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Abstract. We study information gathering in ad-hoc radio networks.
Initially, each node of the network has a piece of information called a
rumor, and the overall objective is to gather all these rumors in the
designated target node. The ad-hoc property refers to the fact that the
topology of the network is unknown when the computation starts. Ag-
gregation of rumors is not allowed, which means that each node may
transmit at most one rumor in one step.

We focus on networks with tree topologies, that is we assume that the
network is a tree with all edges directed towards the root, but, being ad-
hoc, its actual topology is not known. We provide two deterministic algo-
rithms for this problem. For the model that does not assume any collision
detection nor acknowledgement mechanisms, we give an O(nloglogn)-
time algorithm, improving the previous upper bound of O(nlogn). We
also show that this running time can be further reduced to O(n) if the
model allows for acknowledgements of successful transmissions.

1 Introduction

We study the problem of information gathering in ad-hoc radio networks. Ini-
tially, each node of the network has a piece of information called a rumor, and the
objective is to gather all these rumors, as quickly as possible, in the designated
target node. The nodes communicate by sending messages via radio transmis-
sions. At any time step, several nodes in the network may transmit. When a
node transmits a message, this message is sent immediately to all nodes within
its range. When two nodes send their messages to the same node at the same
time, a collision occurs. Aggregation of rumors is not allowed, which means that
each node may transmit at most one rumor in one step.

The network can be naturally modeled by a directed graph, where an edge
(u,v) indicates that v is in the range of u. The ad-hoc property refers to the
fact that the actual topology of the network is unknown when the computation
starts. We assume that nodes are labeled by integers 0, 1, ..., n—1. An information
gathering protocol determines a sequence of transmissions of a node, based on
its label and on the previously received messages.

Our results. In this paper, we focus on ad-hoc networks with tree topologies,
that is the underlying ad-hoc network is assumed to be a tree with all edges
directed towards the root, although the actual topology of this tree is unknown.
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We consider two variants of the problem. In the first one, we do not assume
any collision detection or acknowledgment mechanisms, so none of the nodes (in
particular neither the sender nor the intended recipient) are notified about a
collision after it occurred. In this model, we give a deterministic algorithm that
completes information gathering in time O(nloglogn). Our result significantly
improves the previous upper bound of O(nlogn) from [6]. To our knowledge,
no lower bound for this problem is known, except for the trivial bound of 2(n)
(since each rumor must be received by the root in a different time step).

In the second part of the paper, we also consider a variant where acknowledg-
ments of successful transmissions are provided to the sender. All the remaining
nodes, though, including the intended recipient, cannot distinguish between col-
lisions and absence of transmissions. Under this assumption, we show that the
running time can be improved to O(n), which is again optimal for trivial reasons,
up to the implicit constant.

While we assume that all nodes are labelled 0,1,...,n — 1 (where n is the
number of nodes), our algorithms’ asymptotic running times remain the same if
the labels are chosen from a larger range 0, 1,..., N — 1, as long as N = O(n).

Related work. The problem of information gathering for trees was introduced
in [6], where the model without any collision detection was studied. In addition
to the O(nlogn)-time algorithm without aggregation — that we improve in this
paper — [6] develops an O(n)-time algorithm for the model with aggregation,
where a message can include any number of rumors. Another model studied
in [6], called fire-and-forward, requires that a node cannot store any rumors; a
rumor received by a node has to be either discarded or immediately forwarded.
For fire-and-forward protocols, a tight bound of ©(n!?) is given in [6].

The information gathering problem is closely related to two other information
dissemination primitives that have been well studied in the literature on ad-hoc
radio networks: broadcasting and gossiping. All the work discussed below is for
ad-hoc radio networks modeled by arbitrary directed graphs, and without any
collision detection capability.

In broadcasting, a single rumor from a specified source node has to be de-
livered to all other nodes in the network. The naive ROUNDROBIN algorithm
(see the next section) completes broadcasting in time O(n?). Following a se-
quence of papers [7, 14,3, 4] where this naive bound was gradually improved, it
is now known that broadcasting can be solved in time O(nlognloglogn) [17] or
O(nlog? D) [10], where D is the diameter of G. This nearly matches the lower
bound of £2(nlog D) from [9]. Randomized algorithms for broadcasting have also
been well studied [1,15,10].

The gossiping problem is an extension of broadcasting, where each node
starts with its own rumor, and all rumors need to be delivered to all nodes in
the network. The time complexity of deterministic algorithms for gossiping is
a major open problem in the theory of ad-hoc radio networks. Obviously, the
lower bound of 2(nlog D) for broadcasting [9] applies to gossiping as well, but
no better lower bound is known. It is also not known whether gossiping can be
solved in time O(n polylog(n)) with a deterministic algorithm, even if message



aggregation is allowed. The best currently known upper bound is O(n*/3 log? n)
[13] (see [7,21] for some earlier work). The case when no aggregation is allowed
(or with limited aggregation) was studied in [5]. Randomized algorithms for
gossiping have also been well studied [10, 16, 8]. Interested readers can find more
information about gossiping in the survey paper [12].

Connections to other problems. For arbitrary graphs, assuming aggrega-
tion, one can solve the gossiping problem by running an algorithm for informa-
tion gathering and then broadcasting all rumors (as one message) to all nodes
in the network. Thus an O(n polylog(n))-time algorithm for information gath-
ering would resolve in positive the earlier-discussed open question about the
complexity of gossiping. Due to this connection, developing an O(n polylog(n))-
time algorithm for information gathering on arbitrary graphs is likely to be very
difficult, if possible at all.

This research, as well as the earlier work in [6], was motivated mainly by this
connection to gossiping. We hope that developing efficient algorithms for trees,
or for some other natural special cases, will ultimately lead to some insights
helpful in resolving the complexity of the gossiping problem in arbitrary graphs.

Some algorithms for arbitrary ad-hoc networks (see [5], for example) involve
constructing a spanning subtree of the network and disseminating information
along this subtree. Better algorithms for information gathering on trees may
thus be useful in addressing problems for arbitrary graphs.

The problem of information gathering for trees is also related to the con-
tention resolution problem in multiple-access channels (MAC). There is a myr-
iad of variants of MAC contention resolution in the literature. (See, for example,
[18,2].) Generally, the instance of the problem involves a collection of transmit-
ters connected to a shared channel, like Ethernet, for example. Some of these
transmitters need to send their messages across the channel, and the objective
is to design a distributed protocol that will allow them to do that. The informa-
tion gathering problem for trees is in essence an extension of MAC contention
resolution to multi-level hierarchies of channels, where transmitters have unique
identifiers, and the structure of this hierarchy is not known.

2 Preliminaries

We now provide a formal definition of our model and introduce notation, termi-
nology, and some basic properties used throughout the paper.

Radio networks with tree topology. In the paper we focus exclusively on
radio networks with tree topologies. Such a network will be represented by a tree
T with root r and with n = | 7| nodes. The edges in T are directed towards the
root, representing the direction of information flow: a node can send messages to
its parent, but not to its children. We assume that each node v € T is assigned
a unique label from [n] = {0, 1,...,n — 1}, and we denote this label by label(v).

For a node v, by deg(v) we denote the degree of v, which is the number of
v’s children. For any subtree X of 7 and a node v € X, X,, denotes the subtree
of X rooted at v that consists of all descendants of v in X.



For any integer v = 1,2,...,n — 1 and any node v of T define the ~y-height of
v as follows. If v is a leaf then the v-height of v is 0. If v is an internal node then
let g be the maximum ~-height of a child of v. If v has fewer than ~ children
of y-height equal g then the 7-height of v is g. Otherwise, the ~-height of v
is g + 1. The «-height of v will be denoted by hez’ghtv(v). In case when more
than one tree are under consideration, to resolve potential ambiguity we will
write height, (v, T) for the y-height of v in 7. The -height of a tree 7, denoted
height. (T), is defined as height. (r), that is the y-height of its root.

Fig. 1. An example showing a tree
and the values of 3-heights for all its
nodes.

Its name notwithstanding, the definition of y-height is meant to capture the
“bushiness” of a tree. For example, if T is a path then its y-height equals 0
for each v > 1. The concept of y-height generalizes Strahler numbers [19, 20],
introduced in hydrology to measure the size of streams in terms of the complexity
of their tributaries. Figure 1 gives an example of a tree and values of 3-heights
for all its nodes. The lemma below is a slight refinement of an analogous lemma
in [6], and it will play a critical role in our algorithms.

Lemma 1. If T has q leaves, and 2 < vy < q, then height (T) < log. q.

Equivalently, any tree having ~-height j must have at least 77 leaves. This
can be seen by induction on j — if v is a node which is furthest from the root
among all nodes of y-height j, then v by definition has v descendants of ~-height
j — 1, each of which has 47~ leaf descendants by inductive hypothesis.

Information gathering protocols. Each node v of T has a label (or an identi-
fier) associated with it, and denoted label(v). When the computation is about to
start, each node v has also a piece of information, p,, that we call a rumor. The
computation proceeds in discrete, synchronized time steps, numbered 0, 1,2, ....
At any step, v can either be in the receiving state, when it listens to radio trans-
missions from other nodes, or in the transmitting state, when it is allowed to
transmit. When v transmits at a time ¢, the message from v is sent immediately
to its parent in 7. As we do not allow rumor aggregation, this message may
contain at most one rumor, plus possibly O(logn) bits of other information. If
w is v’s parent, w will receive v’s message if and only if w is in the receiving
state and no other child of w transmitted at time ¢. In Sections 3 and 4 we do
not assume any collision detection nor acknowledgement mechanisms, so if v’s
message collides with one from a sibling, neither v nor w receive any notification.
We relax this requirement in Section 5, by assuming that v (and only v) will
obtain an acknowledgment from w after each successful transmission.

The objective of an information gathering protocol is to deliver all rumors
from 7T to its root 7, as quickly as possible. Such a protocol needs to achieve



its goal even without the knowledge of the topology of 7. More formally, a
gathering protocol A can be defined as a function that, at each time ¢, and for
each given node v, determines the action of v at time ¢ based only on v’s label
and the information received by v up to time ¢. The action of v at each time
step ¢ involves choosing its state (either receiving or transmitting) and, if it is
in the transmitting state, choosing which rumor to transmit.

We will say that A runs in time T'(n) if, for any tree 7 and any assignment
of labels to its nodes, after at most T'(n) steps all rumors are delivered to 7.

In a simple information gathering protocol called ROUNDROBIN, nodes trans-
mit one at a time, in n rounds, where in each round they transmit in the order
0,1,...,n — 1 of their labels. For any node v, when it is its turn to transmit,
v transmits any rumor from the set of rumors that have been received so far
(including its own rumor) but not yet transmitted. In each round, each rumor
that is still not in r will get closer to r, so after n? steps all rumors will reach r.

Strong k-selectors. Let S = (S, 51, ..., Sy_1) be a family of subsets of {0, 1, ...,n — 1}.
S is called a strong k-selector if, for each k-element set A C {0,1,...,n — 1} and
each a € A, there is a set S; such that S; N A = {a}. As shown in [11,9],
for each k there exists a strong k-selector S = (So, 51, ..., S = m — 1) with
m = O(k?logn). We will make extensive use of strong k-selectors in our algo-
rithms. At a certain time in the computation our protocols will “run” S, for an
appropriate choice of k, by which we mean that it will execute a sequence of
m consecutive steps, such that in the jth step the nodes from S; will transmit,
while those not in S; will stay quiet. This will guarantee that, for any node v
with at most k — 1 siblings, there will be at least one step in the execution of S
where v will transmit but none of its siblings will. Therefore at least one of v’s
transmissions will be successful.

3 An O(n+/logn)-Time Protocol

We first give a gathering protocol SIMPLEGATHER for trees with running time
O(ny/logn). Our faster protocol will be presented in the next section.

We fix three parameters K = 2LVe7) D = [log, n] = O(y/logn) and D’ =
[log K*] = O(y/Iogn). We also fix a strong K-selector S = (Sp, S1,...; Sm—1),
where m < CK?logn, for some integer constant C.

By Lemma 1, we have that heighty(T) < D. A node v of T is called light
if |7,] < n/K?3; otherwise we say that v is heavy. Let T’ be the subtree of T
induced by the heavy nodes. By the definition of heavy nodes, 7’ has at most
K3 leaves, so height,(T') < D’. Also, obviously, r € T".

To streamline the description of our algorithm we will allow each node to
receive and transmit messages at the same time. We will assume a preprocessing
step allowing each v to know both the size of its subtree 7T, and its K-height. In
particular, v knows whether it is in 77 or not. We will assume that each node
v € T', also knows its 2-height in the subtree 7’. In Appendix A we describe
the preprocessing, as well as how to remove the receive/transmit assumption.

A detailed description of Algorithm SIMPLEGATHER is given in Pseudocode 1.
To distinguish between computation steps (which do not consume time) and



communication steps, we use command “at time ¢”. When the algorithm reaches
this command it waits until step time ¢ to continue processing. Each message
transmission takes one time step. For each node v we maintain a set B, of ru-
mors received by v, including its own rumor p,. The algorithm consists of two
epochs, and we describe the computation in each epoch separately.

Epoch 1: light nodes. In Epoch 1, only the light nodes participate, and the goal is
to move all rumors to 7”. This epoch has D+1 stages (numbered h = 0,1,..., D),
with stage h beginning at time «p = (C' + 1)hn. A light node v with K-height
h is only active during stage h.

Each stage has two parts. In the first part of stage h, v will transmit ac-
cording to the K-selector S. Specifically, this part has n/K? iterations, each
corresponding to a complete execution of S. During each iteration, v chooses
a single rumor p, € B, that it has not yet marked, and transmits p, in each
time step corresponding to a set .S; containing the label of v.. This p, is then
marked, and not chosen again during the first part. Note that if the parent u of
v has degree at most K, the definition of K-selectors guarantees that p, will be
received by u, but if u’s degree is larger it is possible for all transmissions of p,
during this stage to be blocked.

Note that the total number of steps required for this part of stage h is (n/K?)-
m < Cn, so these steps will be completed before the second part of stage h starts.

In the second part, (beginning at time a;+Cn), we simply run the ROUNDROBIN
protocol: in the [-th step of this part, if v has the rumor of the node with label
[, then it transmits that rumor.

Epoch 2: heavy nodes. This epoch has D’ +1 stages, with only heavy nodes in 7"’
participating. When the epoch starts, all rumors are assumed to already be in
T’. In stage g the nodes in 7’ whose 2-height is equal g will participate. Similar
to the stages of epoch 1, each stage runs in time O(n) and has two parts. In the
first part, during each time step every heavy node holding a rumor it has not
yet marked chooses such a rumor, marks it, and transmits it (instead of using a
K-selector). The second part executes ROUNDROBIN, as before.

The high-level overview of the analysis of this algorithm is that rumors main-
tain a steady rate of progress towards the root — during stage h of Epoch 1, each
rumor either reaches the heavy tree or a node of K-height h + 1; during stage g
of Epoch 2 each rumor either reaches the root or a vertex of 2 height ¢ + 1 in
T'. Since the heights are bounded (by Lemma 1), the algorithm will complete
in the required time of O(n+/logn). We defer the full analysis to Appendix A.
In the next section, we will show how to improve this bound to O(nloglogn).

4 A Protocol with Running Time O(n loglogn)
In this section we present our first main result:

Theorem 1. The problem of information gathering on trees, without rumor ag-
gregation, can be solved in time O(nloglogn).



Pseudocode 1 SIMPLEGATHER(v)

1 K =2WVenl D — [log, n]
2: By <+ {pv} > Initially v has only p,
3: Throughout: all rumors received by v are automatically added to B,
4: if |Ty| < n/K® then > v is light (epoch 1)
5: h < heighty (v, T) ; an< (C+1)nh > v participates in stage h
6: fori=0,1,..,n/K*—1do > iteration %
7 at time ay +im
8: if B, has an unmarked rumor then > Part 1: K-selector
9: choose any unmarked p, € B, and mark it
10: for j =0,1,....m—1do
11: at time ap +im+j
12: if label(v) € S; then TRANSMIT(p.)
13: for (=0,1,....n—1do > Part 2: RoundRobin
14: at time ap + Cn +1
15: z <—node with label(z) =1
16: if p. € B, then TRANSMIT(p;)
17: else > v is heavy (epoch 2)
18: g < heighty(v, T') ; ay < apy1 +2ng > v participates in stage g
19: fori=0,1,....,n—1do > Part 1: all nodes transmit
20: at time o + ¢
21: if B, contains an unmarked rumor then
22: choose any unmarked p, € B, and mark it
23: TRANSMIT(p-)
24: for (=0,1,....,.n—1do > Part 2: RoundRobin
25: at time o, + 2n +
26: z <—node with label(z) =1
27: if p. € B, then TRANSMIT(p.)

The protocol can be thought of as an iterative application of the idea behind
Algorithm SIMPLEGATHER from Section 3. We assume that the reader is familiar
with Algorithm SIMPLEGATHER and its analysis, and in our presentation we
will focus on the high level ideas behind Algorithm FASTGATHER, deferring the
reader to Section 3 and Appendix B for the implementation of some details.

As before, T is the input tree with n vertices. We fix some arbitrary integer
constant 8 > 2. For £ = 1,2, ..., let K, = [n® 1. So K; = [n/#], the sequence
(Ky)¢ is non-increasing, and limy_, o, Ky = 2. Let L be the largest value of ¢ for
which nf~" > logn. (Note that L is well defined for sufficiently large n, since
is fixed). Thus L < logg(logn/loglogn), L = O(loglogn), and logn < K, =
K€+1 < (logn)®.

For ¢/ = 1,2,...,L, by §¢ = (Sf,SS,...,Sf;M) we denote a strong Kj-selector
of size my < CK} logn, for some integer constant C. As discussed in Section 2,
such selectors S¢ exist.

Let 7O = T, and for each ¢ = 1,2,...,L, let T be the subtree of T
induced by the nodes v with |7,| > n/K3. Each tree 7 is rooted at 7, and



TW C 7U=1 for ¢ > 1. For £ # 0, the definition of 7 implies also that it
has at most K} leaves, so, by Lemma 1, its Ky 1-height is at most logy, , , (K7).
Since Ky < 208" and Kyyq > n® 7, direct calculation gives logy, , (K7) <
383 + 1 for sufficiently large n. In particular, the K, -height of 7 is at most
D=338+1=0().

Similar to the previous section we will make some simplifying assumptions.
First, we will assume that all nodes can receive and transmit messages at the
same time. Second, we will also assume that each node v knows the size of its
subtree |T,| and its K,-heights, for each ¢ < L. We describe how to remove these
assumptions in Appendix B.

Algorithm FASTGATHER consists of L + 1 epochs, numbered 1,2, ..., L + 1.

For ¢ < L, the goal of epoch L is to move all rumors from 7= to 7) Each
of these L epochs will run in time O(n), so their total running time will be
O(nL) = O(nloglogn). The final epoch will move all rumors from 7 (%) to the
root, also in time O(nloglogn). We now provide the details.
Epochs £ = 1,2,...,L. In epoch ¢, only the nodes in 7¢=1 — 7 participate.
The computation in this epoch is very similar to the computation of light nodes
(in epoch 1) in Algorithm SIMPLEGATHER. Epoch ¢ starts at time v, = (D +
1)(C 4+ 1)(¢ — 1)n and lasts (D 4 1)(C + 1)n steps.

Let v € T¢D — 7(®) | The computation of v in epoch ¢ consists of D + 1
identical stages. Each stage h = 0,1, ..., D starts at time step app, = v¢ + (C +
1)hn and lasts (C + 1)n steps.

Stage h has two parts. The first part starts at time ay; and lasts time
Cn. During this part we execute [n/K}| iterations, each iteration consisting of
running the strong Ky 1-selector S*. The time needed to execute these iterations
is at most [n/K}](CK}, logn), which can be seen by direct calculation to be
at most Cn.

Thus all iterations executing the strong selector will complete before time
oy p, + Cn. Then v stays idle until time ap p + Cn, which is when the second
part starts. In the second part we run the ROUNDROBIN protocol, which takes
n steps. So stage h will complete right before step ay j, + (C' + 1)n = ayg pt1-
Epoch L + 1. Due to the definition of L, we have that 7(%) contains at most
K3 = O0(log*? n) leaves, so its 2-depth is D’ = O(loglogn), by Lemma 1. The
computation in this epoch is similar to epoch 2 from Algorithm SIMPLEGATHER.
As before, this epoch consists of D’ + 1 stages, where each stage ¢ =0,1,..., D’
has two parts. In the first part, we have n steps in which each node transmits.
In the second part, also of length n, we run one iteration of ROUNDROBIN.

The high-level analysis of Algorithm FASTGATHER is similar to that of Algo-
rithm SIMPLEGATHER: During each stage a rumor’s K-height increases until it
reaches the next level (tree 7(9)), and in the last epoch its two height increases
until it reaches the root. The full analysis is given in Appendix B.

5 An O(n)-time Protocol with Acknowledgments

In this section we consider a network model where acknowledgments of successful
transmissions are provided to the sender. All the remaining nodes, including the



intended recipient, cannot distinguish between collisions and absence of trans-
missions. In this section we present our second main result:

Theorem 2. The problem of information gathering on trees without rumor ag-
gregation can be solved in time O(nloglogn) if acknowledgments are provided.

As before, T is the input tree with n nodes. We will recycle the notions of
light and heavy nodes from Section 3, although now we will use slightly different
parameters. Let § > 0 be a small constant, and let K = [n°]. We say that
v € T is light if |T,| < n/K® and we call v heavy otherwise. By 7’ we denote
the subtree of 7 induced by the heavy nodes.

Algorithm LinGather. Our algorithm will consist of two epochs. The first
epoch is essentially identical to Epoch 1 in Algorithm SIMPLEGATHER, except
for a different choice of the parameters. The objective of this epoch is to collect
all rumors in 7”7 in time O(n). In the second epoch, only the heavy nodes in
T’ will participate in the computation, and the objective of this epoch is to
gather all rumors from 7" in the root r. This epoch is quite different from our
earlier algorithms and it will use some novel combinatorial structures (obtained
via probabilistic constructions) to move all rumors from 77 to r in time O(n).

Epoch 1: In this epoch only light nodes will participate, and the objective of
Epoch 1 is to move all rumors into 7'. In this epoch we will not be taking
advantage of the acknowledgement mechanism. As mentioned earlier, except for
different choices of parameters, this epoch is essentially identical to Epoch 1 of
Algorithm SIMPLEGATHER, so we only give a very brief overview here. We use
a strong K-selector S of size m < CK?logn.

Let D = [logg n] <1/6 = O(1). By Lemma 1, the K-depth of 7 is at most
D. Epoch 1 consists of D + 1 stages, where in each stage h = 0,1, ..., D, nodes
of K-depth h participate. Stage h consists of n/K?® executions of S, followed
by an execution of ROUNDROBIN, taking total time n/K3-m +n = O(n).
So the entire epoch takes time (D + 1) - O(n) = O(n) as well. The proof of
correctness (namely that after this epoch all rumors are in 77) is identical as for
Algorithm SIMPLEGATHER.

Epoch 2: When this epoch starts, all rumors are already gathered in 77, and the
objective is to push them further to the root. The key obstacle to be overcome in
this epoch is congestion stemming from the fact that nodes have many rumors to
transmit. This congestion means that simply repeatedly applying k-selectors is
no longer enough. For example, if the root has k children, each with n/k rumors,
then repeating a k-selector n/k times would get all the rumors to the root, but
take total time roughly nklogn, which would be too long.

To overcome this obstacle, we introduce two novel tools that will play a
critical role in our algorithm. The first tool is a so-called amortizing selector
family. Since a parent receives at most one rumor per round, if it has k children
it clearly cannot simultaneously be receiving rumors at a rate greater than %
from each child individually. With the amortizing family, we will be able to
achieve within a constant fraction of this bound over long time intervals, so long
as each child knows (approximately) how many siblings it is competing with.



Similarly to a strong selector, this amortizing family will be a collection of
subsets of the underlying label set [n], though now it will be doubly indexed:
There will be sets S;; for each 1 < ¢ < s and each j € {1,2,4,8,...,k} for
some parameters s and k. We say the family succeeds at cumulative rate g if the
following statement is true:

For each j € {1,2,4,...,%}, each subset A C {1,...,n} satisfying j/2 <
|A] < 2j, and each element v € A there are at least ﬁs distinct ¢ for which

v e S and AN (Si(j/g) U S U Si(gj)) = {v}.

In the case j = 1 the set Sj(j/2) is defined to be empty. Here s can be
thought of as the total running time of the selector, and j as a node’s estimate
of its parent’s degree, and k as some bound on the maximum degree handled by
the selector. A node fires at time step 4 if and only if its index is contained in
the set S;;. What the above statement is then saying that for any subset A of
siblings, if |A| is at most k/2 and each child estimates |A| within a factor of 2
then each child will transmit at rate at least I%\\'

Theorem 3. There are fixed constants ¢,C > 0 such that the following is true:
For any k and n and any s > Ck*logn, there is an amortizing selector with
parameters n, k, s succeeding with cumulative rate c.

This selector will be constructed probabilistically in Appendix C.

Of course, such a family will not be useful unless a node can obtain an
accurate estimate of its parent’s degree, which will be the focus of our second
tool, k-distinguishers. As with the amortizing selector, this will be a collection
of subsets of the label set [n]. Let S = (51,52, ..., Sm), where each S; C [n]
for each j. For A C [n] and a € A, define Hits, a(S) = {j:S;NA={a}},
that is Hits, a(9) is the collection of indices j for which S; intersects A exactly
on a. Note that, using this terminology, S is a strong k-selector if and only if
Hits, a(S) # 0 for all sets A C [n] of cardinality at most k and all a € A.

We say that S is a k-distinguisher if there is a threshold value ¢ (dependent
on k) such that, for any A C [n] and a € A, the following conditions hold:

if |A] < k then |Hits, a(S)| > &, and if |A| > 2k then |Hits, 4(S)| < €.

We make no assumptions on what happens for |A| € {k + 1,k +2,...,2k — 1}.

The idea is this: consider a fixed a, and imagine that we have some set A
that contains a, but its other elements are not known. Suppose that we also
have an access to a hit oracle that for any set S will tell us whether SN A =
{a} or not. With this oracle, we can then use a k-distinguisher S to extract
some information about the cardinality of A by calculating the cardinality of
Hitsq 4(S). If | Hitsy 4 (S)| < & then we know that |A] > k, and if | Hits, 4(S)| > &
then we know that |A| < 2k.

What we show in Appendix C, again by a probabilistic argument, is that
not-too-large distinguishers exist.

Theorem 4. For anyn > 2 and 1 < k < n/2 there exists a k-distinguisher of
size m = O(k?logn).



In our framework, the acknowledgement of a message received from a parent
corresponds exactly to such a hit oracle. So if all nodes fire according to such
a k-distinguisher, each node can determine in time O(k?logn) either that its
parent has at least k children or that it has at most 2k children.

Now let A be a fixed parameter between 0 and 1. For each i = 0,1, ..., [Alogn],
let S* be a 2i-distinguisher of size O(2%'logn) and with threshold value &;.
We can then concatenate these k-distinguishers to obtain a sequence S of size
S I2eErT 0(22i logn) = O(n? logn).

We will refer to S as a cardinality estimator, because applying our hit oracle
to S we can estimate a cardinality of an unknown set within a factor of 4, making
O(n?*logn) hit queries. More specifically, consider again a scenario where we
have a fixed @ and some unknown set A containing a, where |A| < n*. Using the
hit oracle, compute the values h; = |Hits, 4(S%)|, for all 4. If iq is the smallest i
for which h; > &;, then by definition of our distinguisher we must have 20~1 <
|A] < 2(2%). In our gathering framework, this corresponds to each node in the
tree being able to determine in time O(n?* logn) a value of j (specifically, 39 — 1)
such that the number of children of its parent is between 27 and 2712, which is
exactly what we need to be able to run the amortizing selector.

For the remainder of this section we will assume the existence of Amortizing

Selector Families and Distinguishers, and use them to construct an algorithm
which completes Epoch 2 in time O(n).
The Algorithm for Epoch 2: For the second epoch, we restrict our attention to
the tree 77 of heavy nodes. As before, no parent in this tree can have more than
K? = n3® children, since each child is itself the ancestor of a subtree of size
n/K3. We will further assume the existence of a fixed amortizing selector family
with parameters k = 2K and s = K%, as well as a fixed cardinality estimator
with parameter A = 3§ running in time D1 = O (n® logn) = O (K%logn).

Our protocol will be divided into stages, each consisting of 2(D; + K?®) steps.
A node will be active in a given stage if at the beginning of the stage it has
already received all of its rumors, but still has at least one rumor left to transmit
(it is possible for a node to never become active, if it receives its last rumor and
then finishes transmitting before the beginning of the next stage).

During each odd-numbered time step of a stage, all nodes (active or not)
holding at least one rumor they have not yet successfully passed on transmit such
a rumor. The even-numbered time steps are themselves divided into two parts.
In the first Dy even steps, all active nodes participate in the aforementioned
cardinality estimator. At the conclusion of the estimator, each node knows a j
such that their parent has between 27 and 2712 active children. Note that active
siblings do not necessarily have the same estimate for their family size. For
the remainder of the even steps, each active node fires using the corresponding
271 _gelector from the amortizing family.

The stages repeat until all rumors have reached the root. Our key claim
(which is proven fully in Appendix D) is that the rumors aggregate at least at
a steady rate over time — each node with subtree size m in the original tree T
will have received all m rumors within O(m) steps of the start of the epoch.



References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast.
J. Comput. Syst. Sci., 43(2):290-298, 1991.

A. Ferndndez Anta, M.A. Mosteiro, and J.R. Mu noz. Unbounded contention
resolution in multiple-access channels. Algorithmica, 67(3):295-314, 2013.

D. Bruschi and M. Del Pinto. Lower bounds for the broadcast problem in mobile
radio networks. Distrib. Comput., 10(3):129-135, April 1997.

B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. Deterministic
broadcasting in ad hoc radio networks. Distributed Computing, 15(1):27-38, 2002.
M. Christersson, L. Gasieniec, and A. Lingas. Gossiping with bounded size mes-
sages in ad hoc radio networks. In Automata, Languages and Programming, 29th
International Colloquium, ICALP’02, pages 377-389, 2002.

M. Chrobak, K. Costello, L. Gasieniec, and D. R. Kowalski. Information gathering
in ad-hoc radio networks with tree topology. In 8th International Conference on
Combinatorial Optimization and Applications (COCOA’14), pages 129-145, 2014.
M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in
radio networks. J. Algorithms, 43(2):177-189, 2002.

M. Chrobak, L. Gasieniec, and W. Rytter. A randomized algorithm for gossiping
in radio networks. Networks, 43(2):119-124, 2004.

A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio
networks of unknown topology. Theor. Comput. Sci., 302(1-3):337-364, 2003.

A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with un-
known topology. Journal of Algorithms, 60(2):115 — 143, 2006.

P. Erdés, P. Frankl, and Z. Fiiredi. Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics, 51(1-2):79-89, 1985.

L. Gasieniec. On efficient gossiping in radio networks. In 16th Int. Colloquium
on Structural Information and Communication Complezity (SIROCCO’09), pages
2-14, 2009.

L. Gasieniec, T. Radzik, and Q. Xin. Faster deterministic gossiping in directed
ad hoc radio networks. In Proc. Scandinavian Workshop on Algorithm Theory
(SWAT’04), pages 397-407, 2004.

D. R. Kowalski and A. Pelc. Faster deterministic broadcasting in ad hoc radio
networks. SIAM J. Discrete Math., 18(2):332-346, 2004.

E. Kushilevitz and Y. Mansour. An 2(D log(N/D)) lower bound for broadcast in
radio networks. SIAM J. Comput., 27(3):702-712, 1998.

D. Liu and M. Prabhakaran. On randomized broadcasting and gossiping in ra-
dio networks. In 8th Annual Int. Conference on Computing and Combinatorics
(COCOON’02), pages 340-349, 2002.

G. De Marco. Distributed broadcast in unknown radio networks. In Proc. 19th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pages 208—
217, 2008.

G. De Marco and D.R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. In 2018 IEEE 27th International Symposium on Parallel
Distributed Processing (IPDPS), pages 525-533, 2013.

A.N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Bull.
Geol. Soc. Amer., 63:1171142, 1952.

X.G. Viennot. A Strahler bijection between Dyck paths and planar trees. Discrete
Mathematics, 246:317329, 2003.

Y. Xu. An O(n"®) deterministic gossiping algorithm for radio networks. Algorith-
mica, 36(1):93-96, 2003.



A Analysis of Algorithm SimpleGather

In this section we provide the analysis of the simplified gathering algorithm from
section 3, and in particular show it successfully completes in time O(n+/logn)
on all trees on n nodes.

Analysis of Epoch 1 (the light nodes).
We claim that the following invariant holds for all h = 0,1, ..., D:

(I;,) Let w € T and let u be a light child of w with heighty (u) < h — 1. Then
at time oy, node w has received all rumors from 7.

To prove this invariant we proceed by induction on h. If h = 0 the invariant (I,)
holds vacuously. So suppose that invariant (I,) holds for some value of h. We
want to prove that (I, ) is true when stage h+ 1 starts. We thus need to prove
the following claim: if w is a light child of w with heighty (u) < h then at time
ap41 all rumors from 7, will arrive in w.

If heighty (u) < h — 1 then the claim holds, immediately from the inductive
assumption (I,,). So assume that heighty (u) = h. Consider the subtree H rooted
at u and containing all descendants of u whose K-height is equal to h. By the
inductive assumption, at time oy, any w’ € H has all rumors from the subtrees
rooted at its descendants of K-height smaller than h, in addition to its own
rumor p,,. Therefore all rumors from 7, are already in H and each of them has
exactly one copy in H, because all nodes in H were idle before time «y,.

When the algorithm executes the first part of stage h on H, then each node
v in H whose parent is also in H will successfully transmit an unmarked rumor
during each pass through the K selector — indeed, our definition of H guarantees
that v has at most K — 1 siblings in H, so by the definition of strong selector it
must succeed at least once. We make the following additional claim:

Claim 1: At all times during stage h, the collection of nodes in H still holding
unmarked rumors forms an induced tree of H.

The claim follows from induction: At the beginning of the stage the nodes
in H still hold their own original rumor, and it is unmarked since those nodes
were idle so far. As the stage progresses, each parent of a transmitting child will
receive a new (and therefore not yet marked) rumor during each run through
the selector, so no holes can ever form.

In particular, node u will receive a new rumor during every run through the
selector until it has received all rumors from its subtree. Since the tree originally
held at most |7,| < n/K? rumors originally, u must have received all rumors
from its subtree after at most n/K? runs through the selector.

Note that, as heighty (u) = h, u will also attempt to transmit its rumors to w
during this part, but, since we are not making any assumptions about the degree
of w, there is no guarantee that w will receive them. This is where the second
part of this stage is needed. Since in the second part each rumor is transmitted
without collisions, all rumors from u will reach w before time a1, completing
the inductive step and the proof that (I, ) holds.



Fig. 2. Proving Invariant (I,). Dark-shaded subtrees of T, consist of light nodes with
K-height at most h — 1. H consists of the descendants of u with K-height equal h.

In particular, using Invariant (I,,) for h = D, we obtain that after Epoch 1
each heavy node w will have received rumors from the subtrees rooted at all its
light children. Therefore at that time all rumors from 7 will be already in 77,
with each rumor having exactly one copy in 7.

Analysis of Epoch 2 (the heavy nodes).

The argument for the heavy nodes is similar as for the light nodes, but with
a twist, since we do not use selectors now; instead we have steps when all nodes
transmit. In essence, we show that each stage reduces by at least one the 2-depth
of the minimum subtree of 7’ that contains all rumors.

Specifically, we show that the following invariant holds for all ¢ = 0,1, ..., D":

(J,) Let w € T" and let u € T’ be a child of w with heighty(u, T') < g — 1.

Then at time a; node w has received all rumors from 7.

We prove invariant (J,) by induction on g. For g = 0, (J,) holds vacuously.
Assume that (J ) holds for some g. We claim that (J ;) holds right after stage
g.

Choose any child u of w with heighty(u, T') < g. If heighty(u, T') < g—1, we
are done, by the inductive assumption. So we can assume that heights(u, 7') = g.
Let P be the subtree of 7’ rooted at u and consisting of all descendants of u
whose 2-height in 7’ is equal g. Then P is simply a path. By the inductive
assumption, for each w’ € P, all rumors from the subtrees of w’ rooted at its
children of 2-height at most g — 1 are in w’. Thus all rumors from 7, are already
in P. All nodes in P participate in stage g, but their children outside P do not
transmit. Therefore each transmission from any node x € P — {u} during stage
g will be successful. Due to pipelining, all rumors from P will reach u after the
first part of stage g. In the second part, all rumors from u will be successfully
sent to w. So after stage g all rumors from 7, will be in w, completing the proof
that (J,, ) holds.



Removing simplifying assumptions. During the description of Algorithm Sim-
PLEGATHER we made some simplifying assumptions. We now describe how to
modify our algorithm so that it works even if these assumptions do not hold.
These modification are similar to those described in [6], but we include them
here for the sake of completeness.

First, we assumed that each node v knows certain parameters of its subtree
T, including the size, its K-height, etc. Any function f(v) that can be computed
in a bottom-up manner (that is, f(v) can be determined from the values of f(u),
for all children u of v), can be computed in time O(n) using the algorithm from [6]
for information gathering in trees with aggregation 3. We modify this algorithm
so that each node u, when its sends its message (which, in the algorithm from [6]
contains all rumors from 7,), it will instead send the value of f(u). A node v,
after it receives all values of f(u) from each child u, will compute f(v).

We also assumed that each node can receive and transmit messages at the
same time. We now need to modify the algorithm so that it receives messages
only in the receiving state and transmits only in the transmitting state. For the
ROUNDROBIN steps this is trivial: a node v is in the transmitting state only if it
is scheduled to transmit, otherwise it is in the receiving state. For other steps,
we will explain the modification for light and heavy nodes separately.

Consider the computation of the light nodes during the steps when they
transmit according to the strong selector. Instead of the strong K-selector, we
can use the strong (K + 1)-selector, which will not affect the asymptotic running
time. When a node v is scheduled to transmit, it enters the transmitting state,
otherwise it is in the receiving state. In the proof, where we argue that the
message from v will reach its parent, instead of applying the selector argument
to v and its siblings, we apply it to the set of nodes consisting of v, its siblings, and
its parent, arguing that there will be a step when v is the only node transmitting
among its siblings and its parent is in the receiving state.

Finally, consider the computation of the heavy nodes, at steps when all of
them transmit. We modify the algorithm so that, in any stage g, the iteration
(in Line 18) of these steps is preceded by O(n)-time preprocessing. Recall that
the nodes whose 2-height in 7" is equal ¢ form disjoint paths. We can run a one
round of ROUNDROBIN where each node transmits an arbitrary message. This
way, each node will know whether it is the first node on one of these paths or
not. If a node z is first on some path, say P, x sends a message along this path,
so that each node y € P can compute its distance from z. Then, in the part
where all nodes transmit, we replace each step by two consecutive steps (even
and odd), and we use parity to synchronize the computation along these paths:
the nodes at even positions are in the receiving state at even steps and in the
transmitting state at odd steps, and the nodes at odd positions do the opposite.

3 It needs to be emphasized here that in our model only communication steps con-
tribute to the running time; all calculations are assumed to be instantaneous.



B Analysis of Algorithm FastGather

In this appendix we give a detailed analysis of Algorithm LINGATHER, and in
particular show that it completes in time O(nloglogn) on all trees on n nodes.

Analysis of Epochs 1,2,...,L.
We claim that the algorithm preserves the following invariant for £ = 1,2, ..., L:

(I) Let w € T and let u € T — 7“1 be a child of w. Then w will receive all
rumors from 7, before time ~y,, that is before epoch ¢ starts.

For ¢ = 1, invariant (I') holds vacuously, because 7(®) = 7. In the inductive
step, assume that (I°) holds for some epoch £. We want to show that (I°*)
holds right after epoch £ ends. In other words, we will show that if w has a child
u €T — T then w will receive all rumors from 7, before time o 1.

Solet ue T —TW. If u g T¢D then (I') holds for u, directly from the
inductive assumption. We can thus assume that v € 7¢=1 — 7).

The argument now is very similar to that for Algorithm SIMPLEGATHER in
Section 3, when we analyzed epoch 1. For each h = 0,1, ..., D we prove a refined
version of condition (I™1)

(ILM") Let w € T and let u € T~ T be child of w with heighty, (u, T¢) <
h—1. Then w will receive all rumors from 7, before time ay j, that is before
stage h.

The proof is the same as for Invariant (I;,) in Section A, proceeding by induction
on h. For each fixed h we consider a subtree H rooted at v and consisting of
all descendants of u in 7~ whose K,-height is at least h. By the inductive
assumption, at the beginning of stage A all rumors from 7, are already in H.
Then, the executions of S¢, followed by the execution of ROUNDROBIN, will
move all rumors from H to w. We omit the details here.

By applying condition (Iflﬂ) with h = D, we obtain that after all stages of
epoch ¢ are complete, that is at right before time 441, w will receive all rumors
from Ty,. Thus ¢ invariant (I*1) will hold.

Analysis of Epoch L+ 1. Let 04; = v1, + 2gn. To prove correctness, we show that
the following invariant holds for all stages g = 0,1, ..., D’:

(J,) Let w e T and let u € T be a child of w with height, (u, TH)) < g—1.

Then at time a; node w has received all rumors from 7.

The proof is identical to the proof of the analogous Invariant (J,) in Section 3,
so we omit it here. Applying Invariant (J,) with g = D', we conclude that after
stage D', the root r will receive all rumors.

As for the running time, we recall that L = O(loglogn). Each epoch ¢ =
1,2,...,L has D +1 = O(1) stages, where each stage takes time O(n), so the
execution of the first L epochs will take time O(nloglogn). Epoch L + 1 has
D’ +1 = 0O(loglogn) stages, each stage consisting of O(n) steps, so this epoch



will complete in time O(nloglogn). We thus have that the overall running time
of our protocol is O(nloglogn).

Removing the Simplifying Assumptions. It remains to explain that the simplify-
ing assumptions we made at the beginning of the description of Algorithm FAST-
GATHER are not needed. Computing all subtree sizes and all K,-heights can
be done recursively bottom-up, using the linear-time information gathering al-
gorithm from [6] that uses aggregation. This was explained in Section 3. The
difference now is that each node has to compute L + 1 = O(loglogn) values
Ky, and, since we limit bookkeeping information in each message up to O(logn)
bits, these values need to be computed separately. Nevertheless, the total pre-
computation time will still be O(nloglogn).

Removing the assumption that nodes can receive and transmit at the same
time can be done in the same way as in Section 3. Roughly, in each epoch ¢ =
1,2,..., L, any node v € TU¢=D — T yses a strong (K, +1)-selector (instead of a
strong Ky-selector) to determine whether to be in the receiving or transmitting
state. In epoch L the computation (in the steps when all nodes transmit) is
synchronized by transmitting a control message along induced paths, and then
choosing the receiving or transmitting state according to node parity.

C Proof of the Existence of the New Combinatorial
Structures

In this section we show the existence of distinguishers and amortizing selector
families, the two combinatorial tools which were used in our algorithm in Sec-
tion 5 for information gathering on trees in the model with an acknowledgement
mechanism for successful transmissions.

Proof of the existence of k-distinguishers. We now show a construction of k-
distinguishers, using a probabilistic argument. Let m = Ck?logn, where C is
some sufficiently large constant whose value we will determine later. We choose
the collection of random sets S = (Si, Sa, ..., Sm), by letting each S; be formed
by independently including each x € [n] in S; with probability 1/2k. Thus, for
any set A and a € A, the probability that S;NA = {a} is (1/2k)(1—1/2k)I4I=1,

and the expected value of |Hits, 4(S)| is

E||Hitsq, a(S)[] = m - 5 (1 - ) "' (1)

Recall that to be a k-distinguisher our set needs to satisfy (for suitable &)
the following two properties:

(d1) if [A| < k then |Hits, a(S)| > &
(d2) if |A| > 2k then |Hits, 4(S)| < €.

We claim that, for a suitable value of £, the probability that there exists a set
A C [n] and some a € A for which S does not satisfy both conditions is smaller



than 1 (and in fact tends to 0) This will be sufficient to show an existence of a
k-distinguisher with threshold value £.

Observe that in order to be a k-distinguisher it is sufficient that S satisfies
(d1) for sets A with |A| = k and satisfies (d2) for sets A with |A| = 2k. This is
true because the value of | Hits, 4(S)| is monotone with respect to the inclusion:

if a € A C B then Hits, a(S) D Hitsq 5(S5).

Now consider some fixed a € [n] and two sets A;, As C [n] such that |A;] = k,
|Az| = 2k and a € Ay N Ay. For i = 1,2, we consider two corresponding random
variables X; = |Hits, a,(S)| and their expected values p; = Exp[X;]. For any
integer k > 1 we have
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From (1), substituting m = Ck? logn, this gives us the corresponding estimates
for pq and po:

1
3

2e%ﬂ(l'klogn < up
+Cklogn < s < 2Cklogn

—1/2

Since e > %, we can choose an € € (0,1) and ¢ for which

I4+eur<&<(l—e€)p.
Thus the probability that S violates (d1) for A = A; is
Pr[X; <& < PriX; < (1—e)py] < e < m/2
< e—62e71/20klog n/4
where in the second inequality we use the Chernoff bound for deviations below

the mean. Similarly, using the Chernoff bound for deviations above the mean,
we can bound the probability of S violating (d2) for A = Ay as follows:

Pr[Xp > €] < Pr[Xy > (1+e)up] < e~/
< e—ezeflelogn/ﬁ.

To finish off the proof, we apply the union bound. We have at most n choices

for a, at most (kfl) < nk=1 < n2%=1 choices of A, and at most (2,;11) < p2k-t

choices of Ay. Note also that e'/2/4 > e~!/6. Putting it all together, the
probability that S is not a k-distinguisher is at most

ne (") PriXy <& +n- (o)) PrXe > €] < n® - (Pr[Xy < ¢+ Pr[Xe > €))

< 2n2k . 67626_1Ck10gn/6
2 —1
_ 2nk(275 e”C/6) <1,

for C' large enough.



Proof of the existence of amortizing selector families. Let k,n,s be given such
that s > Cklogn, where k is a constant to be determined later. We form our
selector probabilistically: For each v, %, and j, we independently include v in S;;
with probability 277.

Observe that again by monotonicity it suffices to check the selector property
for the case |A| = 2j: If we replace A with a larger set A’ containing A and
satisfying |A’| < 4|A|, then for any v € A and any ¢ satisfying

AN (Sz(j/2) U Sij U Si(2j)) = {’U},

we also have
AN (Si(j/Q) U SZJ U Si(2j)) = {U}

So if there are at least % distinct ¢ satisfying the first equality, there are at

least (cl/jl)s satisfying the second equality.

Now fix j € {1,2,4,...,k}, aset A C [n] with |A| = 2j and some v € A, and
let the random variables X and Y be defined by

X =] {Z tv €S and AN (Si(j/2) USi;; U Si(gj)) = {U}} |
The expected value of X is

G005 (-5
J J J 23

Utilizing the bound

9\ 271 1\ %1 1\ %1 1
() ) e
J J 2j e’

we have

Bx = 6_7§.
J
Now let ¢ = 4—;. Applying the Chernoff bound, we get
1
Pr[X < cﬁ] <Pr[X < §“X] < e Hx/8

< em5/8€75,

We now use the union bound over all choices of j, v, and S. We have at most
n choices of v, at most logn choices for j, and at most (2;11) < n?k=1 choices
of S given j and v. Thus the probability that our family is not an amortizing
selector is at most

7 7
’I’LlOg?’l . n2k71 . (efs/Se j) < 2n2k logn . ekalogn/Se

which is smaller than 1 for sufficiently large C'. This implies the existence of the
amortized selector family.



D Analysis of the Heavy Epoch of Algorithm LinGather

The key claim in the analysis of this algorithm is that the following invariant
holds throughout the epoch for some sufficiently large absolute constant C'

(1Y) For any heavy node v such that v has subtree size m in T, and any 0 <
j < m, that node has received at least j rumors within time C'(2m + j) of
the beginning of Epoch 2.

In particular, the root has received all of the rumors by time 3Cn.

We will show this invariant holds by induction on the node’s height within
T'. If the node is a leaf the statement follows from our analysis of Epoch 1 (the
node has received all rumors from its subtree by the beginning of epoch 2).

Now assume that a node u with subtree size m + 1 has k children within
7', and that those children have subtree sizes a1 > as > -+ > ap > K°2.
Node u may also received some number ag of messages from non-heavy children
(these children, if any, will have already completed their transmissions during
the previous epoch).

Let v be a child having subtree size a; (chosen arbitrarily, if there are two
children with maximal subtree size). Let t5 be defined by

o 3Cas+ 2 (ag+- - +ap) + K2 ifk>1
2T 0 ifk=1

We make the following additional claims.

Claim 2: By time to, all children except possibly v will have completed all of
their transmissions.

Proof. By inductive hypothesis, all children except v will have received all of
their rumors by time 3Cas. During each stage from that point until all non-v
nodes complete, one of the following things must be true.

— Some active node transmits the final rumor it is holding, and stops trans-
mitting. This can happen during at most K2 stages, since there are at most
K3 children and each child only becomes active once it already has received
all rumors from its subtree.

— All active nodes have rumors to transmit throughout the entire stage. If
there were j active nodes total during the stage, then by the definition of
our amortizing selector family, the parent received at least ¢2E% rumors from
each child during the stage. In particular, it must have received at least

2K8
c(j —1)=— >cK?®
J

new rumors from children other than v.



Combining the two types of stages, the non-v children will have all finished in
at most

. 1
3
K +C[(78(02+"'+ak)
complete stages after time 3Cap. Since each stage takes time 2(D; + K®) =
(2 + o(1)) K8, the bound follows.

Claim 3: Let k£, m, and v be as above. By time 2C'm, all children except possibly
v have completed their transmissions.

Proof. This is trivial for £k = 1. For larger k follows from the previous claim,
together with the estimate that (for sufficiently large C)

4 5
2Cm >2C(a1 + -+ ar) >4Cas +2C(az + -+ + ax) > g(tngu) > Ztg

Here the middle inequality holds for any C' > 2/¢, while the latter inequality
holds since ty > as > n/K3 > K2,

By the above claim, node v is the only node that could still be transmitting
at time 2C'm. In particular, if it has a rumor during an odd numbered time step
after this point, it successfully transmits. By assumption, v will have received
at least j rumors by time C'(2m + j) for each j. This implies it will successfully
broadcast j rumors by time C'(2m + j) 4+ 2 for each 0 < j < a;.

By time C[2(m + 1) + j], the parent has either received all rumors from all
of its children (if j > ay), or at least j rumors from a; alone (if j < a). Either
way, it has received at least j rumors total, and the induction is complete.



