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Abstract. We study information gathering in ad-hoc radio networks
without collision detection, focussing on the case when the network forms
a tree with edges directed towards the root. Initially, each node has a
piece of information that we refer to as a rumor. The goal is to deliver all
rumors to the root of the tree as quickly as possible. The protocol must
complete this task even if the tree topology is unknown. In the deter-
ministic case, assuming that the nodes are labeled with small integers,
we give an O(n)-time protocol that uses unbounded messages, and an
O(n log n)-time protocol using bounded messages. We also consider fire-
and-forward protocols, in which a node can only transmit its own rumor
or the rumor received in the previous step. We give a deterministic fire-
and-forward protocol with running time O(n1.5), and we show that it
is asymptotically optimal. We then study randomized algorithms where
the nodes are not labelled. In this model, we give an O(n log n)-time
protocol and we prove that this bound is asymptotically optimal.

1 Introduction

We consider the problem of information gathering in ad-hoc radio networks,
where initially each node has a piece of information called a rumor, and all these
rumors need to be delivered to a designated target node as quickly as possible.
A radio network is defined as a directed graph G with n vertices. At each time
step any node v of G may attempt to transmit a message. This message is sent
immediately to all out-neighbors of v. However, an out-neighbor u of v will
receive this message only if no collision occurs, that is if no other in-neighbor of
u transmits at this step. We do not assume any collision detection mechanism,
so neither u nor any other node knows whether a collision occurred.

Another feature of our model is that the topology of G is unknown. We are
interested in distributed protocols, where the computation at a node v depends
only on the label of v and the information gathered from the received messages.
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The protocol needs to complete its task within the allotted time, independent
of the topology of G. Randomized protocols typically do not use the labels, and
thus they work even if the nodes are indistinguishable from each other.

The two primitives for information dissemination in ad-hoc radio networks
that have been most extensively studied are broadcasting and gossiping. The
broadcasting problem is the one-to-all dissemination problem, where initially
only one node has a rumor that needs to be delivered to all nodes in the
network. Assuming that the nodes of G are labelled with consecutive integers
0, 1, ..., n − 1, the fastest known deterministic algorithms for broadcasting run
in time O(n log n log log n) [12] or O(n log2 D) [11], where D is the diameter of
G. The best lower bound on the running time in this model is Ω(n log D) [10].
(See also [4,5,8,18] for earlier work.) Allowing randomization, broadcasting can
be accomplished in time O(D log(n/D) + log2 n) with high probability [11,19],
even if the nodes are not labelled. This matches the lower bounds in [2,20].

The gossiping problem is the all-to-all dissemination problem. Here, each
node starts with its own rumor and the goal is to deliver all rumors to each node.
There is no restriction on the size of messages; in particular, different rumors
can be transmitted together in a single message. With randomization, gossiping
can be solved in expected time O(n log2 n) [11] (see [9,21] for earlier work), even
if the nodes are not labelled. In contrast, for deterministic algorithms, with
nodes labelled 0, 1, ..., n − 1, the fastest known gossiping algorithm runs in time
O(n4/3 log4 n) [16], following earlier progress in [8,25]. (See also [15] for more
information.) For graphs with arbitrary diameter, the best known lower bound
is Ω(n log n), the same as for broadcasting. Reducing the gap between lower and
upper bounds for deterministic gossiping to a poly-logarithmic factor remains a
central open problem in the study of radio networks with unknown topology.

Our work has been inspired by this open problem. It is easy to see that for
arbitrary directed graphs gossiping is equivalent to information gathering, in the
following sense. On one hand, trivially, any protocol for gossiping also solves the
problem of gathering. On the other hand, we can apply a gathering protocol and
follow it with a protocol that broadcasts all information from the target node r;
these two protocols combined solve the problem of gossiping.

Our Results. To gain better insight into information gathering in radio net-
works, we focus on tree topologies. Thus we assume that our graph is a tree T
with root r and with all edges directed towards r. A gathering protocol knows
that the network is a tree, but it does not know its topology. We consider several
variants of this problem, providing the following results:

(1) We first study deterministic algorithms, under the assumption that the nodes
of T are labelled 0, ..., n − 1. In Sect. 4 we examine the model without any
bound on the message size, for which we give an optimal, O(n)-time protocol.

(2) Next, in Sect. 5, we consider the model with bounded messages, where a mes-
sage may contain only one rumor, for which we give an O(n log n) protocol.

(3) In Sect. 6 we introduce a more restrictive model of fire-and-forward proto-
cols, in which a node can only transmit either its own rumor or the rumor
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received in the previous step. We give a deterministic fire-and-forward pro-
tocol with running time O(n1.5) and we show a matching lower bound of
Ω(n1.5).

(4) We then consider randomized algorithms (Sect. 7), that do not use node
labels. In this model, we give an O(n log n)-time gathering protocol and we
prove a matching lower bound of Ω(n log n). If the tree is a star, we show
that our lower bound is in fact optimal with respect to the leading constant.

Our algorithms for deterministic protocols easily extend to the model with
labels drawn from a set 0, 1, ..., L where L = O(n), without affecting the running
times. If L is arbitrary, our algorithms for bounded and unbounded messages can
be implemented in time, respectively, O(n2 log L) and O(n2 log n log L).

We remark that some protocols for radio networks use forms of information
gathering on trees as a sub-routine; see for example [3,6,17]. However, these
solutions typically focus on undirected graphs, which allow feedback, and on
a relaxed variant of information gathering where the goal is to gather only a
fraction of rumors in the root. In contrast, we study directed trees without any
feedback mechanism, and we require all rumors to be collected at the root.

Due to space limitations, some proofs are omitted in this extended abstract.
The missing proofs are provided in [7].

2 Preliminaries

We define a radio network as a directed graph G = (V,E) with n nodes, with
each node assigned a different label from the set [n] = {0, 1, ..., n − 1}. Denote
by label(v) the label assigned to a node v ∈ V . One node r is distinguished as the
target node, and we assume that r is reachable from all other nodes. Initially,
at time 0, each node v has some piece of information that we will refer to as
rumor and we will denote it by ρv. The objective is to deliver all rumors ρv to
r as quickly as possible, according to the rules described below.

The time is discrete, namely it consists of time steps numbered with non-
negative integers 0, 1, 2, .... At any step, a node v may be either in the transmit
state or the receive state. A gathering protocol A determines, for each node v
and each time step t, whether v is in the transmit or receive state at time t. If v
is in the transmitting state, then A also determines what message is transmitted
by v, if any. This specification of A may depend only on the label of v, time t,
and on the content of all messages received by v until time t.

All nodes start executing the protocol simultaneously at time 0. If a node v
transmits at a time t, the transmitted message is sent immediately to all out-
neighbors of v, that is to all u such that (v, u) is an edge. If (v, u) and (v′, u) are
edges and both v, v′ transmit at time t then a collision at u occurs and u does
not receive a message. We do not assume any feedback from the transmission
channel or any collision detection features, so, in case of a collision, neither the
sender nor any node within its range knows that a collision occurred.

Throughout the paper, we will focus on the case when the graph is a tree,
denote by T , with root r and with all edges directed towards the root r.



132 M. Chrobak et al.

The running time of a deterministic gathering protocol A is defined as the
minimum time T (n) such that, for any tree T with root r and n nodes, any
assignment of labels from [n] to the nodes of T , and any node v, the rumor ρv of
v is delivered to r no later than at step T (n). In case of randomized protocols, we
use the expectation of their running time T (n), which is now a random variable,
or we show that T (n) does not exceed a desired time bound with high probability.

We consider three types of gathering protocols. In the model with unbounded
messages a node can transmit arbitrary information in a single step. In par-
ticular, multiple rumors can be aggregated into a single message. In the model
with bounded messages, no aggregation of rumors is allowed. Each message con-
sists of at most one rumor and O(log n) bits of additional information. Our third
model is called fire-and-forward. In a fire-and-forward protocol, a node can either
transmit its own rumor or the rumor received in the previous step, if any. Thus
a message originating from a node travels towards the root one hop at a time,
until either it vanishes or it successfully reaches the root.

For illustration, consider a protocol RoundRobin (known the literature),
where all nodes transmit in a cyclic order, one at a time. The running time is
O(n2), because in any consecutive n steps each rumor will decrease its distance
to the root. For information gathering in trees, RoundRobin can be adapted
to use only bounded messages. At any round, if a node v has the rumor ρu with
label(u) = t mod n then v transmits ρu. Only one child of a node can have ρu,
so no collisions will occur, and after at most n2 steps r will receive all rumors.

3 Some Structure Properties of Trees

The running times of our algorithms in Sects. 4 and 5 depend on the distribution
of high-degree nodes. To capture the structure of this distribution we define the
concept of γ-depth which measures how “bushy” the tree is.

γ-Depth of trees. Let T be the given tree network with root r and n nodes.
Fix an integer γ with 2 ≤ γ ≤ n−1. We define the γ-height of each node v of T ,
denoted heightγ(v), as follows. If v is a leaf then heightγ(v) = 0. If v is an internal
node then let g be the maximum γ-height of a child of v. If at least γ children of
v have γ-height equal g then heightγ(v) = g + 1; otherwise heightγ(v) = g. (For
γ = 2, our definition of 2-height is equivalent to Strahler numbers; see [22,24].)
We then define the γ-depth of T as Dγ(T ) = heightγ(r).

In our proofs, we may also consider trees other than the input tree T . If v is
a node of T then Tv will denote the subtree of T rooted at v and containing all
descendants of v. If H is any tree and v is a node of H then, to avoid ambiguity,
we will write heightγ(v,H) for the γ-height of v with respect to H. Note that if
H is a subtree of T and v ∈ H then, trivially, heightγ(v,H) ≤ heightγ(v).

By definition, the 1-height of a node is the same as its height, namely the
longest distance from this node to a leaf in its subtree. For a tree, its 1-depth
is equal to its depth. Figure 1 shows an example of a tree whose depth equals 4,
2-depth equals 3, and 3-depth equals 1.

The lemma below follows by simple induction on the depth of T (see [24] for
the special case γ = 2).
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Fig. 1. An example illustrating the concept of γ-depth of trees, for γ = 1, 2, 3. The
depth of this tree T is 4. The number in each node is its 2-height; thus the 2-depth of
this tree is 3. All light-shaded nodes have 3-height equal 0 and the four dark-shaded
nodes have 3-height equal 1, so the 3-depth of this tree is 1.

Lemma 1. Dγ(T ) ≤ logγ n.

We will be particularly interested in subtrees of T consisting of the nodes whose
γ-height is above a given threshold. Specifically, for h = 0, 1, ...,Dγ(T ), let T γ,h

be the subtree of T induced by the nodes whose γ-height is at least h Note that
T γ,h is indeed a subtree of T rooted at r.

For any h, T −T γ,h is a collection of subtrees of type Tv, where v is a node of
γ-height less than h whose parent is in T γ,h. When h = 1, such subtrees contain
only nodes of γ-height equal 0, which implies that they all have degree less than
γ. In particular, for γ = 2, each such subtree Tv is a path from a leaf to v.

Lemma 2. For any node v ∈ T γ,h we have heightγ(v, T γ,h) = heightγ(v) − h.
Thus, in particular, we also have Dγ(T γ,h) = Dγ(T ) − h.

Proof. It is sufficient to prove the lemma for the case h = 1, which can be then
extended to arbitrary values of h by induction. So let h = 1 and T ′ = T γ,1.
The proof is by induction on the height of v in T ′. If v is a leaf of T ′ then
heightγ(v, T ′) = 0, by definition. All children of v in T must have γ-height equal
0, so heightγ(v) = 1 and thus the lemma holds for v.

Suppose now that v is not a leaf of T ′ and that the lemma holds for all children
of v. This means that for each child u of v in T , either heightγ(u) = 0 (that is,
u /∈ T ′) or heightγ(u, T ′) = heightγ(u) − 1. Let heightγ(v) = f . If v has a child
with γ-height equal f then there are fewer than γ such children. By induction,
these children will have γ-height in T ′ equal f − 1, and each other child that
remains in T ′ has γ-height in T ′ smaller than f −1. So heightγ(v, T ′) = f −1. If
all children of v have γ-height smaller than f then f ≥ 2 (for otherwise v would
have to be a leaf of T ′) and v must have more than γ children with γ-height
f − 1. These children will be in T ′ and will have γ-height in T ′ equal f − 2. So
heightγ(v, T ′) = f − 1 in this case as well, completing the proof.

4 Deterministic Algorithms with Aggregation

We now prove that using unbounded-size messages we can complete informa-
tion gathering in time O(n), which is optimal even for paths or star graphs.
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Since we use unbounded messages, we can assume that each message contains
all information received by the transmitting node, including all received rumors.
We also assume that all rumors are different, so that each node can keep track of
the number of collected rumors. (We can, for example, have each node append
its label to its rumor.) We will also assume that each node knows the labels of
its children. To acquire this knowledge, we can add a preprocessing phase where
nodes with labels 0, ..., n − 1 transmit, one at a time, in this order. Thus after n
steps each node will receive the messages from its children.

Simple Algorithm. We now present an algorithm for information gathering on
trees that runs in time O(n log n). In essence, any node waits until it receives the
messages from its children, then for 2n steps it alternates RoundRobin steps
with steps when it always attempts to transmit.

Algorithm UnbDTree1. We divide the time steps into rounds, where round s
consists of two consecutive steps 2s and 2s + 1, which we call, respectively, the
RR-step and the All-step of round s.

For each node v we define its activation round, denoted αv, as follows. If v is
a leaf then αv = 0. For any other node v, αv is the first round such that v has
received messages from all its children when this round is about to start.

For each round s = αv, αv + 1, ..., αv + n − 1, v transmits in the All-step of
round s, and if label(v) = s mod n then it also transmits in the RR-step of round
s. In all other steps, v stays in the receiving state.

Analysis. For a node v, we say that v is dormant in rounds 0, ..., αv−1, v is active
in rounds αv, ..., αv +n−1, and that v is retired in every round thereafter. Since
v will make at least one RR-transmission when it is active, v will successfully
transmit its message to its parent before retiring, and before this parent is acti-
vated. Therefore, by a simple inductive argument, Algorithm UnbDTree1 is
correct, namely that eventually r will receive all rumors from T . This argument
shows in fact that, at any round, Algorithm UnbDTree1 satisfies the following
invariants: (i) any path from a leaf to r consists of a segment of retired nodes,
followed by a segment of active nodes, which is then followed by a segment of
dormant nodes; and (ii) any dormant node has at least one active descendant.

Lemma 3. Let d = D2(T ). For any h = 0, 1, ..., d and any node v with height2
(v) = h, v gets activated no later than in round 2nh, that is αv ≤ 2nh.

Proof. The proof is by induction on h. By the algorithm, the lemma trivially
holds for h = 0. Suppose that the lemma holds for h − 1 and consider a node
v with height2(v) = h. To reduce clutter, denote Z = T 2,h. From Lemma 2, we
have that height2(v,Z) = 0, which implies that Zv is a path from a leaf of Z to v.
Let Zv = v1, v2, ..., vq be this path, where v1 is a leaf of Z and vq = v.

We now consider round s = 2n(h − 1) + n. The nodes in T − Z have 2-height
at most h − 1, so, by the inductive assumption, they are activated no later than
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in round 2n(h − 1), and therefore in round s they are already retired. If αv ≤ s
then αv ≤ 2nh, and we are done. Otherwise, v is dormant in round s. Then, by
invariant (ii) above, at least one node in Zv must be active. Choose the largest p
for which vp is active in round s. In round s and later, all children of the nodes
vp, vp+1, ..., vq that are not on Zv do not transmit, since they are already retired.
This implies that for each � = 0, ..., q − p − 1, node vp+�+1 will get activated in
round s + � + 1 as a result of the All-transmission from node vp+�. In particular,
we obtain that αv ≤ s + q − p ≤ 2nh, completing the proof of the lemma.

We have height2(r) = d and d = O(log n), by Lemma 1. Applying Lemma 3,
this implies that αr ≤ 2nd = O(n log n), so the overall running time is O(n log n).

Theorem 1. For any tree with n nodes and any assignment of labels, Algo-
rithm UnbDTree1 completes information gathering in time O(n log n).

Linear-Time Algorithm. We show how to improve the running time of infor-
mation gathering in trees to linear time, assuming unbounded messages. The
basic idea is to use strong k-selective families to speed up the computation.

Recall that a strong k-selective family, where 1 ≤ k ≤ n, is a collection
F0, F1, ..., Fm−1 ⊆ [n] of sets such that for any set X ⊆ [n] with |X| ≤ k and
any x ∈ X, there is j for which Fj ∩ X = {x}. For any k = 1, 2, ..., n, there is a
strong k-selective family with m = O(k2 log n) sets [10,13].

In essence, the strong k-selective family is used to speed up information dis-
semination through low-degree nodes. To achieve linear time, we will interleave
the steps using the selective family with RoundRobin (to deal with high-degree
nodes) and steps where all active nodes transmit (to deal with long paths).

Below, we fix parameters κ = �n1/3� and m = O(κ2 log n), the size of a strong
κ-selective family F0, ..., Fm−1. Without loss of generality, we assume m ≤ n.

Algorithm UnbDTree2. We divide the steps into rounds, where each round
s consists of three consecutive steps 3s, 3s + 1, and 3s + 2, that we will call the
RR-step, All-step, and Sel-step of round s, respectively.

For each node v we define its activation round, denoted αv, as follows. If v is
a leaf then αv = 0. For any other node v, αv is the first round such that before
this round starts v has received all messages from its children.

In each round s = αv, αv + 1, ..., αv + m − 1, v transmits in the All-step
of round s, and if label(v) ∈ Fs mod m then v also transmits in the Sel-step of
round s. In each round s = αv, αv + 1, ..., αv + n − 1, if label(v) = s mod n then
v transmits in the RR-step of round s. If v does not transmit according to the
above rules then v stays in the receiving state.

Analysis. Similar to Algorithm UnbDTree1, in Algorithm UnbDTree2 each
node v goes through three stages. We call v dormant in rounds 0, 1, ..., αv − 1,
active in rounds αv, αv + 1, ..., αv + n − 1, and retired thereafter. We will also
refer to v as being semi-retired in rounds αv + m,αv + m + 1, ..., αv + n − 1
(when it is still active, but only uses RR-transmissions). Assuming that v gets
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activated in some round, since v makes at least one RR-transmission when it
is active, it will successfully transmit its message to its parent before retiring,
and before its parent gets activated. By induction on the depth of T , each
node will eventually get activated, proving correctness. By a similar argument,
Algorithm UnbDTree2 satisfies the following two invariants in each round:
(i) Any path from a leaf to r consists of a segment of retired nodes, followed
by a segment of active nodes (among the active nodes, the semi-retired nodes
precede those that are not semi-retired), which is then followed by a segment of
dormant nodes. (ii) Any dormant node has at least one active descendant.

It remains to show that the running time of Algorithm UnbDTree2 is O(n).
The idea is to show that Sel- and All-steps disseminate information in linear time
through subtrees where all node degrees are less than κ. The process can stall,
however, if all active nodes have parents of degree larger than κ. In this case,
a complete cycle of RoundRobin will transmit the messages from these nodes
to their parents. We show, using Lemma 1, that such stalling can occur at most
the total of 3 times. So the overall running time will be still O(n).

To formalize this argument, let d̄ = Dκ(T ). From Lemma 1, we have d̄ ≤ 3.
We fix some g ∈ {0, 1, 2, 3}, a node w with heightκ(w) = g, and we let Y = T κ,g

w .
Thus Y consists of the descendants of w whose κ-height in T is exactly g, or,
equivalently (by Lemma 2), the descendants of w in T κ,g whose κ-height in T κ,g

is equal 0. So all nodes in Y have degree smaller than κ. We also fix s̄ to be the
first round when all nodes in T −T κ,g are active or already retired. In particular,
for g = 0 we have s̄ = 0. Our goal now is to show that w will get activated in at
most O(n) rounds after round s̄.

Lemma 4. αw ≤ s̄ + O(n).

Proof. Let d = D2(Y). By Lemma 1, d = O(log |Y|) = O(log n). For h = 0, ..., d,
let lh be the number of nodes u ∈ Y with height2(u,Y) = h. The overall idea of
the proof is similar to the analysis of Algorithm UnbDTree1. The difference is
that now, since all degrees in Y are less than κ, the number of rounds required
to advance through the h-th layer of Y, consisting of nodes of 2-height equal h,
can be bounded by O(m + lh), while before this bound was O(n). Adding up
the bounds for all layers, all terms O(lh) amortize to O(n), and the terms O(m)
up to O(md) = O(n2/3 log2 n) = O(n) as well. We now fill in the details.

Claim A: Let v be a node in Y with height2(v,Y) = h. Then the activation
round of v satisfies αv ≤ sh, where sh = s̄ + 2n +

∑
i≤h li + hm.

First, we observe that Claim A implies the lemma. This is because for v = w
we get the bound αw ≤ s̄ + 2n +

∑
i≤d li + dm ≤ s̄ + 2n + n + O(log n) ·

O(n2/3 log n) = s̄ + O(n), as needed. Thus, to complete the proof, it remains to
justify Claim A. We proceed by induction on h.

Consider first the base case, when h = 0. We focus on the computation in the
subtree Yv, which (for h = 0) is simply a path v1, v2, ..., vq = v, from a leaf v1 of
Y to v. In round s̄+n all the nodes in T −Y must be already retired. If v is active
in round s̄+n, we are done, because s̄+n ≤ s0. If v is dormant, at least one node
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in Yv must be active (see the invariant (ii)), so choose p to be the maximum
index for which vp is active. Since we have no interference from outside Yv,
using a simple inductive argument, v will be activated in q − p rounds using All-
transmissions. Also, q−p ≤ l0, and therefore αv ≤ s̄+n+q−p ≤ s̄+2n+l0 = s0,
which is the bound from Claim A for h = 0.

In the inductive step, fix some h > 0, and assume that Claim A holds for
h − 1. Denoting Z = Y2,h, we consider the computation in Zv, the subtree of Z
rooted at v. Zv is a path v1, v2, ..., vq = v from a leaf v1 of Z to v. The argument
is similar to the base case. There are two twists, however. One, we need to show
that v1 will get activated no later than at time sh−1 + m; that is, after delay of
only m, not O(n). Two, the children of the nodes on Zv that are not on Zv are
not guaranteed to be retired anymore. However, they are semi-retired, which is
good enough for our purpose.

Consider v1. We want to show first that v1 will get activated no later than
at time sh−1 + m. All children of v1 can be grouped into three types. The first
type consists of the children of v1 in T −Y. These are activated no later than in
round s̄, so they are retired no later than in round s̄ + n. All other children of
v1 are in Y −Z. Among those, the type-2 children are those that were activated
before round s̄ + n, and the type-3 children are those that were activated at
or after round s̄ + n. Clearly, v1 will receive the messages from its children of
type 1 and 2, using RR-transmissions, no later than in round s̄+2n. The children
of v1 of type 3 activate no earlier than in round s̄ + n. Also, since they are in
Y − Z, their 2-height in Y is strictly less than h, so they activate no later than
in round sh−1, by induction. (Note that sh−1 ≥ s̄ + 2n.) Thus each child u of v1
in Y of type 3 will complete all its Sel-transmissions, that include the complete
κ-selector, between rounds s̄ + n and sh−1 + m − 1 (inclusive). In these rounds
all children of v1 that are not in Y are retired, so fewer than κ children of v1 are
active in these rounds. This implies that the message of u will be received by
v1. Putting it all together, v1 will receive messages from all its children before
round sh−1 + m, and thus it will be activated no later than in round sh−1 + m.

From the paragraph above, we obtain that in round sh−1 + m either there
is an active node in Zv or all nodes in Zv are already retired. The remainder
of the argument is similar to the base case. If v itself is active or retired in
round sh−1 + m then we are done, because sh−1 + m ≤ sh. So suppose that v
is still dormant in round sh−1 + m. Choose p to be the largest index for which
vp is active in this round. All children of the nodes on Zv that are not on Zv

are either retired or semi-retired. Therefore, since there is no interference, v
will get activated in q − p additional rounds using All-transmissions. So αv ≤
sh−1 +m+ q − p ≤ sh−1 +m+ lh = sh, completing the inductive step, the proof
of Claim A, and the lemma.

From Lemma 4, all nodes in T with κ-height equal 0 will get activated in at
most O(n) rounds. For g = 1, 2, 3, all nodes with κ-height equal g will activate no
later than O(n) rounds after the last node with κ-height less than g is activated.
This implies that all nodes in T will be activated within O(n) rounds.
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Theorem 2. For any tree with n nodes and any assignment of labels, Algo-
rithm UnbDTree2 completes information gathering in time O(n).

5 Deterministic Algorithms Without Aggregation

In this section we consider deterministic information gathering without aggre-
gation, where each message can contain at most one rumor, plus additional
O(log n) bits of information. In this model, we give an algorithm with running
time O(n log n). For simplicity, assume here that we are allowed to receive and
transmit at the same time. We later explain how to remove this assumption.

Algorithm BndDTree. First, we use a modification of Algorithm UnbDTree2 to
compute the 2-height of each node v. In this modified algorithm, the message from
each node contains its 2-height. When v receives such messages from its children, it
can compute its own 2-height.

Let � = �log n�. We divide the computation into � + 1 phases. Phase h, for h =
0, ..., �, consists of steps 3nh, ..., 3n(h+1)−1. In phase h, only the nodes of 2-height equal
h participate in the computation. Specifically, consider a node v with height2(v) = h.
We have two stages: (Stage All:) In each step t = 3nh, ..., 3nh + 2n − 1, if v contains
any rumor ρu that it still has not transmitted, v transmits ρu. (Stage RR:) In each
step t = 3nh + 2n + u, for u = 0, ..., n − 1, if v has rumor ρu, then v transmits ρu. In
other steps, v is in the receiving state.

Analysis. By Lemma 1, the number of phases is O(log n), so the algorithm makes
O(n log n) steps. The lemma below will thus complete the analysis.

Lemma 5. At the beginning of phase h, every node v has rumors from all
its descendants in T − T 2,h, namely the descendants whose 2-height is strictly
smaller than h. (In particular, if height2(v) < h then v has all rumors from Tv.)

Proof. The proof is by induction on h. The lemma trivially holds when h = 0.
Assume that the claim holds for some h < �, and consider phase h. We want to
show that each node v has rumors from all descendants in T − T 2,h+1. By the
inductive assumption, v has all rumors from its descendants in T − T 2,h. So if
v does not have any descendants of height h then we are done.

It thus remains to prove that if v has a child u with height2(u) = h then right
after phase h all rumors from Tu will also be in v. (Of course, this case applies
only if height2(v) ≥ h.) The subtree T 2,h

u , namely the subtree consisting of the
descendants of u with 2-height equal h, is a path P = u1, u2, ..., uq = u, where
u1 is a leaf of T 2,h. We show that, thanks to pipelining, all rumors that are in
P when phase h starts will reach u during Stage All.

In phase h, none of the children of the nodes in P transmits, except possibly
for the one that is also on P. For any step 3nh + s, s = 0, 1, ..., 2n − 1, and for
i = 1, 2, ..., q−1, we define φs,i to be the number of rumors in ui that are still not
transmitted, and we let Φs =

∑q−1
i=as

max(φs,i, 1), where as is the smallest index
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for which φs,as
	= 0. We claim that as long as Φs > 0, its value will decrease in

step s. Indeed, for i < q, each node vi with φs,i > 0 will transmit a new rumor
to vi+1. Since φs,i = 0 for i < as, node uas

will not receive any new rumors. We
have φs,as

> 0, by the choice of as. If φs,as
> 1 then max(φs,as

, 1) will decrease
by 1. If φs,as

= 1 then the index as itself will increase. In either case, uas
’s

contribution to Φs will decrease by 1. For i > as, even if ui receives a new rumor
from its child, the term max(φs,i, 1) cannot increase, because if φs,i > 0 then
ui transmits a new rumor to ui+1, and if φs,i = 0 then this term is 1 anyway.
Therefore, overall, Φs will decrease by at least 1.

Since Φs strictly decreases in each step, and its initial value is at most q+n ≤
2n, Φs will become 0 in at most 2n steps. In other words, in 2n steps u will receive
all rumors from P, and thus all rumors from Tu.

In Stage RR, u will transmit all collected rumors to v, without collisions. As
a result, at the beginning of the next phase v will contain all rumors from Tu,
completing the proof of the inductive step.

The assumption that we can transmit and receive at the same time can be
eliminated. The idea is that along paths where all nodes have the same 2-height,
we can synchronize the computation by having even and odd nodes along this
path transmit at different times. See [7] for a complete proof.

Theorem 3. For any tree with n nodes and any assignment of labels, Algo-
rithm BndDTree completes information gathering in time O(n log n).

6 Deterministic Fire-and-Forward Protocols

We now consider a very simple type of protocols that we call fire-and-forward
protocols. For convenience, in this model we allow nodes to receive and transmit
messages at the same step. In a fire-and-forward protocol, at any time t, any
node v can either be idle or make one of two types of transmissions:

Fire: v can transmit its own rumor, or
Forward : v can transmit the rumor received in step t − 1, if any.

In Sect. 7 we give a randomized fire-and-forward protocol that works in
expected time O(n log n). This raises the question whether this running time
can be achieved by a deterministic fire-and-forward protocol. (Time O(n2) is
trivial: release all rumors one at a time, spaced at intervals of length n.) We now
show that this can be improved to O(n1.5) and that this bound is optimal.

The key property of fire-and-forward protocols is that any rumor, once fired,
moves up the tree one hop per step, unless either it collides, or is dropped, or it
reaches the root. If rumors fired from two nodes collide at all, they will collide at
their lowest common ancestor. (We extend the definition of collision to include
the situation when a node attempts to fire right after receiving a rumor, when
nothing is transmitted). This happens only when the difference in times between
these two firings is equal to the difference of their depths in the tree.
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Any fire-and-forward protocol A can be made oblivious, in the sense that the
decision whether to fire or not depends only on the label of the node and the cur-
rent time. Let T (n) be the running time of A. Imagine that we run A on the tree
T ′ obtained from T by adding a leaf to any node v and giving it the label of v.
Label the original nodes with the remaining labels. This at most doubles the num-
ber of nodes, so A will complete in time O(T (n)) on T ′. In the execution of A on
T ′ the leaves receive no information and all rumors from the leaves will reach the
root. This implies that if we apply A on T and ignore all information received
during the computation, the rumors will also reach the root.

An O(n1.5) Upper Bound. We now present our O(n1.5)-time fire-and-forward
protocol. As explained earlier, this protocol should specify a set of firing times
for each label, so that for any mapping [n] → [n], that maps each label to the
depth of the node with this label, each node will have at least one firing time
for which there will not be a collision along the path to the root. We want each
of these firing times to be at most O(n1.5). To this end, we will partition all
labels into batches, each of size roughly

√
n, and show that for any batch we can

define such collision-avoiding firing times from an interval of length O(n). Since
we have about

√
n batches, this will give us running time O(n1.5).

Our construction is based on a concept of dispersers, defined below, which
are reminiscent of various rulers studied in number theory, for example Sidon
sequences. The particular construction we give in the paper is, in a sense, a
multiple set extension of a Sidon-set construction by Erdös and Turán [14].

We now give the details. For z ∈ Z and X ⊆ Z, let X + z = {x + z : x ∈ X}.
Let also s be a positive integer. A set family D1, ...,Dm ⊆ [s] is called an (n,m, s)-
disperser if for each function δ : {1, ...,m} → [n] and each j we have Dj + δ(j) 	⊆⋃

i�=j(Di + δ(i)). The intuition is that Dj represents the set of firing times of
node j and δ(j) represents j’s depth in the tree. Then the disperser condition
says that some firing in Dj will not collide with firings of other nodes.

Lemma 6. There exists an (n,m, s)-disperser with m = Ω(
√

n) and s = O(n).

Proof. Let p be the smallest prime such that p2 ≥ n. For each a = 1, 2, ..., p − 1
and x ∈ [p] define da(x) = (ax mod p)+ 2p · (ax2 mod p). We claim that for any
a 	= b and any t ∈ Z the equation da(x) − db(y) = t has at most two solutions
(x, y) ∈ [p]2. For the proof, fix a, b, t and one solution (x, y) ∈ [p]2. Suppose that
(u, v) ∈ [p]2 is a different solution. Thus we have da(x) − db(y) = da(u) − db(v).
After substituting and rearranging, this can be written as

(ax mod p) − (by mod p) − (au mod p) + (bv mod p)

= 2p[−(ax2 mod p) + (by2 mod p) + (au2 mod p) − (bv2 mod p) ].

The expression on the left-hand side is strictly between −2p and 2p, so both
sides must be equal 0. This implies that

ax − au ≡ by − bv (mod p) and (1)

ax2 − au2 ≡ by2 − bv2 (mod p). (2)
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From Eq. (1), the assumption that (x, y) 	= (u, v) implies that x 	= u and y 	= v.
We can then divide the two equations, getting

x + u ≡ y + v (mod p). (3)

With addition and multiplication modulo p, Zp is a field. Therefore for any x
and y, and any a 	= b, Eqs. (1) and (3) uniquely determine u and v, completing
the proof of the claim.

Now, let m = (p − 1)/2 and s = 2p2 + p. By Bertrand’s postulate we have√
n ≤ p < 2

√
n, which implies that m = Ω(

√
n) and s = O(n). For each

i = 1, 2, ...,m, define Di = {di(x) : x ∈ [p]}. It is sufficient to show that the sets
D1,D2, ...,Dm satisfy the condition of the (n,m, s)-disperser.

The definition of the sets Di implies that Di ⊆ [s] for each i. Fix some δ
and j from the definition of dispersers. It remains to verify that Dj + δ(j) 	⊆⋃

i�=j(Di + δ(i)). For x ∈ [p] and i ∈ {1, 2, ...,m}, we say that i kills x if dj(x) +
δ(j) ∈ Di +δ(i). Our earlier claim implies that any i 	= j kills at most two values
in [p]. Thus all indices i 	= j kill at most 2(m − 1) = p − 3 integers in [p], which
implies that there is some x ∈ [p] that is not killed by any i. For this x, we will
have dj(x) + δ(j) /∈

⋃
i�=j(Di + δ(i)), completing the proof that D1, ...,Dm is

indeed an (n,m, s)-disperser.

Algorithm MlsDTree. Let D1,D2, ...,Dm be the (n,m, s)-disperser from
Lemma 6. We partition all labels (and thus also the corresponding nodes) arbi-
trarily into batches B1, B2, ..., Bl, for l = �n/m�, with each batch Bi having m
nodes (except the last batch, that could be smaller). Order the nodes in each
batch arbitrarily, for example according to increasing labels.

The algorithm has l phases. Each phase q = 1, 2, ..., l consists of s′ = s + n
steps in the time interval [s′(q − 1), s′q − 1]. In phase q, the algorithm transmits
rumors from batch Bq, by having the j-th node in Bq fire at each time s′(q−1)+τ ,
for τ ∈ Dj . Note that in the last n steps of each phase none of the nodes fires.

Analysis. We now show that Algorithm MlsDTree correctly performs gather-
ing in any n-node tree in time O(n1.5). Since m = Ω(

√
n), we have l = O(

√
n).

Also, s′ = O(n), so the total run time of the protocol is O(n1.5).
It remains to show that during each phase q each node in Bq will have at

least one firing that will send its rumor to the root r without collisions. Fix
some tree T and let δ(j) ∈ [n] be the depth of the jth node in batch Bq. For
any batch Bq and any v ∈ Bq, if v is the jth node in Bq then v will fire at times
s′(q − 1) + τ , for τ ∈ Dj . From the definition of dispersers, there is τ ∈ Dj such
that τ + δ(j) − δ(i) /∈ Di for each i 	= j. This means that the firing of v at time
s′(q −1)+ τ will not collide with any firing of other nodes in batch Bq. Since the
batches are separated by empty intervals of length n, this firing will not collide
with any firing in other batches. So v’s rumor will reach r, implying
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Theorem 4. There is a fire-and-forward protocol for information gathering in
trees with running time O(n1.5).

It is easy to remove the assumption that nodes are allowed to receive and trans-
mit at the same time, by incorporating the extended definition of collisions into
the construction from Lemma 6. The details will appear in the full paper.

An Ω(n1.5) Lower Bound. We match our lower bound by showing that any
fire-and-forward protocol needs time Ω(n1.5). The basic idea of the proof is that
the firings from the leaves are independent of the computation in the rest of the
tree. We use this property to show that for any fire-and-forward protocol A with
running time o(n1.5) we can construct a caterpillar tree on which at least one leaf
will fail. The construction is based on a counting argument and analyzing the
structure of the bipartite graphs representing collisions between firings (see [7]).

Theorem 5. If A is a deterministic fire-and-forward protocol for information
gathering in trees, then the running time of A is Ω(n1.5).

7 Randomized Algorithms

Upper Bound of O(n log n). We now show a randomized algorithm with
expected running time O(n log n) that does not use any labels. Our algorithm
also does not use any aggregation; each message consists only of one rumor. In
the description of the algorithm we assume that the number n of nodes is known.
Using a standard doubling trick, the algorithm can be extended to one that does
not depend on n. We present the algorithm as a fire-and-forward algorithm (see
the previous section). In particular, for simplicity, we assume for now that at
each step a node can listen and transmit at the same time.

Algorithm RTree. At any time t, each node v 	= r, independently of other
nodes, decides to fire with probability 1/n. If v decides to fire and no rumor
arrived at v at step t − 1, v fires. If v decides not to fire and v received some
rumor in step t − 1, then v forwards this rumor in step t. Otherwise, v is idle.

Analysis. We start with the following lemma.

Lemma 7. At each step t ≥ n, for each node z 	= r, the probability that r
receives rumor ρz at step t is at least 1

n (1 − 1
n )n−1. Further, for different t these

events (receiving ρz by r) are independent.

Proof. To prove the lemma, it helps to view the computation in a slightly dif-
ferent, but equivalent way. Imagine that we ignore collisions, and we allow each
message to consist of a set of rumors. If some children of v transmit at a time
t, then v receives all rumors in the transmitted messages, and at time t + 1 it
transmits a message containing all these rumors, possibly adding its own rumor,
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if v decides to fire at that step. We will refer to these messages as virtual mes-
sages. In this interpretation, if r receives a virtual message that is a singleton
set ρz, at some time t, then in Algorithm RTree this rumor ρz will be received
by r at time t. (Note that the converse is not true.)

Fix a time t and some z ∈ T − {r}. By the above paragraph, it is sufficient
to show that the probability that at time t the virtual message reaching r is
the singleton {z} is equal 1

n (1 − 1
n )n−1. This event will occur if and only if:

(i) At time t − depth(z), z decided to fire, and (ii) For each u ∈ T − {z, r}, u
did not decide to fire at time t− depth(u). By the algorithm, all these events are
independent, so the probability of this combined event is exactly 1

n (1 − 1
n )n−1.

By Lemma 7, for any step t ≥ n, the probability of any given rumor ρz

reaching r in step t is at least as large as the probability of collecting a given
coupon in the coupon collector problem. We thus obtain the following theorem.

Theorem 6. Algorithm RTree has expected running time O(n log n). In fact,
it will complete gathering in time O(n log n) with probability 1 − o(1).

Lower Bound of Ω(n log n). We now show that Algorithm RTree is within
a constant factor of optimal. Actually we will show something a bit stronger,
namely that there is a constant c such that any label-less algorithm with running
time less than cn ln n will almost surely have some rumors fail to reach the root
on the tree that is a star graph (consisting of the root with n children that are
also the leaves in the tree). In this tree, at each time step t, each leaf v transmits
with a probability that can depend only on t and on the set of previous times
at which v attempted to transmit. Note that the actions of v at different steps
may not be independent. Allowing some dependence, in fact, can help reduce
the running time, although only by a constant factor (see Theorem 8).

For the star graph, we can equivalently think of a label-less algorithm run-
ning in time T as a probability distribution over all subsets of {0, 1, . . . , T − 1}
representing the sets of transmission times of each node. Each node v indepen-
dently picks a subset Sv according to the distribution, and transmits only at the
times in Sv. The label-less requirement is equivalent to the requirement that the
Sv are identically distributed. Node v succeeds in transmitting if there is a time
t such that t ∈ Sv, but t /∈ Sw for any w 	= v.

Theorem 7. If R is a randomized protocol for information gathering on trees
then the expected running time of R is Ω(n ln n). More specifically, if n is large
enough and we run R on the n-node star graph for T ≤ cn ln n steps, where
c < 1

ln2 2
, then there will almost surely be a rumor that fails to reach the root.

The proof appears in [7]. We also show in [7] that our lower bound is in fact
tight, in the sense that the value of the constant c in the above theorem is best
possible for star graphs.

Theorem 8. If T = cn ln n, where c > 1
ln2 2

, then there is a protocol which
succeeds on the star graph in time T with probability 1 − o(1).
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