Finding patterns avoiding many monochromatic constellations
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Abstract

Given fixed 0 = go < 1 < g2 < -+ < q&x = 1 a constellation in [n] is a scaled translated realization of
the ¢; with all elements in [n], i.e.,

PP+ qd,p+qed,...,p+ qr—1d,p + d.

We consider the problem of minimizing the number of monochromatic constellations in a two coloring of
[n]. We show how given a coloring based on a block pattern how to find the number of monochromatic
solutions to a lower order term, and also how experimentally we might find an optimal block pattern.
We also show for the case k = 2 that there is always a block pattern that beats random coloring.

1 Introduction

A constellation pattern is @ = [¢o = 0,q1,92,...,qk—1,qx = 1] with ¢; rational and 0 < ¢1 < g2 < -+ <
qr—1 < 1. Given Q a constellation in [n] = {1,2,...,n} is

p,p+qid,p+qed,...,p+qr_1d,p+d,

where each term is in [n], or in other words a constellation in [n] is a scaled and translated copy of the
constellation pattern. We allow for d to be negative (i.e., the pattern to be reflected), so that we it does not
matter whether we work with[0,¢1,42,...,qk-1,1] or [0,1 — qt—1,1 — gx—2,...,1 — g1, 1] (i.e., the mirrored
version of the pattern).

The most well studied example of constellations are k-term arithmetic progressions, which correspond
to the case ¢; = i/(k — 1) for i« = 0,1,...,k. Another example are solutions to equations of the form
ax + by = (a + b)z where z,y, z € [n], which corresponds to [0,a/(a + b), 1].

For any constellation pattern Q we will let D be the smallest common denominator of the ¢;. The number
of constellations in [n] is n?/D + O(n) if the pattern is not symmetric and n?/(2D) + O(n) if the pattern
is symmetric. One way to see this is to pick two elements p,q € [n] (which can be done in n? ways), at
which point p and ¢ are the start and end of a constellation if and only if D | (p — q), which happens with
probability 1/D, giving n?/D + O(n) constellations. When the pattern is symmetric we can interchange p
and ¢ so we divide by 2.

A natural question that arises is the following: Given a constellation Q and a fixed number 7 of colors,
can we color [n] in such a way as to avoid having a monochromatic constellation (i.e., one where all the p+¢;d
are colored with the same color)? The answer to this is a resounding no, in that not only must we have
monochromatic constellations for n large, but a positive fraction of all constellations must be monochromatic.

Fact 1. For any constellation pattern Q there is a constant ¢(Q) so that for any r coloring of [n] there are
at least ¢(Q)n? monochromatic constellations.
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To see this, given Q we note that the constellation corresponding to the arithmetic progression of length
D+1 contains all the ¢g; in Q. In particular the constellation Q is contained in an arithmetic progression, so if
there are monochromatic progressions there must also be monochromatic constellations. So it suffices to show
that for any two coloring of [n] that there must be at least d(k)n? monochromatic arithmetic progressions
of length k where d(k) > 0 is some constant. This was proved for the case k = 3 by Frankl, Graham and
Rodl [3]. The same proof works for arbitrary &, we include it here for completeness.

By a theorem of van der Waerden [9] there is number W := W(r, k) so that any r coloring of [I¥]
must have a monochromatic k-term arithmetic progression. We first note that as done above that there
are n?/(2(W + 1)) different arithmetic progressions of length W inside [n]. Each one of these must contain
a monochromatic progression in a r coloring of [n]. To correct for any overcounting we note that each
monochromatic progression in [n] will be counted at most (V;) times, since there are at most (V;/) ways for
us to put the progression into [W]. Therefore there are at least n?/W? monochromatic progressions.

Since we must have some positive fraction of the constellations be monochromatic the next natural
question is what is the smallest number of monochromatic constellations, i.e., the smallest coefficient v so
that there are yn? + o(n?) monochromatic constellations for n arbitrarily large, and how do we achieve this
lower bound.

One obvious candidate is to consider random colorings. Since a constellation with k + 1 points will be
monochromatic with probability 1/2* then by coloring randomly we get a coefficient of v = 1/(2¥D) if the
constellation pattern is not symmetric and v = 1/(2¥71 D) if the pattern is symmetric.

Parrilo, Robertson and Saracino [4] considered this problem for 3-term arithmetic progressions (which
corresponds to the constellation @ = [0,1/2,1]). They showed that by subdividing [n] into 12 appropriately
sized blocks that we can have (117/2192)n? 4+ O(n) monochromatic constellations. Note that 117/2192 ~
0.05337591 ... < 1/16 = 0.0625, so their coloring has significantly fewer progressions than a typical random
coloring (roughly 85.4% of what we would expect if we color randomly).

In this paper we show how one could find this subdivision for 3-term arithmetic progressions experimen-
tally. We also generalize the approach for other constellations and find colorings which beat random for 4
and 5-term arithmetic progressions as well as other constellation patterns. We show that for the constellation
[0, ¢,1] that there is a way of coloring of [n] that beats random. We also relate some of our techniques to
related problems not involving constellations and conclude with some open problems.

2 Finding a coefficient of a block coloring

Given a coloring of [n] where there are large runs of a single color we naturally can group these runs into
blocks. A block pattern B = (b1, bs, ..., b,,) then represents the relative sizes of blocks to one another. Since
we only care about the relative sizes of the blocks we can scale all numbers by any constant. As an example
the block pattern found by Parrilo et al. is

(28,6,28,37,59,116,116,59, 37, 28, 6, 28).
Pictorially this is shown in Figure

Figure 1: A good block coloring for avoiding 3-term arithmetic progressions.

Closely related to a block pattern is a subdivision pattern X = (89, 51, ..., 8m)) which gives the subdi-
vision of the interval [0, 1] according to the block pattern. It is easy to go back and forth between these two.
Namely, given a block pattern then the subdivision pattern is found by letting

Z;:l b,

IBi = <—m 7

fori=0,1,...,m,



while given a subdivision pattern to find the block pattern we let b; = 3; — 8;—1 for i = 1,2,...,m and then,
if desired, scale all the blocks by some constant.

Given a block pattern B = (b;) with corresponding subdivision pattern X, the B coloring of [n] is a two
coloring found by coloring red all m with G3;n < m < f9;41n, blue all m with fg;_1n < m < fy;n and any
blocks left over are colored arbitrarily.

Theorem 1. Given a constellation pattern Q = [qo,q1,--.,qx] and a block pattern B = (b1,...,by,). Then
the number of monochromatic constellations of Q in a B coloring of [n] is

%Tf +O(n) if Q is symmetric,

%nQ +O(n) if Q is not symmetric.

Where
(i S+ (= a)y) | pp L= e+ (- a)y)
o= (1 ' 11 ' )avds (1)
and
" 1 for Bai < < Boiqa,
f(z) =

-1 for [ai—1 <z < B

The function f(z) is acting as an indicator function for whether we are in a red or a blue block. If we
let g(x,y) be the function inside the integral in , then g(z,y) is also acting as an indicator function, but
in this case it takes values 0 and 1, where g(z,y) = 1 if and only if  and y are (respectively) the start
and end of a monochromatic constellation in [0,1]. The basic idea is if we know where the monochromatic
constellations of the block pattern in [0,1] are then we also know where the monochromatic constellations
in [n] are.

An important aspect about g(z,y) is that it can only change value when (x,y) crosses a line of the form
gz + (1 — ¢;)y = B;. In Figure [2| we have plotted the function for @ = [0,1/2, 1], where red indicates where
g(xz,y) = 1 and f(x) = 1, blue indicates g(x,y) = 1 and f(x) = —1, white indicates where the function is
g(z,y) = 0. We have also drawn all the lines of the form ¢;x + (1 — ¢;)y = ;. In particular, note that every
region where g(x,y) = 1 will be a convex polygon.

Proof. Let C(Q,B,n) be the number of monochromatic constellations of Q in a B coloring of [n]. We now
approximate the integral for g(x,y) in terms of C(Q, B, n).

We make the following claim: p and ¢ are the start and end of a monochromatic constellation in the B
coloring of [n] if D ’ (p—q) and g(z,y) =1 in a neighborhood around (p/n,q/n). Similarly, p and ¢ are not
the start and end of a monochromatic constellation in the B coloring of [n] if B [ (p—q) or g(z,y) =0in a
neighborhood around (p/n, q/n).

The divisibility condition follows from what was done in the introduction. The requirement that g(x,y) =
1 is to ensure that each ¢;p + (1 — ¢;)¢ is in the same color class as p and ¢g. The reason we insist it hold for
a neighborhood is to avoid any ambiguity that occurs at the coloring on a border between blocks.

Subdivide [0, 1] x [0, 1] into squares of the form [iD/n, (i+1)D/n|x[jD/n,(j+1)D/n] for 0 <i,j < |n/D].
The function g(x,y) is not constant in a square and a small neighborhood of the square only if one of the
lines ¢;x + (1 — ¢;)y = B; hits the square. Since there are (m + 1)(k + 1) lines and each line can cross at
most 2n/D squares it follows that there are at most 2(m + 1)(k + 1)n/D of the (|n/D])? squares in our
subdivision that are not constant in the square and its neighborhood.

Finally, by divisibility considerations each square contains D points which correspond to the start and
end of constellations.

We now approximate a. We have that « is at least D?/n? times the number of squares in the subdivision
which are identically 1 in the square and a neighborhood. On the other hand counting monochromatic
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Figure 2: Indicator function for @ = [0, 1/2, 1] using the block pattern from Figure

constellations we get D constellations for every such square and this misses at most 2(m + 1)(k + 1)n
monochromatic constellations for squares we threw out which intersected a line. In particular we have that
the number of squares is at least (C(Q,B,n) —2(m + 1)(k+ 1)n)/D. So we have

0> QZC(Q,B, n)—2(m+1)(k+1)n
~ n? D

or rearranging,
C(Q,B,n) < 5n +2(m + 1)k + D)n.

A similar argument where we overcount monochromatic constellations and overestimate a gives
«
c(9,B,n) > 5112 —2(m+1)(k+ 1)n.

Combining the above two inequalities establishes the result for the non-symmetric case. For the symmetric
case we divide by a factor of 2 because we restrict to the case when p < gq. O

3 Perturbation to find good block patterns

Given a block pattern that colors [n] we know now how to find the number of monochromatic constellations
using the block coloring. To make use of this, we first need to find a good candidate block pattern. The
goal of this section is to outline an approach for how such a pattern might be found. We will make use of
the following observation twice.

Observation 1. Given an optimal coloring for some fixed constellation pattern, then a small perturbation
cannot decrease the number of monochromatic constellations.

Let us first make use of the observation discretely. We fix n large, say 100000, and color [n] arbitrarily.
Now scan the elements of [n], if we find an element where the switching the color decreases the number of
monochromatic constellations then we switch and continue scanning. This process continues until we get
to a coloring where changing the color on any single term will not decrease the number of monochromatic
solutions, we will call such a coloring a locally optimal coloring on [n]. Note that one single element might



change color multiple times in this process. However, the number of constellations strictly decreases on each
pass, so the process will terminate in finite time.

When implementing this there are two major decisions, how to start the initial coloring; and how to scan
for the next element to test for switching. In Figure 3| we show the evolution of a coloring on [1000] using
several different starting colorings that converge to a locally optimal coloring for avoiding the constellation
[0,1/3,1] (this corresponds to avoiding monochromatic solutions to x + 2y = 3z). Our rule for scanning is
to alternate between going left to right and right to left. We then output the current coloring when we hit
the end of a row.

a) Single block. (b) Ten equal blocks.
) Random coloring. ) Random coloring.

Figure 3: Evolution of a locally minimal coloring for constellation [0,1/3, 1] with different starting colorings.

Note that in Figure [3] that starting with several different configurations they all converged to approx-
imately the same block pattern that consists of 18 blocks. Intuitively, a block pattern that emerges by



starting with [n] and running this process should be an approximation to the optimal block pattern (if such
a structure exists).

There are two problems. The first is that there is generally not a unique local optimal coloring, in other
words there can be many patterns for which we cannot decrease the number of monochromatic constellations
by changing the color of a single element. To deal with this we can run many iterations where after each
iteration we flip some large fraction of the colors and run the process again. We then make some choice for
which patterns are best, usually based on the ones having the fewest monochromatic constellations. While
this does not guarantee that we find the best block structure it helps to rule out some possibilities.

The second problem is that the block pattern that we find is, at best, an approximate blowup of the
optimal block pattern. For example if the best block structure has a block with small width, say < 1/n,
then when we blow it up we might not catch the block in out pattern. To deal with this we generally choose
n large (depending on the constellation). Another problem is that we do not have the precise relative sizes
of the optimal block pattern. To deal with this we now perturb this near optimal block structure to settle
into a locally optimal block structure, i.e., a block structure where an € change in any of the 8; in X will
increase the corresponding coefficient of the block coloring.

To do this we use the observation made earlier continuously. Namely, if our block structure is optimal
then any small perturbation of the block sizes should increase the coefficient. This implies that if we look
along the set of lines ¢;z + (1 — ¢;)y = B, that a small change in §; will add as much red (blue) as it will
remove blue (red). If we are near the optimum then this allows us to set up a system of linear equations
that the §; in an optimal block structure must satisfy, i.e.,

< amount of change in red ) < amount of change in blue ) _0

under € perturbation of §; under € perturbation of §;

Where by the amount of change in red or blue we mean the change in area of all the polygons under a small
e perturbation of one of the 3;. For instance for the side of the polygon in Figure |4| we have

Az 1 1 1—qv  1—gqp 1
AArea ~ €= ( Gi + ( Q + a >ﬁj + ﬂk) €.
1 —gqj g5’ — qir T—qy \@ —aq  qir —qy qr’ — g5

qpr + (1 —qp)y = B

gz + (L —qp)y = Bj+e

gy + (1 =gy =B

e+ (1 —qp)y = B

Figure 4: Change in area under an € perturbation of ;.



This must hold for j = 1,2,...,k — 1, to this we also add 5y = 0 and fx = 1 to get a system of k + 1
linear equations in k + 1 unknowns. It is important that our block structure is near optimum since the set
of linear equations is based on the polygons defining the regions where g(x,y) = 1 as used in Theorem |1 A
different set of polygons in g(z,y) lead to different equations that might produce an even worse coloring or
even be undefined. (The important part of the polygons are the bounding lines of each polygon, so when we
are near the optimal we do have the correct bounding lines and can perturb.)

(The process of setting up the linear equations can be completely automated and a MAPLE worksheet that
implements this local perturbation is available at the first author’s website.)

For example, for the constellation pattern [0,1/2,1] doing a local perturbation on [10000] we got an
approximate block structure of

(508,109, 511, 674, 1076, 2116, 2117, 1077, 676,512, 110, 514).

Setting up the system of linear equations this corresponds to we get:

1 0 0 0 0 0 0 0 0 0 0 0 0 Bo 0
6 -12 10 -6 6 -6 2 -2 2 =2 2 0 0 B 0
2 -10 16 -10 6 -6 2 -2 2 -2 4 =20 B2 0
4 -6 10 —-14 10 -6 2 -2 2 0 2 =20 03 0
2 -6 6 -10 16 -10 2 -2 4 -2 2 =20 04 0
4 -6 6 -6 10 —-14 6 o 2 -2 2 =20 Bs 0
2 -2 2 -2 2 -68 -6 2 -2 2 =22 Gs | =1 0
o -2 2 =2 2 0 6 -14 10 -6 6 —6 4 B7 0
o -2 2 -2 4 -2 2 -10 16 -10 6 —6 2 Bs 0
0o -2 2 o 2 -2 2 -6 10 -14 10 -6 4 Bo 0
o -2 4 -2 2 -2 2 -6 6 —-10 16 —-10 2 Bio 0
0 o 2 -2 2 -2 2 -6 6 -6 10 —-12 6 Bi1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 B2 1

Solving we get

oy = ([0, 7 17 31 99 79 1195 449 243 257 130
v " 1377 2747 274 548’ 2747 27 274’ 548’ 274’ 274’ 137’ ’

which translating back into blocks gives us (28,6, 28,37,59,116,116, 59, 37,28, 6, 28). Now using this block
structure we easily get our coefficient of 117/2192.

This same technique can be used for any constellation (with the limitations mentioned above). For
instance for the constellation [0,1/3,1] doing local perturbation on [25000] we get an approximate block
structure

(1101, 193,577,583,989, 1434, 1115, 2833, 3680, 3681, 2830, 1113, 1434, 988, 582, 575, 194, 1098).
Solving the system of linear equations we get a locally optimal block structure of

(1552213, 272415, 813251, 822338, 1394548, 2025068, 1572841, 3995910, 5196075,
5196075, 3995910, 1572841, 2025068, 1394548, 822338, 813251, 272415, 1552213).

giving a coefficient of (16040191/211735908) =~ 0.075755... < (1/12) = 0.083333.. ., showing that again in
this case we can beat random.

For 4-term arithmetic progressions several different runs of [100000] gave us an approximate block struc-
ture with 36 blocks. Perturbing, we found a pattern which has as a coefficient

1793962930221810091247020524013365938030467437975
104177418768222598213753754515890676996254443021344

~ 0.0172202. .. % ~ 0.020833.. .,



Figure 5: A good block coloring for avoiding 4-term arithmetic progressions.

again showing we can beat random (we give the corresponding block structure for this coefficient in the
Appendix). The corresponding coloring is shown in Figure

For 5-term arithmetic progressions, we found a block structure with 117 blocks which gave a coefficient of
0.005719619 ... < (1/128) = 0.0078125 showing yet again we beat random (the corresponding block structure
is available at the first author’s website). The corresponding coloring is shown in Figure @

Figure 6: A good block coloring for avoiding 5-term arithmetic progressions.

While we do not know if any of these block structures are optimal, we still note that the number of
blocks seems to rise dramatically. We use 12, 36, and 117 blocks respectively for the colorings avoiding 3-, 4-
and 5-term arithmetic progressions. In general we note that for a constellation with k points we need more
than 2°~1 blocks in any block structure which beats random, so that the number of blocks needed grows
exponentially with the number of points. To see this we note that the integral in Theorem [1]is at least as
large as the area in the squares along the main diagonal. So if we have m blocks and we beat random then

1 vt < 2 1
FZ/O /0 g(xay)dxdyzi;(ﬁi—ﬁifl) 2

In particular, this shows that the experimental approach runs into severe limitations as the number of points
in the constellation gets large.

4 Solid blocks might not always be best

So far we have assumed that the optimal coloring of [n] is done by blowing up large monochromatic blocks.
But this might not always be the case. For example consider the constellation [0,2/5,1] (which corresponds
to avoiding monochromatic solutions to 2z + 3y = 5z). In Figure |Z| we show the evolution of a coloring on
[1000] to a locally optimal coloring for two starts (one monochromatic and one random).

The pattern that emerges in both of these cases (and many additional runs done for various block sizes,
starts, and scanning rules) does not appear to be solid blocks but rather “alternating blocks”, i.e., blocks
which alternate red and blue in every entry, and between blocks there is an extra block, i.e.,

!
---RBRBRBRBRRBRBRBRBRBR--- .

This extra block has the property of shifting the modulus of the location of red and blue between two
consecutive alternating blocks.

We can do the same process as before where we blow up a block pattern, but only make each block
alternating and switch modulus between blocks. Also as before we can compute the coefficient that this
corresponds to. The trick in doing this is to observe that a monochromatic constellation corresponds to a
solution of 2z + 3y = 5z and if we look at the equations modulo 2 then we have y = z (mod 2). We can
break our count into two situations, one where x = y (mod 2) and one where = # y (mod 2). The first case
is counted as before, while the second case is counted by switching the color of the x term. This gives us a



(a) Single block. (b) Random coloring.

Figure 7: Evolution of a locally minimal coloring for constellation [0,2/5, 1] with different starting colorings.

coefficient k where

L[ FE)+ F) A+ FZEE) (- f@)( - ) (- f(2E))
_//< 3 2 + 3 5 )dxdy

// (1_ )L+ £y ))(1+f(@)>+<1+f<x>)<1—f(y))(l—f(”;‘”’y)))dwdy

8 8

_ / / <1+f 2x+3y)>dxdy
= //3:/::32/ ) f(y) dx dy.

Where f is as in Theorem The 1/20 is fixed (and corresponds to the coefficient expected in a random
coloring) so that our goal becomes to minimize the integral term which is an integral over a parallelogram.
Since f(x)f(y) = £1 then when we plot the function f(x)f(y) we can mark where it is 1 by coloring blue and
—1 by coloring red, see Figure 8] (it is important to note that red and blue signify something different than
the red and blue given in Figure . Minimizing the integral then becomes equivalent to finding a pattern
that maximizes the amount of red inside of the parallelogram.

Experimentally we find that an approximate (alternating) block pattern is

(348,113,208, 325,331, 731, 894, 731, 331, 325,208, 113, 348).

As before we can locally optimize, which in this case means that for each §; we must have that the amount
of red immediately to the right of the line = 3; and above the line y = §; is equal to the amount of blue
there (if this is not the case, we can increase the red by slightly increasing or decreasing ;). As before this
sets up a system of linear equations that can be solved to give a local optimum, doing so we get the following
block pattern

(9098298, 3018600, 5562432, 8660160, 8833560, 19511900, 23766825,

19511900, 8833560, 8660160, 5562432, 3018600, 9098298)



Figure 8: Maximizing the amount of red inside the parallelogram.

which gives a coefficient of 18447862/399410175 ~ 0.046187 < 1/20 = 0.05 and again we have a coloring
that beats random.

5 Beating the random coloring for constellations [0, ¢, 1]

In the previous sections we have seen colorings that beat random for the constellations [0,1/2,1], [0,1/3,1]
and [0,2/5,1]. In this section we show that we can always beat random for any constellation of the form
[0, ¢, 1]. We have already established the result for [0,1/2,1] and by symmetry we only need to do the case
[0,¢,1] with ¢ < 1/2, which is handled by the following.

Fact 2. Let a,b be natural numbers with 2a < b and relatively prime and

a alb
14+-——|—-1.
0<e< -l-b b{a-‘

Then for the constellation pattern [0,a/b,1] and the block pattern

(1—€614e€1,1,...,1),
——

2b — 2 terms
there are yn? + O(n) monochromatic constellations where

1 (2a—alb/al)
4_b+ 8ab?(b — a)
1  (a—2b+afb/al)

B + Sab(b — a) €+ O(€2> if [b/a] is even.

e+ 0(e?) if [b/a] is odd,
¥ =

Since randomly we expect (1/4b)n? monochromatic constellations and in both cases above the coefficient
for € is negative, then for a small enough choice of € the above subdivision pattern beats random. The key
to this argument is that the block pattern with (1,1,1,...,1) with 2b blocks gives the coefficient 1/4b and
so we only need to find a slight perturbation which would cause the coefficient to drop.

10



To see this note that by taking , expanding, and substituting this becomes

g 41b+41/01 01f<x> da:dy+—//f POy g
//f ax+( ))d dy
_ f+f/ / F) 0) dudo + 1 / /(b/“ ) duds

(bv—a(v—1))/b
/ / fw) f(v) dudv.
—a)v/b

Note the similarity to what we did in the previous section. In particular, calculating the coefficient reduces
to calculating the difference between red and blue in the whole square and inside two parallelograms.

For the block pattern (1,1,1,...,1) with 2b blocks if we look at the inside integral of each term we see
that the first one will look over the entire interval [0, 1], the second one will look over an interval of [0, 1]
with width (b—a)/b and the third one will look over an interval of [0, 1] with width a/b. Since the function f
will change sign at regular steps of 1/2b it is easy to see that each of these inside integrals is 0. In particular
for the block pattern all the integrals vanish and we are left with the constant term 1/4b which corresponds
to random.

Now we simply perturb the pattern in the location of the first sign change of f, estimating the change
of this perturbation to the integral reduces to estimating the difference between red and blue along the first
line in the parallelograms, giving us the desired result.

The coloring we have produced in the above argument is almost certainly far from the best possible. To
get a sense of how much better than random we can do we looked for optimal block colorings for [0, ¢, 1] for
some simple ¢ and plotted the ratio of the coefficient of this optimal coloring divided by the coefficient of
the random coloring in Figure @ The symmetry of the figure follows since we avoid [0, g, 1] when we avoid
[0,1 — g,1] by reversing the coloring. We note that the lowest point is at the 3-term arithmetic progressions
which corresponds to the ratio of 0.854 . . ., also there seems to be a transition in behavior around ¢ = 2/5,3/5
which corresponds to the problem of avoiding monochromatic solutions of 2z + 3y = 5z.
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Figure 9: Good block colorings versus random for some [0, ¢, 1].

6 Non-constellation patterns

There are related questions of minimizing monochromatic solutions to equations where the solutions are not
constellations. The most well-known example are Schur triples, which are solutions to = + y = z (since
solutions to this equation are not invariant under translation, they are not constellations). This is the
currently only known situation where the minimal number of monochromatic solutions in a coloring of [n] is
known to be (1/22)n? + O(n) (see [2, 5 [6]). The lower bound achieving this is the block pattern (4,6, 1).
While Theorem (1| no longer applies in this situation (and so we cannot do local minimization of block
structures), we can still experimentally find what should happen. For instance in Figure we show the
evolution of colorings on [1000] that avoid monochromatic solutions to z +y = z. In both of these runs (and

11



many more) we see that the minimum has the form of a (medium block)—(large block)—(small block). Given
this pattern it is not too hard to set up some variables for the three block sizes and to find the minimum
which achieves the minimum number of monochromatic solutions.

(a) Single block. (b) Random coloring.

Figure 10: Evolution of a locally minimal coloring for Schur triples with different starting colorings.

We can also do the same process for other equations. For instance for z + ky = z, k > 2, experimentally
we see that we get three blocks, again in the form medium—large—small. Suppose that we use the subdivision
pattern (0, o, 8, 1)). It is easy to show that the number of solutions in a monochromatic block [p, ¢] (contained
in [n] with (k+ 1)p < q) is

2
((a —kp) —p)
2k
This gives (/2k)n? + O(n) monochromatic solutions from the interval [1, an] and ((8— (k+1)a)?/2k)n? +
O(n) monochromatic solutions from the interval [an, Bn]. The remaining solutions come from when z, z are
in the third block and y in the first block, of which there are ((1—3)?/2k)n?+ O(n) solutions. So altogether
there are

+O(n).

<a2 + (8- (k+1)a)’ + (1 - B)?

o )n2 +O0(n)

monochromatic solutions. Optimizing our choice of a and (3 gives us a block pattern

k+1 B+k+1 1
24+ k+3 k2+2k+3"k24+2k+3/°

which gives
1

2% (k2 + 2k + 3)
monochromatic solutions. (This same pattern was found independently by Thanatipanonda [7].)
For ax+by = az with a > b > 2 and relatively prime, experimentally the optimal pattern appears to be to

color m =0 (mod a) red and the remaining terms blue, which gives a coefficient of ((2a—b)/(2a*))n?+0(n)
monochromatic solutions. For az + by = az with 2 < a < b then experimentally the optimal pattern appears

n? 4+ O(n)
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to be to color m = 0 (mod a) red for m small and the remainder blue. By optimizing like we have done
above we have that we should color red for m =0 (mod a) and

ab?*(a —1)

ms b(b?(a—1) +a)

n.

Doing this gives us
a—1

2b(b2(a — 1) + a) nt+0(n)

monochromatic solutions.

7 Concluding remarks

What we have done in the preceding sections is to give a systematic way to look for colorings having smaller
than random number of monochromatic constellations and other patterns. This gives a way for giving upper
bounds which we expect to be near-optimal for the minimum number of monochromatic constellations in
such a coloring. However, there still remains the question of determining corresponding lower bounds. The
only pattern for which the best known coloring matches (up to lower order terms) the best known lower
bound are the Schur triples. (The lower bound given in the introduction is fairly weak and makes a poor
candidate.)

For 3-term arithmetic progressions there is a lower bound of (1675/32768)n? + o(n?) given by Parrilo et
al., which differ by about 5% from the previously mentioned upper bound. We believe that the correct value
for 3-term progressions is the one given by the known locally-optimal coloring, i.e., (117/2192)n? + O(n).
Through several hundred runs in various sizes, starts and scanning rules the same block pattern came over
and over again.

An interesting problem related to 3-term arithmetic progressions is the following: For a partition 0 =
agp < a1 < ag < --- < ag = 1/2 create a checkerboard pattern by taking a square of side lengths 1/2 and
coloring the rectangle [a;, ai+1] X [aj, aj4+1] blue if i+ j is even and red if i 4 j is odd. What is the maximum
amount of red that can be enclosed in the triangle with vertices at (0,0), (0,1/2), and (1/2,1/4), and what
partition (if any) produces this maximum? The best known pattern is found by scaling the block pattern
(28,6,28,37,59,116) and is shown in Figure (The connection is seen by looking at the integral for the
case ¢ = 1/2 in Section [5 and assuming the pattern is antisymmetric, i.e., f(1 — z) = —f(z).)

Figure 11: Best known pattern maximizing red inside of the triangle

Any improvement on this pattern would automatically produce a lower constant for the number of 3-term
arithmetic progressions. By an exhaustive computer search there is no block pattern with 11 or fewer blocks
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that beats this pattern. This is additional evidence to support that the current pattern for 3-term arithmetic
progressions is the best optimal.

One striking thing to notice is for [0,1/2,1], [0,1/3,1] and [0,2/5, 1] that all of the patterns we found are
anti-symmetric, that is the color of ¢ and n + 1 — i are opposite. This same behavior occurs frequently for
many (but not all) of the locally optimal block colorings that we found for constellations [0, ¢, 1], it would
be interesting to know if there is a reason that anti-symmetry is common.

In a related question, it would be interesting to know why [0,2/5,1] goes into large alternating blocks.
More generally, we might have a coloring where a block pattern emerges only when we look at what is
happening modulo some appropriate p. Is there a way to predict beforehand, given a constellation pattern,
whether the optimal coloring consists of solid blocks or some sort of alternating structure? Perhaps even
more basic, is there a reason why we should expect block structures?

We have also seen that for the case [0, ¢, 1] that we can always beat a random coloring. We conjecture
that this holds in general.

Conjecture 1. For any constellation pattern Q there is a coloring pattern of [n] which has yn? + o(n?)
monochromatic constellations where v is smaller than the coefficient for a random coloring.

This is related to an idea in Ramsey theory where for some time it was thought that the best way to
avoid monochromatic K;s in a 2-coloring of K,, was to color randomly. Thomason [§] showed that this was
not the case and produced colorings which beat random.

The key to proving the special case [0, ¢, 1] was that we had a simple coloring that had the same number
of monochromatic constellations as a random coloring, which we could then perturb. A first step in trying
to prove the conjecture would be trying to find some “simple” block pattern that matched random, and then
try and perturb it. This is not trivial, even for 4-term arithmetic progressions no simple pattern is known.

Another idea might be to try and bootstrap our way up. For instance one would expect that since
every 4-term arithmetic progression has a 3-term arithmetic progression inside that by using the pattern for
avoiding 3-term arithmetic progressions we would also avoid many 4-term arithmetic progressions. However,
this is not the case, using the pattern for 3-term arithmetic progressions we do worse than random coloring
for avoiding 4-term arithmetic progressions, and also vice-versa.

One might also consider this problem for two colorings of Z,,. Cameron, Cillereulo and Serra [I] showed
that for the constellations of the form [0, ¢, 1] that the number of monochromatic constellations depends only
on the amount of each color used, and not the distribution of the coloring in Z,,. They also gave some lower
bounds for the number of 4-term arithmetic progressions in colorings of 7Z,, which have been improved by
Wolf [10].

Finally, by using roots of unity it is not hard to adapt Theorem [I] to the case when we have r > 2 colors.
However, we have found enough beauty and mystery in the r = 2 case to keep us occupied for some time.
We hope to see some of the problems addressed above in future works.
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Appendix

The locally optimal block pattern for 4-term arithmetic progressions which gives the coefficient of

1793962930221810091247020524013365938030467437975
104177418768222598213753754515890676996254443021344

is given using the following 36 blocks

(566124189415440472939626834822903743300467940483,
115903533761943477398551818347715476722877927241,
568011813340950665677009286694526323061781532322,
472083073090028493914605548954507028673457587863,
174690683867336844297305424871758992360029965453,
9846453 7567500111285074159909918993309405119848,

737681146409933099806596775369238915383890216793,
881071132072892536672404740128385947619685842609,
387204684955306822603896642766296540832568256888,
340852889156784985628080980878507258595675472221

1398355239284691808801098670395696996980804292522,
2015438904391090234472652819593929714355629836078,
354924006068259988552316716495705798216298952575,
917029329994691011286378833655488533756529343857,
1246774229265384930907724953794401373314144038191,
54320307143743985612474936827169395603 7186323582,
2179716742907087903057122171392866104311765026441,
2172387005301046067153961748343296914044366107569,
54620362123271397326046587692498263123463 7232779,
1296607046453245562932414262768745367411919249702,
848633230480614872785768439513578746631939174778,
332362434790023921274974476865878572983006589230,
2079963873190082657423397539748746717308015584742,
1352139932444260494597496699603210730948918467199,
339606780510267312616862401149984633870549046619,
373718051493152648659948917556716014372715915533,
786614601718483336599780069288734659594156639775,

15



660138925526725209837882202781409057453701881412,
5150571788822345896600364501645257464 7172214751
208563593370975774208121482104389596165334050300,
660659764939424259451601477074423264167731648445,
458220356230536594713018106829384942175966684332,
25106402444485772567927008361180285102508619312,
396852300398188165681981456085190506968094545183,
59492524857712314099066167971046557078820629622,
398049321798723913182570904641775780071858799086)

The corresponding diagram for the function g(x,y) from Theorem [l|is shown in Figure
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Figure 12: Indicator function for @ = [0,1/3,2/3,1] using block pattern given in the Appendix.
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