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Abstract. We show that at most a 2−cn
3/2

proportion of graphs on n vertices have integral spec-
trum. This improves on previous results of Ahmadi, Alon, Blake, and Shparlinski (2009), who
showed that the proportion of such graphs was exponentially small.
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1. Introduction and Statement of Main Results

Call a graph Integral if all eigenvalues of its adjacency matrix are integers. Examples of integral
graphs include the hypercube, the complete graph Kn, the symmetric complete bipartite graph
Kn,n, and the Paley graph on q vertices where q is an odd square prime power.

Integral graphs were first studied by Harary and Schwenk [6], who gave several families of integral
graphs, but at the same time described the general question of classifying all integral graphs as
”intractable”. More recently, there have been several papers noting that integral graphs may be
useful in designing quantum spin networks with perfect state transfer (see, for instance, [3, 2]).

It is natural to try and count these graphs, or, equivalently, to give the probability that a random

graph (one chosen uniformly at random from the 2(n2) graphs on n vertices) is integral. The first
non-trivial upper bound on this problem was given by Ahmadi, Alon, Blake, and Shparlinski [1].
In probabilistic language, the bound they obtained was

Theorem 1. The probability that a randomly chosen graph on n vertices is integral is, for suffi-
ciently large n, at most 2−n/400,

and they noted in their paper that ”we believe our bound is far from being tight and the number
of integral graphs is substantially smaller”. Our main result confirms this belief, showing that the
proportion of integral graphs decays much faster than exponentially.

Theorem 2. The probability that a randomly chosen graph on n vertices is integral is, for large n,

at most 2−cn
3/2

, for some absolute constant c.

Remark 1. This result is likely still not close to being tight. For more on this, see the final section
of this paper.
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In the next section we will collect a few linear algebraic properties that hold for the adjacency matrix
of every graph, deterministic or random. The Proof of Theorem 2 will follow from combining these
properties with a counting argument, essentially tracking how the spectrum of the adjacency matrix
behaves as the graph grows.

2. A Few Deterministic Observations

We begin with the quick observation that adjacency matrices of graphs cannot have too many large
eigenvalues.

Lemma 1. Let G be an arbitrary graph on n vertices, and let A be the adjacency matrix of G.
Then A must contain at least 3n

4 eigenvalues in the interval [−2
√
n, 2
√
n ].

Remark 2. It follows from Wigner’s semicircular law [12] together with interlacing that for large n
almost every graph on n vertices has fewer than 3n/4 eigenvalues in the interval [−1.26

√
n, 1.26

√
n ].

Proof. Let λi be the ith eigenvalue of A. We have

n∑
i=1

λ2i = Tr(A2) = 2E(G) ≤ n2,

where E(G) is the number of edges of G. Let T be the multiset of eigenvalues of A that are at least
2
√
n in absolute value. Then we also have

n∑
i=1

λ2i ≥ (2
√
n)2|T |.

Combining the above two bounds, we have |T | ≤ n
4 so at least 3n

4 eigenvalues lie inside the interval.

�

In particular, this implies that any integral matrix must have a large amount of multiplicity in its
spectrum: The average multiplicity of an integer in [−2

√
n, 2
√
n ] as an eigenvalue is proportional

to
√
n. Tao and Vu [10] have shown that having even a single eigenvalue repeated even twice is

(polynomially) unlikely for a random matrix, and the goal will be to show that such a large amount
of repetition is far less likely. For this our perspective, drawing on an idea originally due to Komlós
[7], will be to think of A as being grown “minor by minor” (equivalently, we will expose the graph
G vertex by vertex).

Let Ak be the upper left k × k minor of A. Then Ak+1 has the block structure

Ak+1 =

(
Ak xk+1

xTk+1 0

)
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where xk+1 is the newly added column. Our second observation (a variation on Lemma 2.1 from
[10]) is that whenever an eigenvalue’s multiplicity increases from Ak to Ak+1, the new column must
satisfy certain orthogonality conditions.

Lemma 2. Let Ak, Ak+1, and xk+1 be as above. Let λ be any eigenvalue whose multiplicity in the
spectrum of Ak+1 is strictly larger than in Ak, and let v be any eigenvector of Ak corresponding to
λ. Then xk+1 and v are orthogonal.

Proof. Let w be an arbitrary eigenvector of Ak+1, and write w =

(
w′

w(k+1)

)
, where w′ ∈ Rk and

w(k+1) ∈ R. Note that if w(k+1) = 0, then w′ is itself an eigenvector of Ak with the same eigenvalue.
In particular, since the multiplicity of λ increases from Ak to Ak+1, there must be an eigenvector
w with Aw = λw and w(k+1) 6= 0. Fix such a w.

Now let v1, . . . , vk be an orthonormal eigenbasis for Ak. After changing our basis for Rk+1 to
{v1, . . . , vk, ek+1} (where ek+1 is the standard basis vector), we may without loss of generality
assume that Ak is diagonal, with the eigenvalues corresponding to λ appearing in the first j coor-
dinates for some j. For any 1 ≤ i ≤ j, the ith coordinate of the eigenvalue equation Ak+1w = λw
now gives

λw(i) = λw(i) + w(k+1)x
(i)
k

where x
(i)
k denotes the ith coordinate of xk. Since by assumption w(k+1) 6= 0, we must have x

(i)
k = 0.

Returning to the original basis, this corresponds to xk being orthogonal to vi. This is true for every
i between 1 and j, so xk is orthogonal to the entire eigenspace. �

Finally, we will make use of the following observation of Odlyzko [9], whose proof we include here
for completeness.

Lemma 3. Let S be an arbitrary n− ` dimensional subspace of Rn. Then S contains at most 2n−`

vectors from (0, 1)n. Equivalently, S contains at most a 2−` proportion of all (0, 1) vectors.

Proof. Since S has dimension n−`, there must be a collection of n−` coordinates which parameterize
the space, in the sense that those coordinates uniquely determine the remaining ` coordinates. There
are 2n−` choices for the values of those coordinates. �

3. The Proof of Theorem 2

The rough idea of our argument will be to track the growth of each integer’s multiplicity as an
eigenvalue as k increases. On the one hand, we know from Lemma 1 that by the end of the process
there must be a large amount of total multiplicity, in the sense that the average multiplicity of an
integer in [−2

√
n, 2
√
n ] as an eigenvalue is large. This will imply there must be many distinct pairs

(k, λ) where some eigenvalue λ that already has large multiplicity increases its multiplicity further
as Ak is augmented to Ak+1. Now Lemma 2 will imply we have many orthogonality relations, which
will turn out to be unlikely for a random matrix. We now turn to the details.
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Given an n × n matrix A and an integer i between −2
√
n and 2

√
n, let Mult(Ak, i) denote the

multiplicity of i as an eigenvalue of Ak, and let Mult(A, i) = Mult(An, i) be its multiplicity in the
spectrum of A. By Cauchy Interlacing (e.g. [5] Theorem 4.3.8) we have

|Mult(Ak, i)−Mult(Ak+1, i)| ≤ 1.

In particular, i must attain each multiplicity between 0 and Mult(A, i) at least once during the
augmentation process. With this in mind, we define the vector ai as follows:

ai(m) =

 0, if Mult(Am, i) > Mult(A, i)
0, if there is some m′ > m with Mult(Am′ , i) = Mult(Am, i)
j, if m is the largest k with Mult(Ak, i) = j and j ≤ Mult(A, i)

The role of the vectors ai here is to track how the multiplicity of each eigenvalue of A increases
throughout the augmentation process. We make the following observations about the vectors ai:

• For each m < n with ai(m) 6= 0, the multiplicity of i as an eigenvalue must necessarily
increase as Am is augmented to Am+1, since otherwise m would not be the largest minor
with this multiplicity. This is clearly the case if Mult(Am+1, i) = Mult(Am, i), and if
Mult(Am+1, i) < Mult(Am, i) then by the interlacing property above the multiplicity of i
must reach Mult(Am, i) again on the way to Mult(A, i) (here it is critical that ai(m) 6= 0
only if Mult(Am, i) ≤ Mult(A, i)).
• The value ai(n) is (by definition) the multiplicity of i as an eigenvalue of A. In particular,

by Lemma 1 we have
∑

i ai(n) ≥ 3n
4 .

• As noted above, by interlacing and discrete continuity each multiplicity between 0 and ai(n)
is achieved at some point during the augmentation process. So for each j between 1 and
ai(n), there is a unique m with ai(m) = j, and these m are increasing in j for each i.

We will refer to the collection of sequences ai corresponding to a matrix A as the type of the
matrix. Note that the number of possible types for an integral matrix is not too large. There are
at most (n+ 1)4

√
n+1 possible choices for the integral spectrum of A (i.e. the choices ai(n) for each

i), since each ai(n) is an integer between 0 and n. Once the ai(n) are chosen, there are at most

nai(n) possible values for each ai (choosing where each nonzero value in the vector is). Multiplying
over all i, the number of possible types given ai(n) for all i is at most

n
∑
i ai(n) ≤ nn

So the total number of distinct possible types for A is at most (n + 1)4
√
n+1nn = 2o(n

3/2). This
means it is enough to show

Claim 1. For any fixed type, the probability G is both integral and has that type is at most 2−cn
3/2

.

So let us now consider a fixed type. For 0 ≤ m ≤ n − 1, let Em+1 be the event that for every
eigenvalue i with ai(m) 6= 0, the multiplicity of i as an eigenvalue increases from ai(m) to ai(m)+1
as we augment Am to Am+1. These events correspond to the each eigenvalue’s multiplicity following
the correct track throughout the augmentation process. For a matrix to have the desired type, each
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of the Em+1 must hold, so we have

P(A has the given type ) ≤
n−1∏
m=0

P (Em+1|E1, . . . , Em)

≤
n−1∏
m=0

max
Am

P (Em+1|Am) ,

where the last inequality follows since Am completely determines the events E1 through Em.

By lemma 2, we know that for Em+1 to hold, xm+1 must be orthogonal to the eigenspace of Am
corresponding to each eigenvalue whose multiplicity increases from Am to Am+1. In particular,
it must be simultaneously orthogonal to the eigenspace for every i where ai(m) 6= 0, since by
definition that corresponds to an increase in the multiplicity of i (there may be other eigenvalues
whose multiplicities increase but for which ai(m) = 0 because m is not maximal for its multiplicity.
We ignore them).

Since we are now conditioning on Am, this corresponds to a fixed subspace in which xm+1 must
lie for Em+1 to hold. That subspace has co-dimension equal to

∑
i ai(m). Using Lemma 3 the

probability xm+1 lies in this subspace, we have

P (Em+1|Am) ≤ 2−
∑
i ai(m).

Multiplying over all m and taking logarithms, we have

− log2 (P(A has the given type )) ≥
n−1∑
m=0

∑
i

ai(m)

One way of thinking about this sum is that every time an eigenvalue’s multiplicity increases, it
contributes to the total co-dimension (and thus to the exponent) an amount equal to its current
multiplicity. Recall that for each i and for each 0 ≤ j ≤ ai(n), there is a unique m satisfying
ai(m) = j. So we can rewrite this bound as

− log2 (P(A has the given type )) ≥
2
√
n∑

i=−2
√
n

ai(n)−1∑
j=0

j

=
1

2

2
√
n∑

i=−2
√
n

ai(n)2 − 1

2

2
√
n∑

i=−2
√
n

ai(n)

≥ 1

2(4
√
n+ 1)

 2
√
n∑

i=−2
√
n

ai(n)

2

− 1

2

2
√
n∑

i=−2
√
n

ai(n)
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By Lemma 1, we have

3n

4
≤

2
√
n∑

i=−2
√
n

ai(n) ≤ n.

So it follows that

− log2 (P(A has the given type )) ≥ 1

2(4
√
n+ 1)

(
3n

4

)2

− n

2
=

(
9

128
+ o(1)

)
n3/2

4. Extensions and Further Conjectures

The proof of Theorem 2 did not use in any vital way the fact that we were working with matrices
with integral eigenvalues. Indeed, an identical argument would show the following.

Theorem 3. Let S be any subset of the algebraic integers, and suppose there are constants α < 2
and c such that for sufficiently large N

|S ∩ [−N,N ]| ≤ cNα

then there is a constant c′ such that for sufficiently large n, the proportion of graphs on n vertices

having spectrum lying entirely in S is at most 2−c
′n2−α/2

Similarly, although (0, 1) matrices were natural to look at due to the graphical motivations, the
actual distribution of the entries was not critical here. A similar theorem would hold if the entries
were drawn from any other bounded non-degenerate distribution (with the constant now depending
on the distribution in question).

It seems unlikely that 3/2 is the correct exponent in Theorem 2, and indeed we suspect that the

probability a graph is integral is 2−( 1
2
+o(1))n2

(equivalently, that the number of integral graphs is

2o(n
2)). However, it seems that improving the exponent beyond 3/2 will require some significant

new idea. The main stumbling block is in a sense estimating the number of graphs for which a fixed
eigenvalue appears with large multiplicity. Even in the case λ = 0, this seems like an interesting
problem.

Question 1. Let Qn be a random n × n symmetric matrix where each above diagonal entry is
equally likely to be 0 and 1. For a given s (possibly growing with n), what is the probability Qn has
rank at most n− s?

In the case s = 1 this corresponds to estimating the singularity probability of Qn, which is a well-
studied problem [4, 8, 11]. The current best upper bound is due to Vershynin, who showed in [11]
that for large n the probability is at most exp (−nc) for some c > 0. The best known lower bound
is (1 + o(1))

(
n
2

)
2−n, coming from the probability that some pair of rows of Qn are equal (and it is

a longstanding conjecture that this bound is optimal).
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For larger s, the authors of [1] showed an upper bound of 2−
s2−s

2 in their proof of Theorem 1, and
a similar bound showed up in our argument where we estimated the probability of a matrix having
a given type (with ai(n) for a single i playing the role of s). A natural lower bound here would be
the probability that Qn contains at least s zero rows (equivalently, that the corresponding graph

has at least s isolated vertices), which for s much smaller than n is 2−(1+o(1))ns. This bound may
well be essentially optimal.
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