

Notation

- Let k be a field of characteristic zero. Let G be a linear algebraic group over k.
- Sch_k = Category of finite type separated schemes over k.
- $G Sch_k = Subcategory of Sch_k consisting of G-schemes that admit an$ ample G-linearizable line bundle; Morphisms are G-equivariant.
- $\mathcal{C} = \mathsf{Either Sch}_k$ or $G \mathsf{Sch}_k$; $\mathcal{C}' = \mathsf{Category}$ with same objects as \mathcal{C} but only projective morphisms.
- $Ab_* = Category of graded abelian groups.$

Min. Requirem.: Refined Oriented Borel-Moore pre-Homology Theory

(D₁) Functor $H_* : \mathcal{C}' \to Ab_* \text{ s.t. } \bigoplus_{i=1}^r H_*(X_i) \xrightarrow{\sim} H_*(\coprod_{i=1}^r X_i).$ $(f_* := H_*f)$ $(D_2) \forall g : Y \rightarrow X \text{ smooth rel. codim. } d, g^* : H_*(X) \rightarrow H_{*-d}(Y).$ (D₃) An element $1 \in H_0(\operatorname{Spec} k)$ and for each pair (X, Y) of schemes in \mathcal{C} , $\times : H_*(X) \times H_*(Y) \to H_*(X \times Y)$ $(D_4) \forall f : Z \rightarrow X \text{ reg. embed. rel. codim. } d \text{ and } \forall g : Y \rightarrow X$ $Y \times_X Z \xrightarrow{f'} Y$ $f_q^!: H_*(Y) \to H_{*-d}(Y \times_X Z)$

All compatible!!

Examples: Chow theory A_* , K-theory $G_0[\beta, \beta^{-1}]$, algebraic cobordism Ω_*

The Axioms of Homotopy, Localization and Gillet's Sequence

(H) Let $p: E \to X$ be a vector bundle of rank r over X. Then $p^*: H_*(X) \to H_{*+r}(E)$ is an isomorphism.

(L) For any closed immersion $i : Z \rightarrow X$ with open complement *i* : $U = X \setminus Z \rightarrow X$ the following sequence is exact:

 $H_*(Z) \stackrel{i_*}{\to} H_*(X) \stackrel{J^*}{\to} H_*(U) \to 0.$

(G) For any envelope $\pi : \tilde{X} \to X$ (i.e. π is proper and $\forall Z \subset X$ subv. $\exists Z' \subset X'$ subv. s.t. $\pi | : Z' \to Z$ is birational), with π projective, the following sequence is exact $H_*(\tilde{X} \times_X \tilde{X}) \xrightarrow{p_{1*}-p_{2*}} H_*(\tilde{X}) \xrightarrow{\pi_*} H_*(X) \longrightarrow 0.$

Equivariant Version of an ROBM pre-Homology Theory

- **Definition:** Assume that the ROBM pre-homology theory H_* on Sch_k satisfies (H) and (L). For any scheme $X \in G - \operatorname{Sch}_k$, choose a good system of representations $\{(V_i, U_i)\}$ of G and define $H^G_*(X) = \bigoplus_{n \in \mathbb{Z}} H^G_n(X)$, where $H_n^G(X) := \lim_{i \to i} H_{n+\dim U_i-\dim G}(X \times^G U_i).$
- This definition is independent of good system of representations, and H_*^G is an ROBM pre-homology theory on $G-Sch_k$.

(Cf. Equivariant Chow Theory A_*^G (Totaro 90's, Edidin-Graham 96') & Equivariant Algebraic Cobordism Ω_*^G (Krishna 10', Heller-Malagón-López 10')

University of British Columbia, Vancouver, Canada

$$\rightarrow X$$

 $\times_X Z)$

Algebraic Cobordism

Computing Algebraic Cobordism as Envelope Cobordism

THEOREM For any envelope $\pi : \tilde{X} \to X$ in Sch_k, with π projective,

 $\Omega_*(X) = \Omega^{\pi}_*(X) := rac{\text{Span of cycles pushed forward from } ilde{X}}{\text{Span of relations pushed forward from } ilde{X}}$

Operational Bivariant Algebraic Cobordism

Definition: Let $f : X \to Y$ be any morphism. For each morphism $g: Y' \to Y$, form the fiber square

A bivariant class c in $\Omega^p(X \xrightarrow{r} Y)$ is a collection of homomorphisms $c_{a}^{(k)}: \Omega_{k}Y' \rightarrow \Omega_{k-p}X'$

for all $g: Y' \rightarrow Y$, and all $k \in \mathbb{Z}$, compatible with projective push-forwards, smooth pull-backs, intersection products and exterior products. I.e:

Operational Algebraic Cobordism

Remark:	We can	similarly define	the
		Ω^*_G	ŀ

Definition: The Operational Algebraic Cobordism of $X \in \operatorname{Sch}_k$ is

Definition: The Operational Equivariant Algebraic Cobordism of $X \in G - \operatorname{Sch}_k$ IS $\Omega_G^* X = \Omega_G^* (X \to X)$

Operational Algebraic Cobordism

Jose Gonzalez & Kalle Karu Department of Mathematics, University of British Columbia

(Levine-Morel 01', Levine-Pandharipande 08')

Y smooth quasiproj. var., $Y \rightarrow X \times \mathbb{P}^1$ proj., Y_{∞} smooth; A and B smooth and intersect transversally. $\mathbb{P}_{A \cap B} := \mathbb{P}(N_{A \cap B}A \oplus \mathcal{O}_{A \cap B})$ \square Ω_* is the universal OBM homology theory on Sch_k . $\blacktriangleright \mathsf{E.g.} \ A_*(X) = \Omega_*(X) \otimes_{\mathbb{L}} \mathbb{Z}$

(Cf. Fulton-MacPherson 81' operational A_{*} case)

(Cf. Fulton-MacPherson 81' operational A_* case)

operational bivariant theories: H_G^* $\Omega^*(X) = \Omega^*(X \to X)$

Homology and Cohomology

THEOREM

The same holds for Ω^G_* , H_* and H^G_* .

Operational Equivariant vs. Equivariant Operational

Gillet & Kimura Sequences for Algebraic Cobordism (Cf. Gillet 82', Kimura 92' A, case)

sequences are exact:

following are equivalent: $\tilde{c} = \pi^*(c)$ for some $c \in \Omega^*(Y \to X)$.

Operational Equivariant Cobordism of Toric Varieties (Cf.Krishna-Uma10'Ω^T of smooth TV case)

Let X_{Δ} be a toric variety.

- Brion+Payne: The operational T-equivariant Chow ring of X_{Δ} is isomorphic to the algebra $PP(\Delta)$ of piecewise integral polynomial functions on the fan Δ .
- Brion-Vergne+Payne-Anderson: The operational T-equivariant K-theory ring of X_{Δ} is isomorphic to the algebra $PLP(\Delta)$ of piecewise integral exponential functions on the fan Δ .
- **THEOREM** Let X_{Δ} be a toric variety. Then the operational *T*-equivariant cobordism $\Omega^*_{T}(X_{\Delta})$ is isomorphic to the algebra $PPS(\Delta)$ of piecewise graded power series on the fan Δ with coefficients in the Lazard ring $\mathbb{L} = \Omega_*(\operatorname{Spec} k).$

THE UNIVERSITY OF BRITISH COLUMBIA

(Cf. Fulton-MacPherson 81' A_{*} case)

- For any X: $\varphi: \Omega^{-*}(X \to \operatorname{Spec} k) \xrightarrow{\sim} \Omega_*(X)$
- For X smooth: $\psi : \Omega^*(X \to X) \xrightarrow{\sim} \Omega_{\dim X *}(X)$

(Cf. Edidin-Graham $97' A_*$ case)

- **THEOREM** If the ROBM pre-homology theory H_* satisfies properties (H), (L) and (G), then for any X in $G-Sch_k$ there are isomorphisms
 - $H^*_G(X) \xrightarrow{\sim} \varprojlim H^*(X \times^G U_i)$ and in part. $\Omega^*_G(X) \xrightarrow{\sim} \varprojlim \Omega^*(X \times^G U_i).$
- **THEOREM** For any envelope $\pi : \tilde{X} \to X$, with π projective, the following
 - $\Omega_*(ilde{X} imes_X ilde{X}) \xrightarrow{p_{1*}-p_{2*}} \Omega_*(ilde{X}) \xrightarrow{\pi_*} \Omega_*(X) \longrightarrow 0.$
 - $0 \to \Omega^*(Y \to X) \xrightarrow{\pi^*} \Omega^*(\tilde{Y} \to \tilde{X}) \xrightarrow{p_1^* p_2^*} \Omega^*(\tilde{Y} \times_Y \tilde{Y} \to \tilde{X} \times_X \tilde{X}).$ $0 \to \Omega^*_G(Y \to X) \xrightarrow{\pi^*} \Omega^*_G(\tilde{Y} \to \tilde{X}) \xrightarrow{p_1^* - p_2^*} \Omega^*_G(\tilde{Y} \times_Y \tilde{Y} \to \tilde{X} \times_X \tilde{X}).$

Inductive Computation of Operational Cobordism

(Cf. Kimura 92' A_{*} case)

- **THEOREM** Assume that the envelope $\pi : \tilde{X} \to X$ is birational and projective, $\pi : \pi^{-1}(U) \xrightarrow{\sim} U$ for some open nonempty $U \subset X$. Let $S_i \subset X$ be closed subschemes, such that $X \setminus U = \bigcup S_i$. Let $E_i = \pi^{-1}(S_i)$ and let $\pi_i: E_i \to S_i$ be the induced morphism. Then for a class $\tilde{c} \in \Omega^*(\tilde{Y} \to \tilde{X})$ the
- For all i, $\tilde{c}|_{E_i} = \pi_i^*(c_i)$ for some $c_i \in \Omega^*(Y \times_X S_i \to S_i)$.