
Faster Information Gathering in Ad-Hoc

Radio Tree Networks

Marek Chrobak∗ Kevin P. Costello†

June 28, 2016

Abstract

We study information gathering in ad-hoc radio networks. Initially, each node of the network
has a piece of information called a rumor, and the overall objective is to gather all these rumors
in the designated target node. The ad-hoc property refers to the fact that the topology of the
network is unknown when the computation starts. Aggregation of rumors is not allowed, which
means that each node may transmit at most one rumor in one step.

We focus on networks with tree topologies, that is we assume that the network is a tree with
all edges directed towards the root, but, being ad-hoc, its actual topology is not known. We
provide two deterministic algorithms for this problem. For the model that does not assume any
collision detection nor acknowledgement mechanisms, we give an O(n log log n)-time algorithm,
improving the previous upper bound of O(n log n). We also show that this running time can be
further reduced to O(n) if the model allows for acknowledgements of successful transmissions.

1 Introduction

We study the problem of information gathering in ad-hoc radio networks. Initially, each node of
the network has a piece of information called a rumor, and the objective is to gather all these
rumors, as quickly as possible, in the designated target node. The nodes communicate by sending
messages via radio transmissions, where each message may contain only one rumor. At any time
step, several nodes in the network may transmit. When a node transmits a message, this message
is sent immediately to all nodes within its range. When two nodes send their messages to the same
node at the same time, a collision occurs and neither message is received by that node. Aggregation
of rumors is not allowed, by which we mean that each node may transmit at most one rumor in
each time step.

The network can be naturally modeled by a directed graph, where an edge (u, v) indicates that
v is in the range of u. The ad-hoc property refers to the fact that the actual topology of the
network is unknown when the computation starts. We assume that nodes are labeled by integers
0, 1, ..., n− 1. An information gathering protocol determines a sequence of transmissions of a node,
based on its label and on the previously received messages.

∗Department of Computer Science, University of California at Riverside, USA. Research supported by NSF grants
CCF-1217314 and CCF-1536026.
†Department of Mathematics, University of California at Riverside, USA. Research supported by NSA grant

H98230-13-1-0228.

1

Our results. In this paper, we focus on ad-hoc networks with tree topologies, that is the under-
lying ad-hoc network is assumed to be a tree with all edges directed towards the root, although the
actual topology of this tree is unknown.

We consider two variants of the problem. In the first one, we do not assume any collision
detection or acknowledgment mechanisms, so none of the nodes (in particular neither the senders
nor the intended recipient) are notified about a collision after it occurred. In this model, we give
a deterministic algorithm that completes information gathering in time O(n log logn). Our result
significantly improves the previous upper bound of O(n log n) from [5]. To our knowledge, no lower
bound for this problem is known, apart from the trivial bound of Ω(n), which follows from the fact
that each rumor must be received by the root in a different time step.

In the second part of the paper, we also consider a variant where acknowledgments of successful
transmissions are provided to the sender. All the remaining nodes, though, including the intended
recipient, cannot distinguish between collisions and absence of transmissions. Under this assump-
tion, we show that the running time can be improved to O(n), which is asymptotically optimal, as
explained earlier.

While we assume that all nodes are labelled 0, 1, ..., n − 1 (where n is the number of vertices),
our algorithms’ asymptotic running times remain the same if the labels are chosen from a larger
range 0, 1, ..., N − 1, as long as N = O(n).

Related work. The problem of information gathering for trees was introduced in [5], where the
model without any collision detection was studied. In addition to the O(n log n)-time algorithm
without aggregation – that we improve in this paper – [5] develops an O(n)-time algorithm for the
model with aggregation, where a message can include any number of rumors. Another model studied
in [5], called fire-and-forward, requires that a node cannot store any rumors; a rumor received by a
node has to be either discarded or immediately forwarded. For fire-and-forward protocols, a tight
bound of Θ(n1.5) is given in [5].

The information gathering problem is closely related to two other information dissemination
primitives that have been well studied in the literature on ad-hoc radio networks: broadcasting and
gossiping. All the work discussed below is for ad-hoc radio networks modeled by arbitrary directed
graphs, and without any collision detection capability.

In broadcasting, a single rumor from a specified source node has to be delivered to all other
nodes in the network (assuming that all nodes are actually reachable from the source.) The näıve
RoundRobin algorithm (see the next section) completes broadcasting in time O(n2). Following
a sequence of papers [6, 17, 2, 3, 20, 11] where this näıve bound was gradually improved, it is
now known that broadcasting can be solved in time O(n logD log log(D∆/n)) [10], where D is the
diameter of G and ∆ is its maximum in-degree. This nearly matches the lower bound of Ω(n logD)
from [9]. Randomized algorithms for broadcasting have also been well studied [1, 18, 11].

The gossiping problem is an extension of broadcasting, where each node starts with its own
rumor, and all rumors need to be delivered to all nodes in the network. (In gossiping, it is assumed
that the network is strongly connected.) The time complexity of deterministic algorithms for
gossiping is a major open problem in the theory of ad-hoc radio networks. Obviously, the lower
bound of Ω(n logD) for broadcasting [9] applies to gossiping as well, but no better lower bound
is known. It is also not known whether gossiping can be solved in time O(n polylog(n)) with a
deterministic algorithm, even if message aggregation is allowed. The best currently known upper
bound is O(n4/3 log4 n) [15] (see [6, 25] for some earlier work). The case when no aggregation is
allowed (or with limited aggregation) was studied in [4]. Randomized algorithms for gossiping have
also been well studied [11, 19, 7]. Interested readers can find more information about gossiping in

2

the survey paper [14].

Connections to other problems. This research, as well as the earlier work in [5], was moti-
vated by the connections between information gathering in trees and other problems in distributed
computing involving shared channels, including gossiping in radio networks and MAC contention
resolution.

For arbitrary graphs, assuming aggregation, one can solve the gossiping problem by running
an algorithm for information gathering and then broadcasting all rumors (as one message) to all
nodes in the network. Thus an O(n polylog(n))-time algorithm for information gathering would
resolve in positive the earlier-discussed open question about the complexity of gossiping. Due to this
connection, developing an O(n polylog(n))-time algorithm for information gathering on arbitrary
graphs is likely to be very difficult – if possible at all. We hope that developing efficient algorithms
for trees, or for some other natural special cases, will ultimately lead to some insights helpful in
resolving the complexity of the gossiping problem in arbitrary graphs.

Some algorithms for ad-hoc radio networks (see [4, 16], for example) involve constructing a
spanning subtree of the network and disseminating information along this subtree. Better algo-
rithms for information gathering on trees may thus be useful in addressing similar problems for
arbitrary graphs.

The problem of contention resolution for multiple-access channels (MAC) has been widely stud-
ied in the literature. (See, for example, [21, 22, 13] and the references therein.) There are in fact
myriad of variants of this problem, depending on the characteristics of the communication model.
Generally, the instance of the MAC contention resolution problem involves a collection of trans-
mitters connected to a shared channel (e.g. ethernet). Some of these transmitters need to send
their messages across the channel, and the objective is to design a distributed protocol that will
allow them to do that. The information gathering problem for trees is in essence an extension of
MAC contention resolution to multi-level hierarchies of channels, where transmitters have unique
identifiers, and the structure of this hierarchy is not known.

2 Preliminaries

We now provide a formal definition of our model and introduce notation, terminology, and some
basic properties used throughout the paper.

Trees. In the paper we focus exclusively on radio networks with tree topologies. Such a network
will be represented by a tree T with root r and with n = |T | nodes. The edges in T are directed
towards the root, representing the direction of information flow: a node can send messages to its
parent, but not to its children. We assume that each node v ∈ T is assigned a unique label from
[n] = {0, 1, ..., n− 1}, and we denote this label by label(v).

For a node v, by deg(v) we denote the degree of v, which is the number of v’s children. For any
subtree X of T and a node v ∈ X, we denote by Xv the subtree of X rooted at v that consists of
all descendants of v in X.

For any integer γ = 1, 2, ..., n− 1 and any node v of T define the γ-height of v as follows. If v is
a leaf then the γ-height of v is 0. If v is an internal node then let g be the maximum γ-height of a
child of v. If v has fewer than γ children of γ-height equal g then the γ-height of v is g. Otherwise,
the γ-height of v is g + 1. The γ-height of v will be denoted by heightγ(v). In case when several
trees are under consideration, to resolve potential ambiguity we will write heightγ(v, T) for the

3

γ-height of v in T . The γ-height of a tree T , denoted heightγ(T), is defined as heightγ(r), that is
the γ-height of its root.

0 0 0

0 0

1

0 0

1

1

1

0

0

1 0

0

1

1 2

2

0

0 0 0 0

0

0

0

Figure 1: An example showing a tree and the values of 3-heights for all its nodes.

Note that for γ = 1, the γ-height corresponds to the standard notion of depth for the tree. Its
name notwithstanding, the definition of γ-height is meant to capture the “bushiness” of a tree. For
example, if T is just a path then its γ-height is equal 0 for each γ ≥ 2. The concept of γ-height
generalizes Strahler numbers [23, 24], introduced in hydrology to measure the branching complexity
of streams. Figure 1 gives an example of a tree and values of 3-heights for all its nodes.

The lemma below is a slight refinement of an analogous lemma in [5], and it will play a critical
role in our algorithms.

Lemma 1. Suppose that T has q leaves, and let 2 ≤ γ ≤ q. Then heightγ(T) ≤ logγ q.

Equivalently, any tree having height j must have at least γj leaves. This can be seen by induction
on j – if v is a vertex which is furthest from the root among all vertices of height j, then v by
definition has γ descendants of height j − 1, each of which has γj−1 leaf descendants by inductive
hypothesis.

Information gathering protocols in trees. Each node v of T has a label (or an identifier)
associated with it, and denoted label(v). When the computation is about to start, each node v
has also a piece of information, ρv, that we call a rumor. The computation proceeds in discrete,
synchronized time steps, numbered 0, 1, 2, At any step, v can either be in the receiving state,
when it listens to radio transmissions from other nodes, or in the transmitting state, when it is
allowed to transmit. When v transmits at a time t, the message from v is sent immediately to its
parent in T . As we do not allow rumor aggregation, this message may contain at most one rumor,
plus possibly O(log n) bits of other information. If w is v’s parent, w will receive v’s message if and
only if w is in the receiving state and no collision occurred, that is if no other child of w transmitted
at time t. In Sections 3 and 4 we do not assume any collision detection nor acknowledgement
mechanisms, so if v’s message collides with a message from one of its siblings, neither v nor w
receive any notification. (In other words, w cannot distinguish collisions between its children’s
transmissions from background noise.) We relax this requirement in Section 5, by assuming that v
(and only v) will obtain an acknowledgment from w after each successful transmission.

The objective of an information gathering protocol is to deliver all rumors from T to its root r,
as quickly as possible. Such a protocol needs to achieve its goal even without the knowledge of the
topology of T . More formally, a gathering protocol A can be defined as a function that, at each
time t, and for each given node v, determines the action of v at time t based only on v’s label and
the information received by v up to time t. The action of v at each time step t involves choosing

4

its state (either receiving or transmitting) and, if it is in the transmitting state, choosing which
rumor to transmit.

We will say that A runs in time T (n) if, for any tree T and any assignment of labels to its
nodes, after at most T (n) steps all rumors are delivered to r.

Throughout the paper we assume that all nodes know the value of n. This assumption is not
essential, because otherwise an information gathering algorithm can employ a doubling trick by
trying, sequentially, all powers of 2 as potential values of n. For our algorithms, this will at most
double the time to complete gathering (although the algorithm itself will not know that and will
iterate the process forever).

Protocol RoundRobin. A simple example of an information gathering protocol is called RoundRobin.
In RoundRobin nodes transmit one at a time, in n rounds, where in each round they transmit in
the order 0, 1, ..., n− 1 of their labels. For any node v, when it is its turn to transmit, v transmits
any rumor from the set of rumors that have been received so far (including its own rumor) but not
yet transmitted. In each round, each rumor that is still not in r will get closer to r, so after n2

steps all rumors will reach r.
In our algorithms we will use a variation of this idea that we call SB-RoundRobin (for source-

based round-robin). In SB-RoundRobin there are also n steps. In step l = 0, 1, ..., n− 1, a node
v checks if it already has collected a rumor ρz that originated from the node z with label z) = l. If
so, v transmits this rumor, otherwise v is quiet. Note that, similar to RoundRobin, there are no
collisions in SB-RoundRobin, since the tree topology implies that a node and its siblings share
no rumors in common. The advantage of SB-RoundRobin is that any node v, in a single round
(n steps), will transmit all its rumors to its parent.

Strong k-selectors. Let S̄ = (S0, S1, ..., Sm−1) be a family of subsets of [n] = {0, 1, ..., n− 1},
the label set. S̄ is called a strong k-selector if, for each k-element set A ⊆ [n] and each a ∈ A, there
is a set Si such that Si ∩ A = {a}. As shown in [12, 9], for each k there exists a strong k-selector
S̄ = (S0, S1, ..., Sm−1) with m = O(k2 log n). We will make extensive use of strong k-selectors in
our algorithm. At a certain time in the computation our protocols will “run” S̄, for an appropriate
choice of k, by which we mean that it will execute a sequence of m consecutive steps, such that
in the jth step the nodes from Sj will transmit, while those not in Sj will stay quiet. This will
guarantee that, for any node v with at most k − 1 siblings, there will be at least one step in the
execution of S̄ where v will transmit but none of its siblings will. Therefore at least one of v’s
transmissions will be successful.

3 An O(n
√
log n)-Time Protocol

We first give a gathering protocol SimpleGather for trees with running time O(n
√

log n). This
will allow us to gradually introduce some techniques needed to for our faster protocol that will be
presented in the next section.

We fix three parameters:

K = 2b
√

lognc,

D = dlogK ne = O(
√

log n), and

D′ = dlogK3e = O(
√

log n).

5

(Here and elsewhere all logarithms are assumed to be binary unless otherwise stated). We also fix
a strong K-selector S̄ = (S0, S1, ..., Sm−1), where m ≤ CK2 log n, for some integer constant C.

By Lemma 1, we have that heightK(T) ≤ D. Recall that, for a node v of T , Tv is the subtree
of T rooted at v. We call v light if |Tv| ≤ n/K3; otherwise we say that v is heavy. Let T ′ be the
subtree of T induced by the heavy nodes. By the definition of heavy nodes, T ′ has at most K3

leaves, so height2(T ′) ≤ D′. Also, obviously, r ∈ T ′.
To streamline the description of our algorithm we will allow each node to receive and transmit

messages at the same time. We will also assume a preprocessing step allowing each v to know both
the size of its subtree Tv (in particular, whether it is in T ′ or not), its K-height, and, if it is in T ′,
its 2-height in the subtree T ′. We later explain how to implement this preprocessing and how to
modify the algorithm to separate the transmitting and receiving steps.

The algorithm consists of two epochs. epoch 1 consists of D+ 1 stages, each lasting O(n) steps.
In this epoch only light vertices participate. The purpose of this epoch is to gather all rumors
from T in T ′. Epoch 2 has D′ + 1 stages and only heavy vertices participate in the computation
during this epoch. The purpose of epoch 2 is to deliver all rumors from T ′ to r. We describe the
computation in the two epochs separately.

A detailed description of Algorithm SimpleGather is given in Pseudocode 1. To distinguish
between computation steps (which do not consume time) and communication steps, we use com-
mand “at time t”. When the algorithm reaches this command it waits until time step t to continue
processing. Each message transmission takes one time step. For each node v we maintain a set Bv
of rumors received by v, including its own rumor ρv.

Epoch 1: light vertices. Let 0 ≤ h ≤ D, and let v be a light vertex whose K-height equals h. Then
v will be active only during stage h which starts at time αh = (C + 1)hn. This stage is divided
into two parts.

In the first part of stage h, that lasts Cn steps, v will transmit according to the strong K-selector
S̄. Specifically, this part has dn/K3e iterations, where each iteration corresponds to a complete
execution of S̄. At any time, some of the rumors in Bv may be marked; the marking on a rumor
indicates that the algorithm has already attempted to transmit it using S̄. At the beginning of each
iteration, v chooses any rumor ρz ∈ Bv it has not yet marked, then transmits ρz in the steps that
use sets Si containing the label of v. This ρz is then marked. The definition of strong K-selectors
guarantees that if the parent u of v has degree at most K, then ρz will be received by u at some
point over the course of the selector. However, if u’s degree is larger it may not have received ρz.
Note that the total number of steps required for this part of stage h is (n/K3) ·m ≤ Cn, so these
steps will be completed before the second part of stage h starts.

In the second part, that starts at time αh + Cn and lasts n steps, we simply run a cycle of
SB-RoundRobin.

We claim that the following invariant holds for all h = 0, 1, ..., D:

(Ih) Let w ∈ T and let u be a light child of w with heightK(u) ≤ h− 1. Then at time αh node w
has received all rumors from Tu.

To prove this invariant we proceed by induction on h. If h = 0 the invariant (I0) holds vacuously.
So suppose that invariant (Ih) holds for some value of h. We want to prove that (Ih+1) is true
when stage h+ 1 starts. We thus need to prove the following claim: if u is a light child of w with
heightK(u) ≤ h then at time αh+1 all rumors from Tu will arrive in w.

If heightK(u) ≤ h−1 then the claim holds, immediately from the inductive assumption (Ih). So
assume that heightK(u) = h. Consider the subtree H rooted at u and containing all descendants
of u whose K-height is equal to h. (See Figure 2 for illustration.) By the inductive assumption, at

6

time αh any w′ ∈ H has all rumors from the subtrees rooted at its descendants of K-height smaller
than h, in addition to its own rumor ρw′ . Therefore all rumors from Tu are already in H and each
of them has exactly one copy in H, because all nodes in H were idle before time αh.

When the algorithm executes the first part of stage h on H, then each v node in H whose
parent is also in H will successfully transmit an unmarked rumor during each pass through the
strong K-selector – indeed, our definition of H guarantees that v has at most K − 1 siblings in
H, so by the definition of strong selector it must succeed at least once. We make the following
additional claim:

Claim 1. At all times during stage h, the collection of nodes in H still holding unmarked rumors
forms an induced sub-tree of H rooted at u.

The claim follows from induction: At the beginning of the stage the nodes in H still hold their
own original rumor, and it is unmarked since those nodes were idle so far. So this induced sub-tree
from the claim is the whole H. As the stage progresses, each parent of a transmitting child will
receive a new (and therefore not yet marked) rumor from this child during each iteration of S̄.
Therefore no “holes” can ever form, that is, if a node has an unmarked rumor then so does its
parent. The claim follows.

In particular, node u will receive a new rumor during every iteration of S̄, until it has received
all rumors from its subtree. Since the tree originally held at most |Tu| ≤ n/K3 rumors, u will
receive all rumors from its subtree after at most n/K3 iterations of S̄.

Note that, as heightK(u) = h, u will also attempt to transmit its rumors to w during this part,
but, since we are not making any assumptions about the degree of w, there is no guarantee that
w will receive them. This is where the second part of this stage is needed. Since in the second
part each rumor is transmitted without collisions, all rumors from u will reach w before time αh+1,
completing the inductive step and the proof that (Ih+1) holds.

w
u H

Figure 2: Proving Invariant (Ih). Dark-shaded subtrees of Tu consist of light nodes with K-height
at most h− 1. H consists of the descendants of u with K-height equal h.

Using Invariant (Ih) for h = D, we obtain that after epoch 1 each heavy node w will have
received rumors from the subtrees rooted at all its light children. Therefore at that time all rumors
from T will be already in T ′, with each rumor having exactly one copy in T ′.

Epoch 2: heavy vertices. In this epoch we have at most D′ + 1 stages, and only heavy nodes (that
is, those in T ′) participate in the computation. When the epoch starts, all rumors are already
in T ′. In stage D + 1 + g the nodes in T ′ whose 2-height is equal g will participate. Similar to

7

Pseudocode 1 SimpleGather(v)

1: K = 2b
√

lognc, D = dlogK ne
2: Bv←{ρv} . Initially v has only ρv
3: Throughout: all rumors received by v are automatically added to Bv unmarked
4: if |Tv| ≤ n/K3 then . v is light (epoch 1)
5: h← heightK(v, T) ; αh← (C + 1)nh . v participates in stage h
6: for i = 0, 1, ..., dn/K3e − 1 do . iteration i
7: at time αh + im
8: if Bv contains an unmarked rumor then . Part 1: strong K-selector
9: choose any unmarked ρz ∈ Bv and mark it

10: for j = 0, 1, ...,m− 1 do
11: at time αh + im+ j
12: if label(v) ∈ Sj then Transmit(ρz)

13: for l = 0, 1, ..., n− 1 do . Part 2: SB-RoundRobin
14: at time αh + Cn+ l
15: z←node with label(z) = l
16: if ρz ∈ Bv then Transmit(ρz)

17: else . v is heavy (epoch 2)
18: g← height2(v, T ′) ; α′g←αD+1 + 2ng . v participates in stage g
19: for i = 0, 1, ..., n− 1 do . Part 1: all nodes transmit
20: at time α′g + i
21: if Bv contains an unmarked rumor then
22: choose any unmarked ρz ∈ Bv and mark it
23: Transmit(ρz)

24: for l = 0, 1, ..., n− 1 do . Part 2: SB-RoundRobin
25: at time α′g + 2n+ l
26: z←node with label(z) = l
27: if ρz ∈ Bv then Transmit(ρz)

8

the stages of epoch 1, this stage has two parts and the second part executes SB-RoundRobin, as
before. The difference is that now, in the first part, instead of using the strong K-selector, each
heavy node will transmit at each of the n steps.

We need to show that r will receive all rumors at the end. The argument is similar as for light
vertices, but with a twist, since we do not use selectors now; instead we have steps when all nodes
transmit. In essence, we show that each stage reduces by at least one the 2-depth of the minimum
subtree of T ′ that contains all rumors.

Specifically, we show that the following invariant holds for all g = 0, 1, ..., D′:

(Jg) Let w ∈ T ′ and let u ∈ T ′ be a child of w with height2(u, T ′) ≤ g− 1. Then at time α′g node
w has received all rumors from Tu.

We prove invariant (Jg) by induction on g. For g = 0, (J0) holds vacuously. Assume that (Jg)
holds for some g. We claim that (Jg+1) holds right after stage g.

Choose any child u of w with height2(u, T ′) ≤ g. If height2(u, T ′) ≤ g − 1, we are done, by the
inductive assumption. So we can assume that height2(u, T ′) = g. Let P be the subtree of T ′ rooted
at u and consisting of all descendants of u whose 2-height in T ′ is equal g. Then P is simply a
path. By the inductive assumption, for each v ∈ P , all rumors from the subtrees of v rooted at its
children of 2-height at most g− 1 are in v. Thus all rumors from Tu are already in P . All nodes in
P participate in stage g, but their children outside P do not transmit. Therefore each transmission
from any node x ∈ P −{u} during stage g will be successful. Due to pipelining, all rumors from P
will reach u after the first part of stage g. In the second part, all rumors from u will be successfully
sent to w. So after stage g all rumors from Tu will be in w, completing the proof that (Jg+1) holds.

Removing simplifying assumptions. At the beginning of this section we made some simpli-
fying assumptions. It still remains to explain how to modify our algorithm so that it works even
if these assumptions do not hold. These modification are similar to those described in [5], but we
include them here for the sake of completeness.

First, we assumed a preprocessing step whereby each v knows certain parameters of its subtree
Tv, including the size, its K-height, etc. The justification for this lies in the algorithm from [5] for
information gathering in trees with aggregation. Such an algorithm can be modified to compute in
linear time any function f such that f(v) is uniquely determined by the values of f on the children
of v, so long as the output of f can be transmitted in O(log n) bits (in particular, any function
whose output is an integer at most polynomial in n). The modification is that each node u, when
its sends its message (which, in the algorithm from [5] contains all rumors from Tu), it will instead
send the value of f(u). A node v, after it receives all values of f(u) from each child u, will then
compute f(v)1.

We also assumed that each node can receive and transmit messages at the same time. We
now need to modify the algorithm so that it receives messages only in the receiving state and
transmits only in the transmitting state. For the RoundRobin steps this is trivial: a node v is in
the transmitting state only if it is scheduled to transmit, otherwise it is in the receiving state. For
other steps, we will explain the modification for light and heavy nodes separately.

Consider the computation of the light nodes during the steps when they transmit according to
the strong selector. Instead of the strong K-selector, we can use the strong (K + 1)-selector, which
will not affect the asymptotic running time. When a node v is scheduled to transmit, it enters the
transmitting state, otherwise it is in the receiving state. In the proof, where we argue that the

1It needs to be emphasized here that in our model only communication steps contribute to the running time; all
calculations are assumed to be instantaneous.

9

message from v will reach its parent, instead of applying the selector argument to v and its siblings,
we apply it to the set of nodes consisting of v, its siblings, and its parent, arguing that there will
be a step when v is the only node transmitting among its siblings and when its parent is in the
receiving state.

Finally, consider the computation of the heavy nodes, at steps when all of them transmit. We
modify the algorithm so that, in any stage g, the iteration (in Line 18) of these steps is preceded by
O(n)-time preprocessing. Recall that the nodes whose 2-height in T ′ is equal g form disjoint paths.
We can run a single round of RoundRobin where each node transmits an arbitrary message. This
way, each node will know whether it is the first node on one of these paths or not. If a node x is
first on some path, say P , x sends a message along this path, so that each node y ∈ P can compute
its distance from x. Then, in the part where all nodes transmit, we replace each step by two
consecutive steps (even and odd), and we use parity to synchronize the computation along these
paths: the nodes at even positions are in the receiving state at even steps and in the transmitting
state at odd steps, and the nodes at odd positions do the opposite.

Summarizing this section, we have presented Algorithm SimpleGather that completes infor-
mation gathering in ad-hoc radio networks with tree topologies in time O(n

√
log n). In the next

section, we will show how to improve this bound to O(n log logn).

4 A Protocol with Running Time O(n log log n)

In this section we consider the same basic model of information gathering in trees as in Section 3,
that is, the model does not provide any collision detection and rumor aggregation is not allowed.
We show how to refine our O(n

√
log n) protocol SimpleGather to improve the running time to

O(n log log n). This is the first main result of our paper, as summarized in the theorem below.

Theorem 1. The problem of information gathering in ad-hoc networks with tree topology, without
rumor aggregation, can be solved in time O(n log log n).

Our protocol that achieves running time O(n log logn) will be called FastGather. This
protocol can be thought of as an iterative application of the idea behind Algorithm SimpleGather
from Section 3. We assume that the reader is familiar with Algorithm SimpleGather and its
analysis, and in our presentation we will focus on high level ideas behind Algorithm FastGather,
referring the reader to Section 3 for the implementation of some details.

As before, we use notation T for the input tree and n = |T | for the number of vertices in T .
We assume that n is sufficiently large, and we will establish some needed lower bounds for n as
we work through the proof. We fix some arbitrary integer constant β ≥ 2. For ` = 1, 2, ..., let
K` = dnβ−`e. So K1 = dn1/βe, the sequence (K`)` is non-increasing, and lim`→∞K` = 2. Let L be

the largest value of ` for which nβ
−` ≥ log n. (Note that L is well defined for sufficiently large n,

since β is fixed). We thus have the following exact and asymptotic bounds:

L ≤ logβ(log n/ log log n) KL ≥ log n (1)

L = Θ(log log n) KL = Θ(log n).

For ` = 1, 2, ..., L, by S̄` = (S`0, S
`
1, ..., S

`
m`−1) we denote a strong K`-selector of size m` ≤ CK2

` log n,

for some integer constant C. As discussed in Section 2, such selectors S̄` exist.
Let T (0) = T , and for each ` = 1, 2, ..., L, let T (`) be the subtree of T induced by the nodes v

with |Tv| ≥ n/K3
` . Each tree T (`) is rooted at r, and T (`) ⊆ T (`−1) for ` ≥ 1.

10

Claim 2. For ` = 1, ..., L, we have heightK`(T
(`−1)) ≤ D, where D = 3β + 1 = O(1).

First, we verify the claim for ` = 1. T (0) has at most n leaves, so Lemma 1 implies that

heightK1
(T (0)) ≤ logK1

n ≤ logn1/β n = β ≤ D.

Consider now some ` ≥ 2. The definition of tree T (`−1) implies that it has at most K3
`−1 leaves.

Since K`−1 ≤ 2nβ
−`+1

and K` ≥ nβ
−`

, from Lemma 1 we have

heightK`(T
(`−1)) ≤ logK`(K

3
`−1)

≤ 3 log
nβ−`

(2nβ
−`+1

)

= 3 log
nβ−`

nβ
−`+1

+ 3 log
nβ−`

2

= 3β +
3β`

log n
≤ 3β +

3βL

log n
≤ 3β + 1,

where the last inequality holds as long as 3βL ≤ log n, which is true if n is large enough (since, by
the first bound in (1), we have βL ≤ log n/ log log n). This completes the proof of Claim 2.

As in the previous section, we will make some simplifying assumptions. First, we will assume
that all nodes can receive and transmit messages at the same time. Second, we will also assume that
each node v knows the size of its subtree |Tv| and its K`-heights, for each ` ≤ L. After completing
the description of the algorithm we will explain how to modify it so that these assumptions will
not be needed.

Algorithm FastGather consists of L+ 1 epochs, numbered 1, 2, ..., L+ 1. In each epoch ` ≤ L
only the nodes in T (`−1) −T (`) participate. At the beginning of epoch ` all rumors will be already
collected in T (`−1), and the purpose of epoch ` is to move all these rumors into T (`). Each of these
L epochs will run in time O(n), so their total running time will be O(nL) = O(n log logn). In
epoch L+ 1, only the nodes in T (L) participate. At the beginning of this epoch all rumors will be
already in T (L), and when this epoch is complete, all rumors will be collected in r. This epoch will
take time O(n log log n). Thus the total running time will be also O(n log log n). We now provide
the complete description of the algorithm.

Epochs ` = 1, 2, ..., L. In epoch `, only the nodes in T (`−1)−T (`) are active; all other nodes remain
quiet. The computation in this epoch is very similar to the computation of light nodes (in epoch 1)
in Algorithm SimpleGather. Epoch ` starts at time γ` = (D + 1)(2C + 1)(` − 1)n and lasts
(D + 1)(2C + 1)n steps.

Let v ∈ T (`−1)−T (`). The computation of v in epoch ` consists of D+ 1 identical stages. Each
stage h = 0, 1, ..., D starts at time step α`,h = γ` + (2C + 1)hn and lasts (2C + 1)n steps.

Stage h itself consists of two parts. The first part starts at time α`,h and lasts time 2Cn. During
this part we execute dn/K3

` e iterations, where each iteration executes the strong K`-selector S̄`.
The time needed to complete these iterations is at most

d n
K3
`

e · CK2
` log n ≤ 2Cn · log n

K`
≤ 2Cn · log n

nβ−`
≤ 2Cn · log n

nβ−L
≤ 2Cn,

where the last inequality follows from the definition of L. Thus all iterations executing the strong
selector will complete before time α`,h + 2Cn. Then v stays idle until time α`,h + 2Cn, which is
when the second part starts. In the second part we run the SB-RoundRobin protocol, which
takes n steps. So stage h will complete right before step α`,h + (2C + 1)n = α`,h+1. Note that the
whole epoch will last (D + 1)(2C + 1)n steps, as needed.

We claim that the algorithm preserves the following invariant for ` = 1, 2, ..., L:

11

(I`) Let w ∈ T and let u ∈ T −T (`−1) be a child of w having subtree size less than n/K3
`−1. Then

w will receive all rumors from Tu before the start time γ` of epoch `.

For ` = 1, invariant (I1) holds vacuously, because T (0) = T . In the inductive step, assume that
(I`) holds for some epoch `. We want to show that (I`+1) holds right after epoch ` ends. In other
words, we will show that if w has a child u ∈ T −T (`) then w will receive all rumors from Tu before
time γ`+1.

So let u ∈ T −T (`). If u 6∈ T (`−1) then (I`+1) holds for u, directly from the inductive assumption.
We can thus assume that u ∈ T (`−1) − T (`).

The argument now is very similar to that for Algorithm SimpleGather in Section 3, when we
analyzed epoch 1. For each h = 0, 1, ..., D we prove a refined version of condition (I`+1):

(I`+1
h) Let w ∈ T and let u ∈ T (`−1) − T (`) be child of w with heightK`(u, T

(`−1)) ≤ h− 1. Then
w will receive all rumors from Tu before time α`,h, that is before stage h.

The proof is the same as for Invariant (Ih) in Section 3, proceeding by induction on h. For each
fixed h we consider a subtree H rooted at u and consisting of all descendants of u in T (`−1) whose
K`-height is at least h. By the inductive assumption, at the beginning of stage h all rumors from Tu
are already in H. Then, the executions of S̄`, followed by the execution of SB-RoundRobin, will
move all rumors from H to w. The details of the argument here are analogous to that in Section 3.

By applying condition (I`+1
h) with h = D, we obtain that after all stages of epoch ` are complete,

that is at right before time γ`+1, w will receive all rumors from Tu. Thus invariant (I`+1) will hold
right after epoch `.

Epoch L + 1. Due to the definition of L, we have that T (L) contains at most K3
L = O(log3 n)

leaves, so its 2-depth is at most D′ = log(K3
L) = O(log log n), by Lemma 1. The computation in

this epoch is similar to epoch 2 from Algorithm SimpleGather. As before, this epoch consists
of D′ + 1 stages, where each stage g = 0, 1, ..., D′ has two parts. In the first part, we have n
steps in which each node transmits. In the second part, also of length n, we run one iteration of
SB-RoundRobin.

Let α′g = γL+2gn. To prove correctness, it is enough to show that the following invariant holds
for all stages g = 0, 1, ..., D′:

(Jg) Let w ∈ T (L) and let u ∈ T (L) be a child of w with height2(u, T (L)) ≤ g − 1. Then at time
α′g node w has received all rumors from Tu.

The proof of this invariant is identical to the proof of the analogous Invariant (Jg) in Section 3, so
we omit it here. Applying Invariant (Jg) with g = D′, we conclude that after stage D′, the root r
of T will receive all rumors.

As for the running time, we recall that L = O(log log n). Each epoch ` = 1, 2, ..., L has
D + 1 = O(1) stages, where each stage takes time O(n), so the execution of the first L epochs
will take time O(n log log n). Epoch L + 1 has D′ + 1 = O(log log n) stages, each stage consisting
of O(n) steps, so this epoch will complete in time O(n log log n). We thus have that the overall
running time of our protocol is O(n log log n).

It remains to explain that the simplifying assumptions we made at the beginning of this section
are not needed. Computing all subtree sizes and all K`-heights can be done recursively bottom-up,
using the linear-time information gathering algorithm from [5] that uses aggregation. This was
explained in Section 3. The difference now is that each node has to compute L+ 1 = O(log log n)
values K`, and, since we limit book-keeping information in each message up to O(log n) bits, these

12

values need to be computed separately. Nevertheless, the total pre-computation time will still be
O(n log log n).

Removing the assumption that nodes can receive and transmit at the same time can be done
in the same way as in Section 3. Roughly, in each epoch ` = 1, 2, ..., L, any node v ∈ T (`−1) − T (`)

uses a strong (K` + 1)-selector (instead of a strong K`-selector) to determine whether to be in the
receiving or transmitting state. In epoch L the computation (in the steps when all nodes transmit)
is synchronized by transmitting a control message along induced paths, and then choosing the
receiving or transmitting state according to node parity.

Summarizing, we have proved above that the running time of Algorithm FastGather is
O(n log log n), thus completing the proof of Theorem 1.

5 An O(n)-time Protocol with Acknowledgments

In this section we consider a slightly different communication model from that in Sections 3 and 4.
We now assume that acknowledgements of successful transmissions are provided to the sender
(immediately after the transmission). All the remaining nodes, including the intended recipient,
cannot distinguish between collisions and absence of transmissions. The main result of this section,
as summarized in the theorem below, is that with this feature it is possible to achieve the optimal
running time O(n).

Theorem 2. The problem of information gathering in ad-hoc networks with tree topology, without
rumor aggregation, can be solved in time O(n) if acknowledgments of successful transmissions are
provided.

The overall structure of our O(n)-time protocol, called Algorithm LinGather, is similar to
Algorithm SimpleGather. It consists of two epochs. The first epoch does not use the acknowl-
edgement feature, and it is in fact identical to epoch 1 in Algorithm SimpleGather, except for a
different choice of the parameters. After this epoch, lasting time O(n), all rumors will be collected
in the subtree T ′ consisting of heavy nodes (for a suitable definition of ”heavy”).

In the second epoch only the heavy nodes in T ′ will participate in the computation, and the
objective of this epoch is to move all rumors, already collected in T ′, to the root r. The key obstacle
to overcome in this epoch is congestion stemming from the fact that, although T ′ may be small,
its nodes have many rumors to transmit. This congestion means that simply repeatedly applying
strong k-selectors is no longer enough. For example, suppose that T ′ is a complete binary tree
of depth log log n, with each leaf holding n

logn rumors. Repeating a strong 2-selector n
logn times

guarantees that each rumor from each leaf will be successfully transmitted to this leaf’s parent.
But the lower bound in [8] on the size of selectors implies that that this would require time Ω(n)
– no better than SB-RoundRobin, and it would only move all the rumors up a single level of the
tree. There are log log n levels and the congestion only gets worse as we move up the tree, so this
approach will not lead to an O(n)-time algorithm.

To overcome this obstacle, we introduce two novel tools that will play a critical role in our
algorithm. The first tool is a so-called amortizing selector family. Since a parent, say with ` active
children, receives at most one rumor per round, it clearly cannot simultaneously be receiving rumors
at an average rate greater than 1

` from each active child individually. With the amortizing selector
family, we will be able to achieve a constant fraction of this bound over long time intervals, so long
as each child knows (approximately) how many siblings it is competing with.

Of course, such a family will not be useful unless a node can obtain an accurate estimate of its
parent’s degree, which will be the focus of our second tool, k-distinguishers. Using a k-distinguisher

13

a node can determine whether its number of active siblings p is at least k or at most 2k. While
this information is not sufficient to determine the exact relation between p and k, we show how to
combine different k-distinguishers to obtain another structure, called a cardinality estimator, that
will determine the value of p within a factor of 4. Using this estimate, and the earlier described
amortizing selector family, a node can quickly transmit its rumors to its parent. This will allow us
to gather all rumors from T ′ in the root in time O(n).

This section is divided into three parts. In Sections 5.1 and 5.2 we give precise definitions and
constructions of our combinatorial structures. Our O(n)-time protocol LinGather is described
and analyzed in Section 5.3.

5.1 Construction of Amortizing Selectors

We now define the concept of an amortizing selector family F̄ . Similarly to a strong selector, this
amortizing family will be a collection of subsets of the underlying label set [n], though now it will
be doubly indexed, F̄ = {F ji }. The general idea is that a node with roughly 2j siblings will use

sets F j0 , F
j
1 , ... to determine its transmissions.

Specifically, let F̄ = {F ji }, where i ∈ {0, 1, ...,m− 1} and j ∈ {0, 1,, κ}, for some integer
parameters m ≥ 1 and κ ∈ {1, 2, ..., dlog ne}. We say that F̄ is an amortizing selector family with
cumulative success rate ρ if the following statement holds:

(asf) For each j = 0, 1, ..., κ−1, each subset A ⊆ [n] satisfying 2j−1 ≤ |A| ≤ 2j+1, and each a ∈ A,
there are at least ρm/|A| distinct indices i for which

a ∈ F ji and A ∩ (F j−1
i ∪ F ji ∪ F

j+1
i) = {a}.

(For j = 0 the set F−1
i is defined to be empty.) For a fixed j, we will refer to the collection of sets

F̄ j = F j0 , F
j
1 , ..., F

j
m−1 as a j-amortizing selector. Parameter m in the definition of F̄ is called the

length of F̄ .
In the application to rumour gathering, m can be thought of as the “running time” of F̄ , 2j as

a node’s estimate of its parent’s degree, and 2κ as some bound on the parent’s maximum degree
(that is, the number of siblings, including v) handled by F̄ . A node v whose number of siblings is
estimated to be about 2j transmits at time step i if and only if label(v) ∈ F ji . Denoting by A the
set of labels of v’s siblings, what condition (asf) is then saying is that if |A| ≤ 2κ−1, and if each
sibling of v estimates |A| within a factor of 2, then v (as well as each of its siblings) will succeed at
rate at least ρ/|A|. Thus the parent of v will receive transmissions from its children at overall rate
ρ – averaging about one successful transmission per 1/ρ steps.

Theorem 3. There are fixed constants ρ, C > 0 such that the following is true: For any n and
κ ≤ dlog ne, and any m ≥ Ck2 log n, where k = 2κ, there is an amortizing selector family with
parameters n, κ,m and cumulative success rate ρ.

Proof. Let κ, n and m be given such that m ≥ Ck2 log n, where k = 2κ, and let C be a constant
to be determined later. We form our selector family probabilistically: For each a, i, and j, we
independently include a in F ji with probability 1/2j+1.

Observe that it suffices to check the selector property (asf) for the case |A| = 2j+1. Indeed, this
follows from monotonicity: for any set A with 2j−1 ≤ |A| ≤ 2j+1, if we replace A by a set A′ such
that A ⊆ A′ and |A′| = 2j+1, then for any a ∈ A and any i satisfying

A′ ∩ (F j−1
i ∪ F ji ∪ F

j+1
i) = {a},

14

we must also have
A ∩ (F j−1

i ∪ F ji ∪ F
j+1
i) = {a}.

So if there are at least ρ′m/|A′| distinct indices i satisfying the first equality, then there are at least
ρm/|A| indices satisfying the second equality, for ρ = 1

4ρ
′. In other words, restricting the argument

to sets A with |A| = 2j+1 can only overestimate the cumulative success rate by a factor of 4.
Now fix some j ∈ {1, 2, . . . , κ− 1}, a set A ⊆ [n] with |A| = 2j+1 and some a ∈ A, and let the

random variable X be the number of indices i for which (asf) holds, that is

X =
∣∣∣{i : a ∈ F ji and A ∩ (F j−1

i ∪ F ji ∪ F
j+1
i) = {a}

}∣∣∣
Denote ` = 2j+1. Each label a is included in F j−1, F j and F j+1 with respective probabilities 2

` ,
1
`

and 1
2` . Thus the expected value of X is

µX = m
(1

`

)(
1− 2

`

)`−1(
1− 1

`

)`−1(
1− 1

2`

)`−1

≥ m
(1

`

)(
1− 2

`

)`(
1− 1

`

)`(
1− 1

2`

)`
≥ 2ρ′m

`
, (2)

for ρ′ = 1
2(21

64)4, where the last inequality holds because the three expressions (1− 2/`)`, (1− 1/`)`,
and (1 − 1/2`)` are increasing functions of `, so they are minimized for ` = 4 (as we assume that
j ≥ 1).

Using the bound (2) on µX and applying the Chernoff bound, we get

Pr[X ≤ ρ′m/`] ≤ Pr[X ≤ 1
2µX]

≤ e−µX/8 ≤ e−ρ
′m/4`.

The above derivation assumes j ≥ 1, but it can be easily extended to j = 0; the only difference is
that the sets F−1

i , which are empty, do not need to be considered.
We now use the union bound over all choices of `, a, and A. We have at most n choices of a,

at most log n+ 1 ≤ 2 log n choices for `, and at most
(
n
`−1

)
≤ nk−1 choices of A, given fixed values

of ` and a. Thus the probability that our family does not satisfy (asf) with rate ρ′, for sets A with
cardinality ` = 2j+1, is at most

n · (2 log n) · nk−1 · (e−ρ′m/4`) ≤ 2n2k · e−Cρ′k log(n)/4

= 2nk(2−Cρ′ log(e)/4),

which is smaller than 1 for sufficiently large C. Thus there exists a family {F ji } that satisfies (asf)
with rate ρ′ for sets A with cardinality 2j+1. As explained earlier, this implies the existence of an
amortizing selector family with cumulative success rate ρ = 1

4ρ
′.

5.2 Construction of k-Distinguishers and Cardinality Estimators

In this section, we define k-distinguishers and show how to construct them. We then show how we
can use k-distinguishers to construct other combinatorial structures called cardinality estimators,
which a node can use to estimate the number of its siblings.

Consider a family Ē = (E0, E1, ..., Em−1) of sets, where Ej ⊆ [n] for each j. For A ⊆ [n] and
a ∈ A, define

hitsa,A(Ē) = |{j : Ej ∩A = {a}}|,

15

that is hitsa,A(Ē) is the number of indices j for which Ej intersects A exactly on a. Note that,
using this terminology, Ē is a strong k-selector if and only if hitsa,A(Ē) > 0 for all sets A ⊆ [n] of
cardinality at most k and all a ∈ A.

We say that Ē is a k-distinguisher if there is a threshold value ξ (which may depend on k) such
that, for any A ⊆ [n] and a ∈ A, the following conditions hold:

(dis1) if |A| < k then hitsa,A(Ē) > ξ, and

(dis2) if |A| ≥ 2k then hitsa,A(Ē) ≤ ξ.
We make no assumptions on what happens for |A| ∈ {k, k + 1, ..., 2k − 1}.

The idea is this: consider a fixed a, and imagine that we have some set A that contains a, but
its other elements are not known. Suppose that we also have an access to a hit oracle that for any
set Y will tell us whether Y ∩ A = {a} or not. We can then apply this oracle to each set Y = Ej
in a k-distinguisher Ē, which will give us the cardinality of hitsa,A(Ē), thus allowing us to extract
some information about the cardinality of A: If |hitsa,A(Ē)| ≤ ξ then we know that |A| ≥ k, and if
|hitsa,A(Ē)| > ξ then we know that |A| < 2k.

In our radio network model, if all nodes transmit according to a k-distinguisher Ē (that is, at
time j a node v transmits iff label(v) ∈ Ej), then the acknowledgement of a message received from
a parent corresponds exactly to a “yes” response from the hit oracle. This way each node can
determine in time O(k2 log n) either that its parent has at least k children or that it has fewer than
2k children.

What we will show shortly, again by a probabilistic construction, is that not-too-large k-
distinguishers exist:

Theorem 4. For any n ≥ 2 and k ∈ {1, 2, ..., bn/2c} there exists a k-distinguisher of size m =
O(k2 log n).

Proof. Let m = Ck2 log n, where C is some sufficiently large constant whose value we will determine
later. We choose the collection of random sets Ē = (E0, E1, ..., Em−1) by independently including
each a ∈ [n] in Ej with probability 1/2k (”independently” here means that the mn events of the
form ”a is contained in Ej” are all mutually independent). Thus, for any set A and a ∈ A, the
probability that Ej ∩A = {a} is (1/2k)(1− 1/2k)|A|−1, and the expected value of hitsa,A(Ē) is

E[hitsa,A(Ē)] = m · 1

2k

(
1− 1

2k

)|A|−1

. (3)

We claim that, for a suitable value of ξ, the probability that there exists a set A ⊆ [n] and some
a ∈ A for which Ē does not satisfy both conditions (dis1) and (dis2) is smaller than 1 (and in fact
tends to 0). This will be sufficient to show existence of a k-distinguisher with threshold value ξ.

Observe that in order to be a k-distinguisher it is sufficient that Ē satisfies (dis1) for sets A with
|A| = k and satisfies (dis2) for sets A with |A| = 2k. This is true because the value of hitsa,A(Ē)
is monotone with respect to the inclusion: if a ∈ A ⊆ B then each set hitting B exactly on a also
hits A exactly on a, so hitsa,A(Ē) ≥ hitsa,B(Ē).

Now consider some fixed a ∈ [n] and two sets A1, A2 ⊆ [n] such that |A1| = k, |A2| = 2k and
a ∈ A1 ∩ A2. For i = 1, 2, we consider two corresponding random variables Xi = |hitsa,Ai(Ē)| and
their expected values µi = Exp[Xi]. For any integer k ≥ 1 we have

1

e1/2
≤
(

1− 1

2k

)k−1

, and

1

e
≤
(

1− 1

2k

)2k−1

≤ 1

2

16

From (3), substituting m = Ck2 log n, this gives us the corresponding estimates for µ1 and µ2:

1
2e1/2

Ck log n ≤ µ1 , and

1
2eCk log n ≤ µ2 ≤ 1

4Ck log n

Since e−1/2 > 1
2 , we have µ2 < µ1, so we can choose an ε ∈ (0, 1) and ξ for which

(1 + ε)µ2 < ξ < (1− ε)µ1.

Then the probability that Ē violates (dis1) for A = A1 is

Pr[X1 ≤ ξ] ≤ Pr[X1 ≤ (1− ε)µ1]

≤ e−ε
2µ1/2

≤ e−Cε
2e−1/2k logn/4,

where in the second inequality we use the Chernoff bound for deviations below the mean. Similarly,
using the Chernoff bound for deviations above the mean, we can bound the probability of Ē violating
(dis2) for A = A2 as follows:

Pr[X2 ≥ ξ] ≤ Pr[X2 ≥ (1 + ε)µ2]

≤ e−ε
2µ2/3

≤ e−Cε
2e−1k logn/6.

To finish off the proof, we apply the union bound. We have at most n choices for a, at most(
n
k−1

)
≤ nk−1 ≤ n2k−1 choices of A1, and at most

(
n

2k−1

)
≤ n2k−1 choices of A2. Note also that

e−1/2/4 > e−1/6. Putting it all together, the probability that Ē is not a k-distinguisher is at most

n ·
(
n
k−1

)
· Pr[X1 ≤ ξ] + n ·

(
n

2k−1

)
· Pr[X2 > ξ] ≤ n2k · (Pr[X1 ≤ ξ] + Pr[X2 > ξ])

≤ 2n2k · e−Cε2e−1k logn/6

= 2nk(2−Cε2e−1 log(e)/6)

< 1,

where the last inequality holds for sufficiently large C. As explained earlier, this implies existence
of a k-distinguisher with threshold value ξ.

Cardinality estimators. Now let λ be a fixed parameter between 0 and 1. For each i =
0, 1, ..., dλ log ne, let Ēi be a 2i-distinguisher of size O(22i log n) and with threshold value ξi. We
can then concatenate these k-distinguishers to obtain a sequence

Ê = Ē0Ē1 ... Ēdλ logne

of length m
Ê

=
∑dλ logne

i=0 O(22i log n) = O(n2λ log n). We will refer to Ê as a cardinality estimator,
because applying our hit oracle to Ē we can estimate a cardinality of an unknown set within a
factor of 4, making O(n2λ log n) hit queries.

More specifically, consider again a scenario where we have a fixed a and some unknown set A
containing a, where |A| ≤ nλ. Using the hit oracle, compute the values hi = hitsa,A(Ēi), for all i.
If i0 is the smallest i for which hi > ξi, then by definition of our k-distinguishers (for k = 2i0−1 and

17

k = 2i0) we must have 2i0−1 ≤ |A| < 2i0+1. The value of i0−1 will denoted estA,a(Ê). It represents

the cardinality estimate of A computed by Ê for label a.
In our gathering framework, suppose that some subset of children of a node u is transmitting

according to Ê, and let A be the set of their labels. If v is one of these children and a = label(v),
then, thanks to the transmission acknowledgement mechanism, this computation will allow v to
compute j = estA,a(Ê) for which the cardinality of A is between 2j and 2j+2, which is exactly what
we need to be able to run the amortizing selector.

5.3 Linear-time Protocol

We are now ready to present our linear time algorithm for rumor gathering on trees that uses
transmission acknowledgements, thus proving Theorem 2.

As before, T is the input tree with n nodes. We will recycle the notions of light and heavy
nodes from Section 3, although now we will use slightly different parameters. Let 0 < δ < 1

13 be a
(fixed) small positive constant, and let K = dnδe. We say that v ∈ T is light if |Tv| ≤ n/K3 and
we call v heavy otherwise. By T ′ we denote the subtree of T induced by the heavy nodes.

We will use three combinatorial structures:

• S̄ is a strong K-selector of length mS̄ = O(K2 log n). As explained in Section 3, such strong
K-selectors exist.

• F̄ is an amortizing selector family with cumulative success rate ρ, parameter κ = dlog(2K3)e
and length mF̄ = CK7, where C is a positive constant. If k = 2κ then k2 log n = o(K7), so,
from Theorem 3, such F̄ exists for any C so long as n is sufficiently large.

• Ê is a cardinality estimator with parameter λ = 3δ and length m
Ê
≤ mF̄ = CK7. By the

construction in Section 5.2, since n2λ log n = n6δ log n = o(K7), such Ê exists, as long as C
is large enough.

Without loss of generality (see Section 3), in the algorithm we can assume that the nodes can
receive and transmit messages at the same time. We also assume that each node v knows the size
of its subtree Tv, its K-height, etc.

For a node v, a rumor from Tv is called pending at v if it has been received by v but not by v’s
parent. Thanks to the transmission acknowledgement feature, v knows which rumors it has already
received are pending.

Algorithm LinGather. Our algorithm consists of two epochs. The first epoch is essentially
identical to epoch 1 in Algorithm SimpleGather. The objective of this epoch is to move all
rumors from T to T ′ in time O(n). In the second epoch only the heavy nodes in T ′ will participate
in the computation, and its objective is to move all rumors from T ′ to r in time O(n). This epoch,
which is quite different from our earlier algorithms, will use the amortizing selector families and
degree estimators to achieve its goal.

Epoch 1: In this epoch only light nodes participate, and its objective is to move all rumors into T ′.
In this epoch we will not be taking advantage of the acknowledgement mechanism. As mentioned
earlier, except for different choices of parameters, this epoch is essentially identical to epoch 1 of
Algorithm SimpleGather, so we only give a very brief overview here.

Let D = dlogK ne ≤ 1/δ = O(1). By Lemma 1, the K-depth of T is at most D. Epoch 1
consists of D + 1 stages, where in each stage h = 0, 1, ..., D, nodes of K-depth equal h participate.
Eacah stage h consists of n/K3 executions of the strong selector S̄, followed by an execution of a

18

single round of SB-RoundRobin, taking total time n/K3 ·mS̄ + n = O(n). So the entire epoch
takes time (D + 1) ·O(n) = O(n) as well.

Epoch 2: When this epoch starts, all rumors from T are already gathered in T ′, and the objective
is to gather them in the root. As before, no node in T ′ can have more than K3 = O(n3δ) heavy
children, since each heavy child has at least n/K3 descendants.

The second epoch is divided into stages, each consisting of 2(m
Ê

+ mF̄) steps. A node v will
be called active in a given stage if at the beginning of the stage it has already received all rumors
from its subtree Tv, but still has at least one pending rumor. (It is possible for a node to never
become active, if it receives its last rumor within some stage and then finishes transmitting before
the beginning of the next stage.)

In any stage, a node v ∈ T ′ − {r} behaves as follows:

• In each odd-numbered time step of the stage, if v still has a pending rumor then v transmits
such a rumor. (This applies no matter whether v is active or not.)

• In the even-numbered time steps, if v is active in this stage, its computation has two parts:

– In the first part, v transmits according to the cardinality estimator Ê. (Here, it does
not matter what message v transmits.) This will take time 2m

Ê
. Let j = estA,a(Ê), as

defined in Section 5.2, for a = label(v) and A being the set of labels of active siblings of
v (inclusive). Thus at this point v knows that its number of active siblings is between
2j and 2j+2. (Note that different active siblings may compute different estimates.)

– In the second part, v transmits its pending rumors (if it still has any) using the corre-
sponding (j + 1)-amortizing selector F̄ j+1 from the amortizing selector family F̄ . If v
happens to run out of pending rumors, it stops transmitting. This part lasts for 2mF̄

steps.

The intuition here is that, most of the time, the cardinality estimations from the first part of a stage
will remain accurate throughout the stage, allowing the amortizing selectors to make significant
progress at each active node. Although no progress is made during the cardinality estimation itself,
the estimation takes only a fraction of the time in the epoch (since by construction m

Ê
is no larger

than mF̄), so this does not pose a problem. We now turn to the details of the analysis.

Analysis. Recall that the objective of epoch 1 is to move all rumors from T to T ′. The proof of
correctness for epoch 1 is identical to that for Algorithm SimpleGather in Section 3, so we omit
it here. The correctness of epoch 1 implies that, for any u ∈ T ′ and any light child x of u, when
epoch 2 starts then all rumors from Tx will be collected in u.

It remains to prove correctness of epoch 2. Our key claim, stated below, is that each node u
with subtree size s = |Tu| will have received all s rumors from Tu within O(s) steps of the start
of the epoch. In order to make the inductive argument work, however, we need a more subtle
property, wchich also guarantees that the rumors aggregate at least at a steady rate over time.

(L) For any heavy node u with |Tu| = s, and any j = 1, 2, ..., s, u will receive at least j rumors
in the first B(2s + j) steps of epoch 2, where B is some sufficiently large absolute constant.
In particular, u will receive all of the rumors from its subtree no later than in step 3Bs of
epoch 2.

We will show that invariant (L) holds by induction on u’s height within T ′. If u a leaf of T ′
then invariant (L) follows from the correctness of epoch 1, because all children of u are light.

19

Now consider a non-leaf node u ∈ T ′ with |Tu| = s. Let v1, v2, ..., v` be the heavy children of u.
For each i = 1, 2, ..., `, let si = |Tvi |, and order these children so that s1 ≥ s2 ≥ · · · ≥ s` ≥ n/K3.
(The last inequality holds because all vi’s are heavy.) When epoch 2 starts, all rumors from the
light children of u are already in u, so we only need to estimate how long it takes for the rumors in
the subtrees of v1, v2, ..., v` to reach u.

In the proof we will treat v1, a child of u with the largest subtree, separately from all other
heavy children v2, v3, ..., v`. The basic idea is this: Since s2, ..., s` are each at most s/2, the inductive
assumption implies that each vi, for i ≥ 2, will receive all rumors from its subtree Tvi no later than
at time 3Bsi ≤ 3

2Bs. This leaves us time at least 1
2Bs + Bj to push j rumors to u, which can

be accomplished using amortized selectors (if multiple nodes transmit simultaneously) or odd-
numbered transmissions (if only v1 transmits).

We introduce the following notation (see Figure 3):

t1 = the first time step when the nodes v2, v3, ..., v` have already received all rumors from their
subtrees. By the inductive hypothesis for invariant (L) (for nodes of smaller height in T ′),
we have that t1 ≤ 3Bs2 ≤ 3

2Bs.

t2 = the first time step when u has received all rumors from the subtrees of v2, v3, ..., v`.

q = the number of stages between times t1 and t2. Here, we only count full stages, namely those
that are fully included in the time interval (t1, t2).

t1 t2

v2,...,v� receive
all rumors

from their subtrees

q stages

u receives all rumors
from subtrees of v2,...,v�

Figure 3: Notation for the analysis of Algorithm LinGather.

In each of the q full stages between times t1 and t2 at least one of v2, v3, ..., v` must be active.
Each of these stages must be of one of the two following types:

Complete: All active vi’s in stages of this type have pending rumors throughout the entire stage.
Let a ≥ 1 be the number of active nodes among v2, v3, ..., v` during such stage. Then, by the
definition of our amortizing selector family F̄ , u received at least ρamF̄ /(a+ 1) ≥ 1

2ρmF̄ new
rumors from v2, v3, ..., v`. (We need a+ 1 in the denominator because v1 may also be active.)
Therefore the number of complete stages is at most 2(

∑`
i=2 si)/(ρmF̄) ≤ 2s/(ρmF̄).

Incomplete: In these stages some active vi transmits its last rumor from Tvi , and stops transmit-
ting. There are at most K3 incomplete stages, because ` ≤ K3 and each vi becomes active
at most once (when it has received all rumors from its subtree).

20

We can thus bound t2 as follows:

t2 ≤ t1 + 2(m
Ê

+mF̄)(q + 2)

≤ 3
2Bs+ 2(m

Ê
+mF̄) · [2s/(ρmF̄) +K3 + 2]

≤ 3
2Bs+ 2(CK7 + CK7) · [2s/(CK7ρ) + 2K3] (4)

= 3
2Bs+ 8s/ρ+ 8CK10

≤ (3
2B + 8/ρ+ 8C)s (5)

≤ 2Bs. (6)

In the above derivation, inequality (4) follows from m
Ê

= CK7 and mF̄ ≤ CK7. Inequality (5) is
true because δ < 1

13 and u is a heavy node, so K10 ≤ n/K3 ≤ s. Inequality (6) holds because we
can take B sufficiently large.

By the above bound, node v1 is the only node that could still be transmitting after time 2Bs.
In particular, if it has a pending rumor during an odd numbered time step after this point, it
successfully transmits this rumor to u. By the inductive assumption, for each j = 1, 2, ..., s1, v1 will
have received at least j rumors by time B(2s1 + j) ≤ B(2s+ j − 2). So, for j = 1, 2, ..., s1, node u
will receive the jth rumor no later than at time B(2s+ j − 2) + 2 ≤ B(2s+ j). If s1 < j ≤ s, then
by time B(2s + j) node u will have in fact received all rumors from Tu. This completes the proof
of invariant (L).

Now, taking u = r in invariant (L), we obtain that r will receive all rumors from T in at
most 3Bn steps of epoch 2. Since the first epoch also takes linear time, the total running time of
Algorithm LinGather is O(n), completing the proof of Theorem 2.

References

[1] Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. A lower bound for radio broad-
cast. Journal of Computer and System Sciences, 43(2):290–298, 1991.

[2] Danilo Bruschi and Massimiliano Del Pinto. Lower bounds for the broadcast problem in mobile
radio networks. Distributed Computing, 10(3):129–135, April 1997.

[3] Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.
Deterministic broadcasting in ad hoc radio networks. Distributed Computing, 15(1):27–38,
2002.

[4] Malin Christersson, Leszek Gasieniec, and Andrzej Lingas. Gossiping with bounded size mes-
sages in ad hoc radio networks. In Proc. of the 29th Int. Colloq. on Automata, Languages and
Programming (ICALP), pages 377–389, 2002.

[5] Marek Chrobak, Kevin Costello, Leszek Gasieniec, and Darek R. Kowalski. Information gath-
ering in ad-hoc radio networks with tree topology. In Proc. of the 8th Int. Conference on
Combinatorial Optimization and Applications (COCOA), pages 129–145, 2014.

[6] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. Fast broadcasting and gossiping in
radio networks. Journal of Algorithms, 43(2):177–189, 2002.

[7] Marek Chrobak, Leszek Gasieniec, and Wojciech Rytter. A randomized algorithm for gossiping
in radio networks. Networks, 43(2):119–124, 2004.

21

[8] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective families, superimposed
codes, and broadcasting on unknown radio networks. In Proc. of the 12th ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 709–718, 2001.

[9] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broadcast in radio
networks of unknown topology. Theoretical Computer Science, 302(1-3):337–364, 2003.

[10] Artur Czumaj and Peter Davies. Almost optimal deterministic broadcast in radio networks.
In Proc. of the 43rd Int. Colloq. on Automata, Languages and Programming (ICALP), 2016.
To appear.

[11] Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms, 60(2):115 – 143, 2006.

[12] Paul Erdös, Péter Frankl, and Zoltan Füredi. Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics, 51(1–2):79–89, 1985.

[13] Antonio Fernndez Anta, Miguel A. Mosteiro, and Jorge Ramn Muoz. Unbounded contention
resolution in multiple-access channels. Algorithmica, 67(3):295–314, 2013.

[14] Leszek Gasieniec. On efficient gossiping in radio networks. In Proc. of the 16th Int. Colloquium
on Structural Information and Communication Complexity (SIROCCO), pages 2–14, 2009.

[15] Leszek Gasieniec, Tomasz Radzik, and Qin Xin. Faster deterministic gossiping in directed ad
hoc radio networks. In Proc. of the 9th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT), pages 397–407, 2004.

[16] Dariusz R. Kowalski. On selection problem in radio networks. In Proc. of the 24th ACM Symp.
on Principles of Distributed Computing (PODC), pages 158–166, 2005.

[17] Dariusz R. Kowalski and Andrzej Pelc. Faster deterministic broadcasting in ad hoc radio
networks. SIAM Journal on Discrete Mathematics, 18(2):332–346, 2004.

[18] Eyal Kushilevitz and Yishay Mansour. An Ω(D log(N/D)) lower bound for broadcast in radio
networks. SIAM Journal on Computing, 27(3):702–712, 1998.

[19] Ding Liu and Manoj Prabhakaran. On randomized broadcasting and gossiping in radio net-
works. In Proc. of the 8th Int. Computing and Combinatorics Conference (COCOON), pages
340–349, 2002.

[20] Gianluca De Marco. Distributed broadcast in unknown radio networks. In Proc. of the 19th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 208–217, 2008.

[21] Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. In Proc. of the 27th Int. Symposium on Parallel Distributed Processing
(IPDPS), pages 525–533, 2013.

[22] Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm for con-
flict resolution in a dynamic multiple-access channel. SIAM Journal on Computing, 44(3):868–
888, 2015.

[23] Arthur N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Geological
Society of America Bulletin, 63:1117–1142, 1952.

22

[24] Xavier G. Viennot. A Strahler bijection between Dyck paths and planar trees. Discrete
Mathematics, 246:317–329, 2003.

[25] Ying Xu. An O(n1.5) deterministic gossiping algorithm for radio networks. Algorithmica,
36(1):93–96, 2003.

23

