in the boundary condi-
tions for (NSg) at time zero when g 6≡ 0, so the solution to the Navier-Stokes
equations does not vanish. This leads to a special case of the vanishing vis-
cosity limit not included in the classical setting (where g ≡ 0 would trivialize
to u0 ≡ u ≡ 0). There are only two possibilities:

• Positive: ug → 0 as ν → 0 for all smooth g.
• Negative: there exists smooth g such that ug 6→ 0 as ν → 0.

A route to a positive answer would be to find a more optimum bound on
the energy of ug than that in (1.5), one that would lead to ‖ug(t)‖ → 0 as
ν → 0. But this is entirely equivalent, as we can see from Theorem 3.3, to
obtaining a bound on A(t, ν) that insures it vanishes with ν. Even in simple
geometries such as a disk with constant g ·τ , then, even this simplified form
of the vanishing viscosity limit question seems out of reach.

To gain a little insight, though, let us consider a linearized version of
(NSg) in which we drop the term ug · ∇ug in (NSg): that is, the time-
dependent Stokes problem, ∂tug +∇pg = ν∆ug. We will assume, however,
that g is time-independent. We begin by making the same energy argument
as in the proof above of Proposition 1.2, but instead of using g itself, we use
a “corrector,” z. We define z as in Section 2, using v = g in place of (2.1),
and with δ to be chosen below. (Hence, the corrector is “correcting” only
the boundary value of g.) We can see from Lemma 1.1 and Theorem 2.5
that

‖z‖ ≤ Cδ
1
2 , ν ‖∇z‖2 ≤ Cν

δ
.

Set r = ug− z and choose δ = ν1/2. Because there are no nonlinear terms
and ∂tz vanishes, in place of (9.1) we have

∂tr +∇pg = ν∆r + ν∆z.

Multiplying by r and integrating over the domain, we have

1

2

d

dt
‖r‖2 + ν ‖∇r‖2 = ν(∇z,∇r) ≤ ν

2
‖∇z‖2 +

ν

2
‖∇r‖2 .

We conclude that

d

dt
‖r‖2 + ν ‖∇r‖2 ≤ ν ‖∇z‖2 ≤ Cν

δ
.
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Integrating in time, we see that

‖r(t)‖2 + ν

∫ t

0
‖∇r‖2 ≤ ‖r(0)‖2 + C

ν

δ
t = ‖z‖2 + C

ν

δ
t ≤ Cδ + C

ν

δ
t

≤ C(1 + t)ν
1
2 ,

where in the last step we chose δ = ν
1
2 to balance the ν-dependence of the

two terms.
Hence, for the linearized problem, at least in the special case in which

the boundary data is constant in time, we obtain the positive possibility.
Of course, this linear situation should not dominate our intuition: the ques-
tion is whether the nonlinear, convective term disrupts this linear behavior
sufficiently to obtain a negative answer.

Appendix A. Proof of corrector estimates

Proof of Theorem 2.5. Working on a single component of Γδ, we have,

z(x1, x2) = −
(
ϕ′δ(x2)ψ(x1, x2), 0

)
+ ϕδ(x2)v(x1, x2).

Hence,

∂1z
1 = −ϕ′δ(x2)∂1ψ(x1, x2) + ϕδ(x2)∂1v

1(x1, x2)

= −ϕ′δ(x2)v2(x1, x2) + ϕδ(x2)∂1v
1(x1, x2),

∂2z
1 = −ϕ′δ(x2)∂2ψ(x1, x2)− ϕ′′δ (x2)ψ(x1, x2)

+ ϕ′δ(x2)v1(x1, x2) + ϕδ(x2)∂2v
1(x1, x2)

= 2ϕ′δ(x2)v1 − ϕ′′δ (x2)ψ(x1, x2) + ϕδ(x2)∂2v
1(x1, x2),

∂1z
2 = ϕδ(x2)∂1v

2(x1, x2),

∂2z
2 = −∂1z

1.

Now,

|ψ(x1, x2)| ≤ ‖v‖L∞ x2 = Cx2,

|v2(x1, x2)| ≤
∥∥∂2v

2
∥∥
L∞ x2 ≤ Cx2,

|∂1v
2(x1, x2)| ≤

∥∥∂2∂1v
2
∥∥
L∞ x2 ≤ Cx2,

|ϕ′δ(x2)x2| ≤ C, |ϕ′′δ (x2)x2| ≤ Cδ−1,

so we have the pointwise bounds (for all δ ≤ δ0, for some fixed δ0 > 0),

|z1(x1, x2)| ≤ C, |z2(x1, x2)| ≤ Cx2,
|∂1z

1(x1, x2)| ≤ C, |∂2z
1(x1, x2)| ≤ Cδ−1,

|∂1z
2(x1, x2)| ≤ Cx2, |∂2z

2(x1, x2)| ≤ C
(A.1)

with all quantities supported in Γδ. These bounds lead directly to the bounds
in Theorem 2.5 given in (2.3). Because

∂tz(x1, x2) = ∇⊥(ϕδ(x2)∂tψ(x1, x2))
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and ∂tψ is bounded in the same manner as ψ (just with different constants),
the estimates in (A.1) and so in (2.3) hold as well for ∂tz in place of z.

This establishes (2.3) for j, k = 0; j = 1, k = 0; j = 0, k = 1. Because
additional derivatives in x1 of z1 or z2 affect only ψ and v, which are C∞,
we also obtain the result for any value of j. Each additional derivative of
z1 or z2 in x2 has the same effect on ψ and v, but also adds one additional
derivative on ϕδ, introducing an additional factor of δ. This leads to an
additional factor of δ−k for ∂k2 . Since, however, ∂2z

2 = −∂1z
1, there is one

less factor of δ−1 for ∂k2z
2 than there is for ∂k2z

1. Similar considerations

apply to ∂j1∂
k
2 , completing the proof of (2.3).

We now turn to the proof of (2.4). The estimates in (2.3) continue to
hold unchanged when m = 0. If δ also varies with time, however, the cutoff
function, ϕδ, has an additional dependence on time thorough δ, so that

∂tϕδ(x2) = ∂tϕ
(x2

δ

)
= ϕ′

(x2

δ

) ∂

∂t

x2

δ
= −x2

∂tδ

δ2
ϕ′
(x2

δ

)
.

Hence,

∂tz(x1, x2) = ∇⊥(ϕδ(x2)∂tψ(x1, x2))−∇⊥
(
x2
∂tδ

δ2
ϕ′
(x2

δ

)
ψ(x1, x2)

)
=: v1 + v2.

To obtain the estimates in (A.1) for ∂tz in place of z, v1 is bounded as
before, so that, in particular,∥∥v1

1(x1, x2)
∥∥
Lp(Ω)

≤ Cδ
1
p ,∥∥v2

1(x1, x2)
∥∥
Lp(Ω)

≤ Cδ
1
p

+1
.

In bounding v2, −ϕ′(x2/δ) plays the role that ϕδ(x2) played in bounding z,
and is bounded in the same manner (the vanishing of ϕ′ in a neighborhood
of the boundary does not improve any estimates), but there is an additional

factor of x2
∂tδ
δ2

that is included in each of the corresponding bounds in (2.3)
for v2. We need only the first two bounds,

|v1
2(x1, x2)| ≤ Cx2

∂tδ

δ2
,

|v2
2(x1, x2)| ≤ Cx2

2

∂tδ

δ2
.

(A.2)

Hence (assuming that ∂tδ > 0),

∥∥v1
2

∥∥
Lp(Ω)

≤ C∂tδ
δ2

(∫ δ

0
xp2

) 1
p

≤ C∂tδ
δ2
δ

1+ 1
p ,

∥∥v2
2

∥∥
Lp(Ω)

≤ C∂tδ
δ2

(∫ δ

0
x2p

2

) 1
p

≤ C∂tδ
δ2
δ

2+ 1
p .
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From this, (2.4)1,2 follow directly. Then

‖∂tz‖Lp(Ω) ≤ Cδ
1
p (1 + δ) + C∂tδ δ

1
p
−1

(1 + δ)

≤ Cδ
1
p
−1

(δ + ∂tδ)(1 + δ) ≤ Cδ
1
p
−1

(δ + ∂tδ)

for δ less than any fixed δ0 > 0, which is (2.4)3. �

Appendix B. Some lemmas

Lemma B.1. Let w1, w2 ∈ H ∩H2 and set ωj = curlwj, j = 1, 2. Then,

(∇w1,∇w2) = (ω1, ω2) +

∫
∂Ω

(ω2(w1 · τ )− κw1 · w2),

where κ is the curvature of the boundary.

Proof. We have,

(∇w1,∇w2) = −(w1,∆w2) +

∫
∂Ω

(∇w2 · n) · w1

= −(w1,∇⊥ω2) +

∫
∂Ω

(ω2(w1 · τ )− κw1 · w2),

where we used Lemma 4.1 of [18] for the boundary integrand. But,

−(w1,∇⊥ω2) = (w⊥1 ,∇ω2) = −(divw⊥1 , ω
2) = (ω1, ω2).

�

The following is adapted from Lemma A.4 of [19]:

Lemma B.2. For all vector fields, u ∈ H1(Ω), v ∈ H,

(u · ∇u, v) = (u⊥ curlu, v).

Proof. We have,

(u · ∇u, v) = (u · (∇u− (∇u)T ), v) + (u · (∇u)T , v).

But,

(u · (∇u)T ) · v = (ui∂ju
i, vj) =

1

2
(v,∇|u|2) = 0,

so

(v, u · ∇u) = (ui(∂iu
j − ∂jui), vj)

= (u1(∂1u
2 − ∂2u

1), v2) + (u2(∂2u
1 − ∂1u

2), v1)

=

∫
Ω

(u1v2 − u2v1) curlu = (u⊥ curlu, v).

�
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