Toric vector bundles and Okounkov bodies

1 Toric varieties and toric vector bundles

A normal variety X is a Toric Variety if the torus T' = (k*)" is an open subset
of X, and 71" acts on X extending the natural action of 7" on itself.

Key tool:

X <= Certain collection of rational polyhedral cones.
Properties of X <= Properties of collection of cones.

For example: Projectiveness, completeness, smoothness, etc. are under-
stood in combinatorial terms. CI(X) and Pic(X) can be computed using only
T-invariant divisors. To each T-invariant divisor D, we can associate a poly-

tope Pp C R™ such that
H'(X,0x(D)) = € kx"

ue PpNZ®

A vector bundle 7 : £ — X over a TV X Is a Toric Vector Bundle if the total
space of £ has an action of T compatible with = and linear on its fibers.

Key tool: Klyachko’s Equivalence: TVB n : £ — X <= Vector space E with
a collection of filtrations: (D T-invariant divisor, i € Z)

- Ep(i—1) D Ep(t) 2 Ep(t+1) D ---

Satisfying compatibility: V fixed point p € X, 3 decomposition £ = &, _,. .,
s.t. if p € D, the filtration {£p(i)} can be recovered as Ep(i) = >, 1> Lu-

2 Questions
We will study the variety P(£), where £ is a rank 2 TVB. Questions:

1.Can we describe the Okounkov bodies of all line bundles on P(£) with
respect to some suitable flag of subvarieties?

2.1s P(£) a Mori Dream Space?

Answers: 1. Yes!! 2. Yesl!!

3 Okounkov bodies [Okounkov; Lazarsfeld-Mustata]

Let X be a projective variety of dimension n.

e Fix a flag of smooth subvarieties Y, : X =Y, DY, D --- DY, ={Pt}.

elet D be a big divisor on X. By looking at successive vanishing orders
along the elements of the flag, we get a function:

v: H'(X,0x(D)) {0} — Z™ c R"
S — (C1, ..., Cp)

Let us denote the image by v(D).
e Define the Okounkov Body A(D) as:

1
A(D) = A(D)y, =q.s closed convex hull | | — - v(mD)
m>1

Example: X smooth toric variety, {Y,} flag of T-invariant subvarieties, D
T-invariant divisor — A(D) is equal to Pp up to translation.

Jose Gonzalez - University of Michigan

Main properties:

e For each big divisor D on X — Get a convex compact set A(D) C R",
that depends only on the numerically equivalence class of D, and satisfies

n! - VOolgs(A(D)) = VOlx(D) =ge lim WX, 0:(mD))

M—00 m"/n/!

e Global Okounkov body of X: There exists a closed convex cone A(X),
such that in the diagram

A(¢)
A(X) R" x N'(X)g A(X)

0 §
Figure 1. The global Okounkov body.
the fiber A(X)p C R4 x {D} = R® of A(X) over any big numerical class
D e N'(X)qis A(D).

Answer to the first question: Let P(£) be the projectivization of a rank two
TVB & over a smooth projective TV X.

e There is a natural flag of T-invariant subvarieties on P(&).
P& DP(Ely) D---DP(&|y) D {pt}.

e The Global Okounkov Body of P(£) can be explicitly described as a poly-
nedral cone in R*™ x NY(P(&))rg.

¢ In the proof, we give a finite collection of linear inequalities {IJ}JQ{1 77777 ab
such that

APE) ={I;x) <0:x e R*™ x NYP(€))r, T C{1,...,d}}.

What do our linear inequalities look like?

ETVB — Get{a;}1<j<d, {b;}1<j<a C Z; ui,uy € Z™; each filtration is clas-
sified as one of three types A, B, C; combinatorial data from TV X.
ldentify: R™1 x NY(P(&))gr & R42

(X1, X0, Xnt1,Wnilse-, W, W)

THEOREM The following inequalities define the global Okounkov body
APE))of P(E): w >z, > 0and

n
D (W v)m 4 (ug — ur, v) T + (a; — (ug, v5))w +w; >0, V j € A,
Zzl
Z(vf, vi)zi + ((ue —uy,vj) +bj — a;)rn + (a; — (U2, vj))w+w; >0, Vje DB,
i=1

n

1 >k
Z b — q. Z@Z ; Uj>$z' - <U2—U1> Uj>$n+1 + (&j — <U2, vj>)w + W |+ W — Tpy > 0,
jeJ J JLi=1

for each admissible set J C (.

Example: The tangent bundle Tp: of P*. The Okounkov body of Op s (1)

inside R?’(X’y’Z) is given by the linear inequalities:

(1,0,1) (0,1,1)

r <1 y >0 r+y+z <2 |
x>0  z22>0 z <1 o
(1,0,0) ////
I /
In particular, vol(Op(r.,)(1)) = 3!. (110 020 75

Figure 2. The Okounkov body of Opr,)(1).

4 Mori dream spaces [Hu-Keel]

A normal projective Q-factorial variety X is a Mori Dream Space if Pic(X)q =
N'(X)q, and for some (or equivalently any) line bundles L4,..., L, that gen-
erate Pic(X), the associated Cox Ring is a finitely generated k-algebra:

Cox(X,Ly,....L,)= & H(X,L{™® @ L™).

Example: Toric varieties are Mori dream spaces.

The finite generation of
R=@,, H'(X,Ox(mD))
IS equivalent to the
finite generation of the
semigroup of lattice
points in the cone.

[Elizondo].

THEOREM P(&) is a Mori Dream Space, for any rank two toric vector bundle
£ over a simplicial projective toric variety.

Remark: J. Hausen and H. Suss (2009) also prove the finite generation of the Cox rings of these P(£). These
authors work in the more general setting of complexity-one T-varieties. Our methods are independent their
work, and are inspired by the question of the finite generation of the Cox rings of higher rank toric vector
bundles.

The proof of the first theorem in few words:

e We describe the Klyachko filtrations of tensor products and symmetric products (more generally of Schur
functors) of TVB. With this, we get descriptions of the spaces of sections of all line bundles on P(&).

e We construct a special collection of equivariant sections for each line bundle on P(£). We give a for-
mula for the images of these sections under v, and show that the closed convex hull of these images is
A(P(€)). By translating the conditions for the existence of these sections into linear inequalities, we get
the description of A(P(E)).

Two proofs of the second theorem in few words:

e The torus action induces a finer grading in Cox(P(£)). We describe the graded pieces and the multipli-
cation map in terms of the data arising from the Klyachko filtrations of £. We deal with some features
not present in the TV case, and exhibit a finite generator set of a Veronese subalgebra of Cox(P(£)).

e An appropriate Veronese subalgebra of Cox(P(&)) is isomorphic to the semigroup algebra obtained from
the semigroup of lattice points with sufficiently divisible coordinates in A(P(£)), which is finitely gener-
ated using the first theorem.




