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1 Toric varieties and toric vector bundles
A normal variety X is a Toric Variety if the torus T ∼= (k∗)n is an open subset
of X, and T acts on X extending the natural action of T on itself.

Key tool:
X ⇐⇒ Certain collection of rational polyhedral cones.

Properties of X ⇐⇒ Properties of collection of cones.

For example: Projectiveness, completeness, smoothness, etc. are under-
stood in combinatorial terms. Cl(X) and Pic(X) can be computed using only
T -invariant divisors. To each T -invariant divisor D, we can associate a poly-
tope PD ⊆ Rn such that

H0
(
X,OX(D)

)
=

⊕

u∈PD∩Zn

kχu.

A vector bundle π : E → X over a TV X is a Toric Vector Bundle if the total
space of E has an action of T compatible with π and linear on its fibers.

Key tool: Klyachko’s Equivalence: TVB π : E → X ⇐⇒ Vector space E with
a collection of filtrations: (D T -invariant divisor, i ∈ Z)

· · ·ED(i− 1) ⊇ ED(i) ⊇ ED(i + 1) ⊇ · · ·

Satisfying compatibility: ∀ fixed point p ∈ X, ∃ decomposition E =
⊕

u∈ZnEu,
s.t. if p ∈ D, the filtration {ED(i)} can be recovered as ED(i) =

∑
〈u,vD〉≥iEu.

2 Questions
We will study the variety P(E), where E is a rank 2 TVB. Questions:

1. Can we describe the Okounkov bodies of all line bundles on P(E) with
respect to some suitable flag of subvarieties?

2. Is P(E) a Mori Dream Space?

Answers: 1. Yes!! 2. Yes!!

3 Okounkov bodies [Okounkov; Lazarsfeld-Mustaţă]

Let X be a projective variety of dimension n.

•Fix a flag of smooth subvarieties Y• : X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn = {Pt}.
• Let D be a big divisor on X. By looking at successive vanishing orders

along the elements of the flag, we get a function:

ν : H0(X,OX(D)) r {0} −→ Zn ⊂ Rn

s 7−→ (c1, . . . , cn)

Let us denote the image by ν(D).
•Define the Okounkov Body ∆(D) as:

∆(D) = ∆(D)Y• =def closed convex hull


⋃

m≥1

1

m
· ν(mD)


 .

Example: X smooth toric variety, {Y•} flag of T -invariant subvarieties, D
T -invariant divisor =⇒ ∆(D) is equal to PD up to translation.

Main properties:

•For each big divisor D on X =⇒ Get a convex compact set ∆(D) ⊆ Rn,
that depends only on the numerically equivalence class of D, and satisfies

n! · volRn

(
∆(D)

)
= volX(D) =def lim

m→∞
h0(X,Ox(mD))

mn/n!
.

•Global Okounkov body of X: There exists a closed convex cone ∆(X),
such that in the diagram

∆(X)
((

� � // Rn ×N1(X)R
tt

N 1(X)R,
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Let us consider an n-dimensional projective variety X over an algebraically closed field,
endowed with a flag X• : X = Xn ⊇ · · · ⊇ X0 = {pt}, where Xi is an i-dimensional subvariety
that is nonsingular at the point X0. In [8], Lazarsfeld and Mustaţă established the following:
(a) For each big rational numerical divisor class ξ on X, Okounkov’s construction yields a
convex compact set ∆(ξ) in Rn, now called the Okounkov body of ξ, whose Euclidean volume
satisfies

volRn

(
∆(ξ)

)
=

1

n!
· volX(ξ).

The quantity volX(ξ) on the right is the volume of the rational class ξ, which is defined by
extending the definition of the volume of an integral Cartier divisor D on X, namely,

volX(D) =def lim
m→∞

h0(X,OX(mD))

mn/n!
.

We recall that the volume is an interesting invariant of big divisors which plays an important
role in several recent developments in higher dimensional geometry. For basic properties of
volumes we refer to [9].
(b) Moreover, there exists a closed convex cone ∆(X) ⊆ Rn ×N1(X)R characterized by the
property that in the diagram

∆(X)

!!

!

"

"" Rn × N1(X)R

##

N1(X)R,

the fiber ∆(X)ξ ⊆ Rn × {ξ} = Rn of ∆(X) over any big class ξ ∈ N1(X)Q is ∆(ξ). This is
illustrated schematically in Figure 1. ∆(X) is called the global Okounkov body of X.

N1(X)

∆(X)
∆(ξ)

0 ξ

Figure 1. The global Okounkov body.

Lazarsfeld and Mustaţă have used this theory to reprove and generalize results about
volumes of divisors, including Fujita’s Approximation Theorem. From (b), they can addi-
tionally give alternative proofs of properties of the volume function volX : Big(X) → R,
defined in the set of big classes of R-divisors. For example, it follows that volX is of class C1

and satisfies the log-concavity relation

volX(ξ + ξ′)1/n ≥ volX(ξ)1/n + volX(ξ′)1/n,

the fiber ∆(X)D ⊆ Rd × {D} = Rn of ∆(X) over any big numerical class
D ∈ N 1(X)Q is ∆(D).

Answer to the first question: Let P(E) be the projectivization of a rank two
TVB E over a smooth projective TV X.

•There is a natural flag of T -invariant subvarieties on P(E).

P(E) ⊃ P(E|Y1) ⊃ · · · ⊃ P(E|Yn) ⊃ {pt}.

•The Global Okounkov Body of P(E) can be explicitly described as a poly-
hedral cone in Rn+1 ×N1(P(E))R.

• In the proof, we give a finite collection of linear inequalities {IJ}J⊆{1,...,d},
such that

∆
(
P(E)

)
=
{
IJ(x) ≤ 0 : x ∈ Rn+1 ×N1(P(E))R,J ⊆ {1, . . . ,d}

}
.

What do our linear inequalities look like?

E TVB =⇒ Get {aj}1≤j≤d, {bj}1≤j≤d ⊆ Z; u1, u2 ∈ Zn; each filtration is clas-
sified as one of three types A, B, C; combinatorial data from TV X.

Identify: Rn+1 ×N1(P(E))R ∼= Rd+2
(x1,...,xn,xn+1,wn+1,...,wd,w).

THEOREM The following inequalities define the global Okounkov body
∆(P(E)) of P(E): w ≥ xn+1 ≥ 0 and

n∑

i=1

〈v∗i , vj〉xi + 〈u2 − u1, vj〉xn+1 + (aj − 〈u2, vj〉)w + wj ≥ 0, ∀ j ∈ A,
n∑

i=1

〈v∗i , vj〉xi + (〈u2 − u1, vj〉 + bj − aj)xn+1 + (aj − 〈u2, vj〉)w + wj ≥ 0, ∀ j ∈ B,

∑

j∈J

1

bj − aj

[
n∑

i=1

〈v∗i , vj〉xi + 〈u2−u1, vj〉xn+1 + (aj − 〈u2, vj〉)w + wj

]
+ w − xn+1 ≥ 0,

for each admissible set J ⊆ C.

Example: The tangent bundle TP2 of P2. The Okounkov body of OP(TP2)(1)
inside R3

(x,y,z) is given by the linear inequalities:

x ≤ 1 y ≥ 0 x + y + z ≤ 2

x ≥ 0 z ≥ 0 z ≤ 1

In particular, vol
(
OP(TP2)(1)

)
= 3!.
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Example 6.1. We consider TP2 , the tangent bundle of the projective plane (see Example
2.5). From Remark 5.3 (see Example 5.1), we get inequalities for the Okounkov body of each
line bundle on P(TP2). For instance, by setting w = 1 and wj = 0 for each j, we deduce
that the Okounkov body ∆(OP(TP2)(1)) is defined inside R3 by the inequalities:

1 ≥ x3 x3 ≥ 0 x1 ≥ 0
x2 ≥ 0 2 ≥ x1 + x2 + x3 1 ≥ x1

In particular, we see that the volume of OP(TP2 )(1) is volR3

(
∆(OP(TP2)(1))

)
· 3! = 6.

x1

x2

x3

(0,0,1)

(1,0,0)

(1,0,1)

(1,1,0)

(0,1,1)

(0,2,0)

Figure 2. The Okounkov body of OP(TP2 )(1).

In the next example we see that our description gives the expected answer for line
bundles that are pulled back from the base.

Example 6.2. The inequalities for the Okounkov body of a line bundle on P(E) of the form

π∗OX(
∑d

i=n+1 miDi) are xn+1 = 0 and

n∑

i=1

〈v∗
i , vj〉xi + mj ≥ 0,

for each j ∈ {1, . . . , d}. Furthermore, from the description of the Okounkov body of a toric
line bundle on X given in [8], we see that

∆Y•

(
π∗OX(

d∑

i=n+1

miDi)
)

= P∑d
i=n+1 miDi

× {0} = ∆X•

(
OX(

d∑

i=n+1

miDi)
)

× {0}.

In the next example, we see that our description gives the expected answer when the
toric vector bundle equivariantly splits.

Example 6.3. When E equivariantly splits as the sum of two toric line bundles L1 and L2,
the variety P(E) is a toric variety. The subvarieties in our flag in P(E) are also invariant with
respect to the torus T ′ of P(E). Hence we have two descriptions of the Okounkov bodies

4 Mori dream spaces [Hu-Keel]

A normal projective Q-factorial varietyX is a Mori Dream Space if Pic(X)Q =
N 1(X)Q, and for some (or equivalently any) line bundles L1, . . . , Lr that gen-
erate Pic(X), the associated Cox Ring is a finitely generated k-algebra:

Cox(X,L1, . . . , Lr) :=
⊕

(m1,...,mr)∈Zr

H0(X,L⊗m1

1 ⊗ · · · ⊗ L⊗mr
r ).

Example: Toric varieties are Mori dream spaces.

The finite generation of
R =

⊕
m≥0H

0(X,OX(mD))
is equivalent to the

finite generation of the
semigroup of lattice
points in the cone.

[Elizondo].

THEOREM P(E) is a Mori Dream Space, for any rank two toric vector bundle
E over a simplicial projective toric variety.

Remark: J. Hausen and H. Suss (2009) also prove the finite generation of the Cox rings of these P(E). These
authors work in the more general setting of complexity-one T -varieties. Our methods are independent their
work, and are inspired by the question of the finite generation of the Cox rings of higher rank toric vector
bundles.

The proof of the first theorem in few words:

•We describe the Klyachko filtrations of tensor products and symmetric products (more generally of Schur
functors) of TVB. With this, we get descriptions of the spaces of sections of all line bundles on P(E).

•We construct a special collection of equivariant sections for each line bundle on P(E). We give a for-
mula for the images of these sections under ν, and show that the closed convex hull of these images is
∆(P(E)). By translating the conditions for the existence of these sections into linear inequalities, we get
the description of ∆(P(E)).

Two proofs of the second theorem in few words:

• The torus action induces a finer grading in Cox(P(E)). We describe the graded pieces and the multipli-
cation map in terms of the data arising from the Klyachko filtrations of E . We deal with some features
not present in the TV case, and exhibit a finite generator set of a Veronese subalgebra of Cox(P(E)).

• An appropriate Veronese subalgebra of Cox(P(E)) is isomorphic to the semigroup algebra obtained from
the semigroup of lattice points with sufficiently divisible coordinates in ∆(P(E)), which is finitely gener-
ated using the first theorem.


