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Abstract. If f(x1, . . . , xn) is a polynomial dependent on a large number of
independent Bernoulli random variables, what can be said about the maximum
concentration of f on any single value? For linear polynomials, this reduces
to one version of the classical Littlewood-Offord problem: Given nonzero con-
stants a1, . . . , an, what is the maximum number of sums of the form ±a1±a2±
· · · ± an which take on any single value? Here we consider the case where f is
either a bilinear form or a quadratic form. For the bilinear case, we show that
the only forms having concentration significantly larger than n−1 are those
which are in a certain sense very close to being degenerate. For the quadratic
case, we show that no form having many nonzero coefficients has concentration
significantly larger than n−1/2. In both cases the results are nearly tight.

1. Introduction: The Linear Littlewood-Offord Problem

In their study of the distribution of the number of real roots of random polynomials,
Littlewood and Offord [12] encountered the following problem:

Question 1. Let a1, . . . , an be real numbers such that |ai| > 1 for every i. What
is the largest number of the 2n sums of the form

±a1 ± a2 ± · · · ± an

that can lie in any interval of length 1?

Littlewood and Offord showed an upper bound of O(2n log n√
n

) on the number of
such sums. Erdős [5] later removed the log n factor from this result, giving an
exact bound of

(
n

bn/2c
)

via Sperner’s Lemma, which is tight in the case where all
of the ai are equal. The same bound was later shown by Kleitman [10] in the case
where the ai are complex numbers. Rescaling Kleitman’s result and using Stirling’s
approximation gives the following probabilistic variant of the lemma:

Theorem 1. Let n > 0, and let a1, . . . , an be arbitrary complex numbers, at least
m ≥ 1 of which are nonzero. Let x1, . . . , xn be independent ±1 symmetric random
variables (meaning each variable is drawn uniformly from {1,−1}). Then

sup
c∈C

P(
n∑

i=1

aixi = c) ≤ min{1
2
,

1√
m
}.
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In a sense Theorem 1 can be thought of as a quantitative description of the disper-
sion of a random walk: No matter what step sizes the walk takes, as the number of
steps increases the walk becomes less and less concentrated on any particular value.
In this interpretation the

√
m in the bound is also unsurprising; if the step sizes

are small integers, we would expect the walk to typically be at an integer about
O(
√

m) distance from 0 at time m, so the concentration at individual points near
0 should be roughly m−1/2.

In 1977 Halász [6] gave several far-reaching generalizations of Theorem 1, both to
higher dimensions and to more general classes of random variables. One (rescaled)
result of his is

Theorem 2. Let a1, . . . , an be vectors in Cd such that no proper subspace of Cd

contains more than n − m of the ai, where m ≥ 1. Let x1, . . . , xn be independent
complex-valued random variables such that for some ρ < 1,

sup
i,c

P(xi = c) ≤ ρ.

Then

sup
c∈C

P(
n∑

i=1

aixi = c) = Oρ,d(m−d/2).

The Oρ,d here means that the constant implicit in the O() notation is allowed to
depend on ρ and d.

The original Littlewood-Offord lemma corresponds to the special case where d = 1
and the xi are iid Bernoulli variables. Again this can be thought of as a disper-
sion result: a linear polynomial which depends on a large number of independent,
moderately dispersed random variables will itself be very dispersed. Furthermore,
the dispersion will be greater if the coefficients of the polynomial are in some sense
truly d−dimensional.

One application of these results is in the study of random matrices, since several
key parameters of a matrix (e.g. the determinant, or the distance from one row
to the span of the remaining rows) are linear forms in the entry of a single row
or column of the matrix. Komlós [11] used Theorem 1 in 1967 to show that a
random Bernoulli matrix (one whose entries are independently either 1 or -1) is
almost surely non-singular. Later, Kahn, Komlós and Szemerédi [9] used the ideas
of Halász to show that the singularity probability was exponentially small of the
size of the matrix. The current best bound for this probability due to Bourgain,
Vu, and Wood, ( 1√

2
+ o(1))n for an n × n matrix [1] (see also Tao and Vu [18],

whose ideas this paper build on), comes from a detailed analysis of the inverse of
the Littlewood-Offord problem, which can be thought of as

Question 2. If
∑

aixi is highly concentrated on one value, what can be said about
the ai?

The intuition here is that the sum takes on a single value with probability close to
n−1/2, then the ai should be very highly structured. Tao and Vu [19] and Rudelson
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and Vershynin [14] showed that this was in fact the case: If the sum takes on a
single value with probability at least n−c for some fixed c, then the coefficients must
have been drawn from a short generalized arithmetic progression. One special case
of this result can be expressed more quantitatively in the following theorem from
[19]

Theorem 3. Let ε < 1
2 and α > 0 be fixed. Let a1, . . . , an be nonzero complex

numbers, where n is at least some constant N0 dependent only on ε and α. Suppose
furthermore that for independent ±1 symmetric random variables x1, . . . , xn we
have

sup
c

P(
n∑

i=1

aixi = c) ≥ n−1/2−ε.

Then there is a d ∈ C such that all but n1−α of the ai have the form

ai = dbi,

where the bi are integers such that |bi| ≤ nε+α.

The same holds true if the xi are independent and identically distributed “lazy
walker” variables satisfying P(xi = 0) = 2ρ, P(xi = 1) = P(xi = −1) = 1/2 − ρ
for some 0 < ρ < 1/2 (N0 is now also dependent on ρ).

2. Statement of Main Results

Our goal here will be to develop and strengthen extensions of Theorem 1 and related
results to polynomials of higher degree, in particular bilinear and quadratic forms.
To begin, let us consider the following result (implicit in [2]), which we reprove here
for convenience:

Theorem 4. Let A = aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n be an array of complex numbers,
and suppose that at least r distinct rows of A each contain at least r nonzero entries.
Let xT = (x1, . . . , xm) and yT = (y1, . . . , yn) be two vectors whose m + n entries
are independent ±1 symmetric random variables. Then

sup
c∈C

P(xT Ay =
m∑

i=1

n∑
j=1

aijxiyj = c) = O(r−1/2).

Proof : Without loss of generality we may assume that the rows in question cor-
respond to the variables x1 through xr.

Let Wi =
∑

j aijyj , and let W denote the number of i between 1 and r for which
Wi is equal to 0. We have

P(xT Ay = c) ≤ P(W ≥ r

2
) + P(xT Ay = c ∧W <

r

2
).

We bound each term separately. For the first term, we view W as a sum of the
indicator function of the events that each Wi is equal to 0. Since each Wi is a linear
polynomial with at least r nonzero coefficients, it follows from Theorem 1 that each
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Wi is equal to 0 with probability O(r−1/2), it follows from linearity of expectation
that E(W ) = O(r1/2), and therefore from Markov’s inequality that

P(W ≥ r

2
) = O(r−1/2).

For the second term, we treat y as fixed and write

xT Ay =
∑

i

Wixi.

If W is at most r
2 , then the right hand side is a linear form in the xi with at least

r
2 nonzero coefficients. It follows from Theorem 1 and taking expectations over y

that this term is O(r−1/2).

In a certain sense this is a weaker result than we might expect. If A is an n×n matrix
of small nonzero integers, then the magnitude of xT Ay will typically be around n,
so we might expect a concentration probability of n−1 instead of n−1/2. However,
Theorem 4 is tight, as the case where A is the all ones matrix (corresponding to the
polynomial (x1 + ...+xn)(y1 + ...+ yn)) shows. What our first main result shows is
that every bilinear form with sufficiently large concentration probability is in some
sense close to this degenerate example.

Theorem 5. Fix ε > 0. There is an R0 (dependent on ε) such that the following
holds. Let A be an m× n coefficient matrix such that every row of A has at least r
nonzero entries, where R0 ≤ r ≤ m. Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be
vectors of independent ±1 symmetric random variables. Suppose furthermore that
there is a function f : Rn → C such that

P(xT Ay = f(y)) ≥ r−1+ε. (1)

Then A contains a rank one submatrix of size at least (m − Oε( r
log6 r

)) × (n −
Oε( r

log6 r
))

The same holds true if (1) holds when the entries of y are independently set equal to
0 (with probability 2ρ) or ±1 (with probability 1

2 −ρ each). In this case the constant
R0 and the constants implicit in the O notation depend on ρ as well as ε.

In particular, this holds for the case where f(y) = c is constant.

Remark 1. Note that we now require the stronger condition that every row have
many nonzero entries. If this does not hold, we can first expose the xi corresponding
to rows with few nonzero entries, then apply Theorem 5 to the bilinear form on
the remaining variables. It follows that the rows of A having many nonzero entries
must correspond almost entirely to a rank one submatrix.

Remark 2. Although for most of our applications we will be taking f(y) to be either
a fixed constant or a linear form in the yi, the above theorem holds for arbitrary
f . Taking transposes, we see that the same conclusion holds if the probability
xT Ay = g(x) is large, only now we require that A have many nonzero entries in
each column.

Remark 3. The −1 in the exponent is sharp. If A is a small integer matrix, then
xT Ay will typically be on the order of n in absolute value, so by the pigeonhole
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principle some value is taken on with probability Ω(n−1). However, a randomly
chosen such A will with high probability not have rank one submatrices of size
larger than O(log n).

In terms of the original bilinear form, a rank one submatrix corresponds to a form
which factors completely as xT Ay = g(x)h(y). Theorem 5 states that any bilinear
form with sufficiently large concentration probability is highly structured in the
sense that it can be made into a bilinear form which factors by setting only a
small portion of the variables equal to 0 and considering the resultant form on the
remaining variables (setting a variable equal to 0 is equivalent to deleting a row or
column from the coefficient matrix)..

We next turn our attention to quadratic forms xT Ax, where x is again random.
Here we first aim to show

Theorem 6. Let A be an n × n symmetric matrix of complex numbers such that
every row of A has at least r nonzero entries, where r ≥ exp((log n)1/4). Let x be a
vector of n independent ±1 symmetric random variables. Let δ > 0 be fixed. Then

sup
L,c

P(xT Ax = L(x) + c) = Oδ(r−1/2+δ),

where the supremum is taken over all linear forms L(x) and all c (that is to say all
affine functions). In particular, the above bound holds for the case where L(x) is
identically 0.

We will then remove the assumption that every row of A have many nonzero entries,
obtaining the following corollary which may be easier to apply in practice

Corollary 1. Let A be an n × n symmetric matrix of complex numbers such that
at least mn of the entries of A are nonzero, where m ≥ 3 exp((log n)1/4). Let L
and x be as above. Then for any δ > 0,

sup
c

P(xT Ax = L(x) + c) = Oδ(m−1/2+δ).

Remark 4. Again the 1/2 is sharp, as can be seen from the form
(x1 + · · ·+ xn)(x1 + · · ·+ xm).

The original motivation for studying this problem came in the author’s study with
Tao and Vu [2] of the singularity probability of random symmetric matrices, whose
determinant can be viewed as a quadratic form in the entries of any particular row
or column of the matrix in question. By replacing Corollary 4.5 in that paper with
Theorem 6, we immediately obtain the following improvement to the results in that
paper ([2] had the below corollary with 1/2 replaced by 1/8):

Corollary 2. Let Qn be an n × n symmetric matrix whose entries are indepen-
dent ±1 symmetric random variables. Then the probability that Qn is singular is
O(n−1/2+ε) for any ε > 0.

Remark 5. Recent preprints of Nguyen [13] and Vershynin [20] have improved this
bound further via more involved analysis of the inverse Quadratic Littlewood-Offord
problem, with the best current bound being 2 exp(−nc) (for a fixed c < 1) from
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[20]. However, these bounds remain far weaker than the corresponding results in
the non-symmetric case.

Weaker versions of Theorem 6 (with 1
2 replaced by 1

8 and 1
4 , respectively) were

proved as a consequence of Theorem 4 in [2] and [3]. The improvement in the
bound will come from a combination of Theorem 5 and the use of a probabilistic
variant of the Szemerédi-Trotter theorem.

We will prove Theorem 5 in the next section, and the proof of Theorem 6 and
Corollary 1 will come in the following section. The remainder of the paper will be
devoted to conjectured extensions of both results.

3. The Proof of Theorem 5

As in the proof of Theorem 4, we begin by dividing the vectors y into two classes
(implicitly depending on the value of r) based on how many coordinates of Ay are
equal to 0.

Definition 1. A vector y is typical if at least r1− ε
4 entries of Ay are nonzero.

Otherwise it is atypical.

Theorem 5 is an immediate consequence of the following two lemmas.

Lemma 1. If A is a matrix satisfying the hypotheses of Theorem 5 and P(xT Ay =
f(y) ∧ y is typical ) ≥ 1

2r−1+ε, then the conclusions of Theorem 5 hold.

Lemma 2. If A is a matrix satisfying the hypotheses of Theorem 5 and P(y is atypical ) ≥
1
2r−1+ε, then the conclusions of Theorem 5 hold.

Remark 6. If we consider a form which factors perfectly as xT Ay = g(x)h(y), then
the hypothesis of Lemma 1 corresponds to the case where g(x) is very structured
(concentrated on a single value with probability close to r−1/2), while that of Lemma
2 corresponds with the same property holding for h(y).

We will examine each lemma in turn.

3.1. The proof of Lemma 1. We will assume throughout this section that A is
a matrix such that

P(xT Ay = f(y) ∧ y is typical ) ≥ 1
2
r−1+ε.

It follows from Theorem 1 that for any y0 which is typical we have

Px(xT Ay0 = f(y0)) ≤ r−
1
2+ ε

8 . (2)

Our argument will go roughly as follows: Under our assumptions, we know that
there must be many typical y0 for which (2) is not too far from equality. By
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Theorem 3, we know that for such y0 the coordinates of Ay0 must be very highly
structured, in the sense that all of them except for a small exceptional set must lie
in not too long an arithmetic progression.

The difficulty is that the exceptional sets in Theorem 3 may be different for different
y0. However, there will still be many “small” (of size much smaller than n) sets of
coordinates which will lie entirely outside the exceptional set for most y. We will
show that such sets correspond to small collections of rows in A which are very
close to being multiples of each other, and then aggregate those collections to find
our rank one submatrix. We now turn to the details.

We will make use of the following (truncated) quantitative description of how em-
beddable a small group of complex numbers is in a short arithmetic progression,
which can be thought of as a variant of the essential LCD used in [14].

Definition 2. The commensurability of a k−tuple (a1, . . . , ak) of complex num-
bers is defined by

Comm(a1, . . . , ak) = max{r− 1
2+ ε

4 ,
1
R
},

where R is the length of the shortest arithmetic progression containing 0 and every
ai simultaneously.

As with the typical/atypical classification before, the commensurability here de-
pends on the particular value of r.

For example, if a ≤ b are positive integers, then, up to the truncation at r−
1
2+ ε

4 ,
Comm(a, b) = b

GCD(a,b) . Also, if (a1, a2, . . . , ak) are all drawn from an arithmetic
progression of length q containing 0, we are trivially guaranteed that Comm(a1, . . . , ak)
is at least 1

q . We next characterize the “small sets” of coordinates mentioned above
in terms of this commensurability.

Definition 3. A k−tuple (v1, v2, . . . , vk) of vectors in Cn is neighborly if

Ey Comm(vT
1 y, vT

2 y, . . . , vT
k y) ≥ 1

6
r−

1
2+ 5ε

8 .

Fix k0 := log7 r. Our next lemma states that the number of neighborly tuples is
quite large:

Lemma 3. Let A satisfy the hypotheses of Theorem 5 and Lemma 1. Then for
k ≤ k0, there are at least mk(1− r1− ε

8

m ) neighborly k−tuples such that each vT
i is a

row of A.

The proof of this lemma will be deferred to section 3.4. Our next goal will be
to translate the neighborliness of a tuple into structural information about the
corresponding rows of A. One natural way in which a tuple can be neighborly is
if the rows in A are themselves small multiples of each other, in which case the
corresponding coordinates of Ay will always be small multiples of each other. Our
next lemma states that every neighborly tuple is in some sense close to this example.
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Lemma 4. Let k ≤ k0, and let (v1, v2, . . . , vk) be neighborly. Then there are unique
complex numbers d2, . . . , dk and sets S2, . . . , Sk of coordinates such that

• For each j, v1 = djvj on all coordinates outside of Sj.
•

∏k
j=2 |Sj\

⋃j−1
i=2 Si|1 = Oε(r1− 5ε

4 ), where |S|1 = 1 if S is empty and |S|1 =
max{|S|, 4} otherwise.

Remark 7. This product is dependent on the ordering of the vi, even though the
hypotheses of the lemma are independent of that ordering. The upper bound on
the product holds for any ordering of the vectors.

What is important here is that not only does each row differ in only a few places
from being a multiple of the first row in the tuple (the exceptional sets are of size
o(r)), but also that the exceptions will tend to occur in the same columns. This
latter fact will help keep the exceptional sets from growing too quickly when we
attempt to examine many neighborly tuples at once. We will defer the proof of this
lemma to sections 3.5-3.8.

Together, the above two lemmas state that the matrix A must have a great deal
of local structure, in the sense that many not-too-large collections of rows are very
close to being multiples of each other. Our goal will now be to combine these into
a single global structure. Using Lemmas 3 and 4, we will be able to prove the
following weakened version of Theorem 5, which allows the number of rows which
are not in the rank one submatrix to be proportional to m instead of r.

Lemma 5. If A satisfies the hypotheses of Theorem 5, then A contains a rank one
submatrix of size (m−Oε(m log log r

log6 r
))× (n−Oε(r1− 5ε

4 )).

In the following sections we will first prove Lemma 5 assuming the validity of
Lemmas 3 and 4, then leverage that result into the stronger bound required by
Theorem 5. We will finish the proof of Lemma 1 by proving Lemmas 3 and 4.

3.2. The proof of Lemma 5 assuming Lemmas 3 and 4. Motivated by the
conclusion of Lemma 4, we make the following definition:

Definition 4. Let V = {v1, . . . , vk} be an (ordered) neighborly k−tuple. The
score of V is given by

Score(V ) =
k∑

j=2

χ(Sj 6⊆
j−1⋃
i=2

Si),

where the Sj are as in Lemma 4 and χ(E) is the indicator function of the event E.

The score is well defined, since the dj and Sj are unique in that lemma. It also has
the following useful properties

• Score(v1, . . . , vk) ≤ Score(v1, . . . , vk+1). Equality holds if and only if Sk+1 ⊆⋃k
i=1 Si.
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• If (v1, . . . , vk) is neighborly, then there can be at most
log4(Oε(r1− 5ε

4 )) < log r − 1 different j for which the score increases from
(v1, . . . , vj) to (v1, . . . , vj+1) (here the stated inequality follows from as-
sumption r > R0) .

For a given (ordered) neighborly k-tuple V = (v1, . . . , vk) of rows of A with k < k0,
let S(V ) be the collection of all rows v of A such that (v1, . . . , vk, v) is a neighborly
tuple with the same score as V . Note that for any V , all of the rows in S(V ) are
multiples of v1 (and thus of each other) except in the coordinates where a prior
djvj differed from v1, and the number of such coordinates is at most

|
k⋃

j=2

Sj | =
k∑

j=2

|Sj\
j−1⋃
i=2

Si| = Oε(r1− 5ε
4 ).

The second inequality here follows from Lemma 4 (which implies that the product
of the nonzero summands is O(r1−5ε/4)) and concavity. It follows that we have a
rank one submatrix of dimensions
|S(V )|× (n−Oε(r1− 5ε

4 )). It therefore suffices to show some S(V ) is large. Let b be
the maximal value of |S(V )| over all neighborly tuples of rows of A of size at most
k0 − 1. We count the number of neighborly k0−tuples in two ways.

Method 1: By Lemma 3, there are at least mk0(1− r1− ε
8

m ) such tuples.

Method 2: We can bound the number of such tuples by first choosing a set J of
size log r− 1 of places in which the score is allowed to increase, then restricting our
attention only to those tuples whose scores increase only on J . For each j where
the score fails to increase from (v1, . . . , vj) to (v1, . . . , vj+1), there are at most b
choices for vj+1. For each other j, there are at most m choices. It follows that the
number of tuples is at most(

k0 − 1
log r − 1

)
mlog rbk0−log r ≤ klog r

0 mlog rbk0−log r.

Comparing our methods, we have

1− r1− ε
8

m
≤

(
b

m

)k0−log r

klog r
0 .

Using the relationship e(−1+ox(1))x ≤ 1− x ≤ e−x, we have

e−(1+o(1)) r
1− ε

8
m ≤ e−(k0−log r) m−b

m +log r log k0 .

Taking logs and using the definition of k0 gives

m− b

m
≤

log r log k0 + (1 + o(1)) r1− ε
8

m

k0 − log r
= O(

log log r

log6 r
).

It follows that b ≥ m−O(m log log r
log6r ), so we are done.
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3.3. The proof of Lemma 1, from Lemma 5. We construct our rank one
submatrix using the following procedure. Let A0 be a rank one submatrix of A of
size (m− O(m log log r

log6r ))× (n− O(r1− 5ε
4 )) (such a matrix is guaranteed to exist by

Lemma 5). We initialize X1 ⊆ {x1, . . . , xm} to be the variables corresponding to
the rows of A0, and X2 to be the remaining variables, and X3 to initially be empty.
We also initially set Y1 to be the variables corresponding to the columns of A0. We
now repeatedly follow the following procedure:

If the matrix corresponding to (X1 ∪X2)×Y1 has rank one, stop. If this is not the
case, choose xi ∈ X1, xj ∈ X2, and yk, yl ∈ Y1 such that aikajl 6= ailakj . Move xj

from X2 to X3, and remove yk and yl from Y1.

We can always find the necessary xi and xj since the matrix on X1×Y1 will always
be a rank one matrix due to our choice of A0. It remains to check that this procedure
in fact terminates after at most O( r

log5 r
) steps, so that the final rank one matrix is

sufficiently large. Let us assume to the contrary that this does not occur, meaning
that at some point |X3| > r

log5 r
.

Let S be a set of size r formed by taking r
log5 r

variables from X3 and r − r
log5 r

variables from X1, and let U be the remaining variables in X. Let Ã be the
submatrix of A consisting of the rows corresponding to S. We can write

xT Ay − f(y) = xT
S Ãy − g(y, xU ),

where xS (resp. xT ) is the vector of variables in S (resp. T ). By assumption we
have

1
2
r−1+ε ≤ P(xT Ay = f(y))

= EU (PS(xT
S Ãy = g(y, xU )))

≤ sup
xU

PS(xT
S Ãy = g(y, xU )).

It follows from Lemma 5 that Ã must contain a rank one submatrix of size
(r−O( r log log r

log6 r
))× (n−O(r1− 5ε

4 )). Since the number of excluded variables is much
smaller than r

log5 r
(here we again use that r is sufficiently large), there must be a

variable xj ∈ X3 such that both xj and the corresponding yk and yl are contained in
this submatrix, as well as some variable xi′ ∈ X1. However, this is a contradiction,
as ai′kajl 6= ai′lakj . This completes the proof of Lemma 1 modulo the proofs of
Lemmas 3 and 4. We next turn to the proof of those two lemmas.

3.4. The proof of Lemma 3. We define gy and Dy as follows:

• If y is atypical, then gy = 0 and Dy = {1, . . . ,m}.
• If y is typical and no arithmetic progression of length at most r

1
2−

ε
4 contains

at least m − r1− ε
4 of the elements of Ay, then gy = r−

1
2+ ε

4 and Dy =
{1, . . . ,m}.
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• Otherwise, let R be an arithmetic progression of minimal length containing
0 and at least m− r1− ε

4 elements of Ay. We define gy = |R|−1, and Dy to
be those i such that the ith coordinate of Ay is in R.

Note that in this definition the Dy are not uniquely determined. We choose one
arbitrarily for each y. Furthermore, by construction, for any y and for any k−tuple
{a1, . . . , ak} ⊆ Dy we have Comm(a1, . . . , ak) ≥ gy.

By viewing the Inverse Littlewood-Offord Theorem 3 in the “forward” direction we
can now obtain the following:

Lemma 6. For every fixed ε < 1
2 there is an r0 > 0 such that for all matrices A

with r > r0 and all typical y∗ we have

P(xT Ay∗ = f(y∗)) ≤ r−
1
2+ 3ε

8 gy∗ .

Proof (of Lemma 6): Since by construction gy∗ ≥ r−
1
2+ ε

4 , there is nothing to prove
unless the probability in question is at least r−1+ 5ε

8 , which we will assume to be
the case. Let r1 be the number of nonzero coefficients of xT Ay∗, viewed as a linear
form in x, and let P(xT Ay∗ = f(y∗)) = r

− 1
2−ε0

1 . Since y∗ is typical, r1 ≥ r1− ε
4 . In

particular, this implies that ε0 < 1
2 .

Applying Theorem 3 to this form with α = ε
4 , we see there is an arithmetic pro-

gression containing all but r
1− ε

4
1 coefficients and of length

rε0+α
1 =

r
− 1

2+ ε
4

1

P(xT Ay∗ = f(y∗))

≤ r(− 1
2+ ε

4 )(1− ε
4 )

P(xT Ay∗ = f(y∗))

=
r−

1
2+ 3ε

8

P(xT Ay∗ = f(y∗))
r−

ε2
16 .

If follows that gy∗ ≥ r
1
2−

3ε
8 P(xT Ay∗ = f(y∗)) as desired.

Taking expectations over all y, we see that

P(xT Ay = f(y) ∧ y is typical ) ≤ r−
1
2+ 3ε

8 Ey(gy),

which combined with the hypothesis of Lemma 1 in turn implies that

Ey(gy) ≥ r−
1
2+ 5ε

8 (3)

Let Z be the collection of k−tuples {a1, . . . , ak} satisfying

Ey(gyχ({a1, . . . , ak} ⊆ Dy)) ≥ 1
3
Ey(gy) ≥ 1

3
.
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For any k−tuple in Z, we have

Ey(Comm(a1, . . . , ak)) ≥ Ey(Comm(a1, . . . , ak)χ({a1, . . . , ak} ∈ Dy))
≥ Ey(gyχ({a1, . . . , ak} ∈ Dy))

≥ 1
3
Ey(gy) ≥ 1

3
r−

1
2+ 5ε

8 .

Here the first inequality follows from the observation that gy is always a lower bound
for commensurability (since gy comes from a specific embedding into an arithmetic
progression), and the last from (3). In particular, we know that any k−tuple in Z
is neighborly. It remains to check that |Z| is large.

Since by construction |Dy| ≥ m− r1− ε
4 for every y, we have

Ea1,...,ak
Ey(gyχ({a1, . . . , ak} ⊆ Dy)) = Ey(gyP({a1, . . . , ak} ∈ Dy))

≥ (
m− r1− ε

4

m
)kEy(gy),

where the expectation here is taken with each ai independent and uniform on
{1, . . . ,m}. Combining this with the definition of Z, we have

|Z|Ey(gy) +
Ey(gy)

3
(mk − |Z|) ≥ (m− r1− ε

4 )kEy(gy)

≥ mk(1− kr1− ε
4

m
)Ey(gy).

Solving the above inequality, we obtain

|Z| ≥ mk(1− 3k

2
r1− ε

4

m
) ≥ mk(1− r−

ε
8

m
)

and we are done.

3.5. The proof of Lemma 4 for k = 2. We will first prove Lemma 4 in the
special case where k = 2. The case of larger k will then be much simpler, as we can
take advantage of the observation that subsets of neighborly vectors are themselves
neighborly to in a sense reduce to the k = 2 case. Let (a, b) be a pair of neighborly
vectors. Our goal will be to show that they are very close to being multiples of
each other.

We make use of the general fact that for any random variable X taking values
between 0 and 1

E(X) =
∫ 1

0

P(X > u)du =
∫ ∞

1

P(X > 1
t )

t2
dt (4)

In our case X will be Comm(aT y, bT y), so bounding the right hand side becomes
a question of how likely it is for aT y and bT y to be embeddable in a progression of
a given length. We make the following further definitions:

Definition 5. A pair (l1, l2) of integers is degenerate for the vector pair (a, b) if
l1a and l2b agree in at least n− r

5 positions and at least one of l1 and l2 is nonzero.
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Note that there is (up to multiples) at most one degenerate pair for (a, b).

We further define for a real number q

pab(q) := P(∃ a non-degenerate (l1, l2) 6= (0, 0) ∈ Z× Z
with l1a

T y = l2b
T y and |l1|, |l2| ≤ q).

Using these definitions and the definition of Comm(a, b), we have

r−
1
2+ 5ε

8 ≤ Ey(Comm(aT y, bT y))

≤ (
∫ r

1
2−

ε
4

1

pab(q)
q2

dq) + r−
1
2+ ε

4

+P( there exists a degenerate (k0, l0) and k0a
T y = l0b

T y).

The middle term on the right hand side is negligible, and in the next subsection we
will show that the first term is also small by showing

Lemma 7. For any positive α > 0, any q <
√

r and any a and b, there is a constant
Cα dependent only on α such that pab(q) ≤ Cαq

r1/2−α .

We may without loss of generality assume Cα > 1. It follows that for any 0 < α < 1
2 ,

assuming Lemma 7, we have∫ ∞

1

pab(q)
q2

dq ≤
∫ r1/2−α

1

Cα

qr1/2−α
dq +

∫ ∞

r1/2−α

dq

q2

= Oα(r−1/2+α log r).

By taking α sufficiently close to 0, we see that for large r the contribution from the
first term is also o(r−

1
2+ 5ε

8 ).

It follows that the dominant contribution to the expectation must come from the
third term. This implies that a degenerate pair (k0, l0) 6= (0, 0) exists, and that we
furthermore must have

P(k0a
T y = l0b

T y) ≥ 1
12

r−
1
2+ 5ε

8 .

It follows by the Theorem 1 that the linear form (k0a
T −l0b

T )y must have O(r1− 5ε
4 )

nonzero coefficients. Note that k0 cannot equal 0, since otherwise the form would
have at least r nonzero coefficients (recall that b has by assumption at least r

nonzero entries). It follows that there are at most (r1− 5ε
4 ) places where a differs

from l0
k0

b, meaning that we can take d2 = l0
k0

in Lemma 4.

This choice of d2 is unique, for if d2 6= d′2 then d2v2 and d′2v2 disagree in every
coordinate in which v2 6= 0. There are at least r such coordinates by assumption,
which would make it impossible for both d2v2 and d′2v2 to agree with v1 in all but
O(r1−5ε/4) places.



14 KEVIN P. COSTELLO

3.6. The proof of Lemma 7. It suffices to prove the following:

Lemma 8. Let a1, . . . , an and b1, . . . , bn be fixed (real or complex) constants such
that for each i at least one of ai and bi is non-zero. Let x1, . . . , xn be independent ±1
symmetric random variables. Let Eq be the event that there exist u and v satisfying

• |u|, |v| ≤ q.
• There are at least n

10 different i for which vai 6= ubi.
• v

∑
aixi = u

∑
bixi.

Then for any α > 0 and any 1 ≤ q <
√

n,

P(Eq) = O(
q√
n

nα),

where the constant implicit in the O notation is as n tends to infinity and may
depend on α.

We will throughout assume that both q and n are tending to infinity. By utilizing
a Freiman isomorphism of order 2n2 (see for example [16], Lemma 5.25), we may
assume that the ai and the bi are all real integers. We may furthermore without
loss of generality assume for every i either bi is positive or bi = 0 and ai is positive.

Let ` be a positive integer satisfying ` > 1
α . We define L0 = 1 and for 1 ≤ j ≤ `,

we define

Lj = sup
(c,d)∈Z2

|{(i1, . . . , ij) : ai1 + · · ·+ aij
= c ∧ bi1 + · · ·+ bij

= d}|.

Here the tuples in the definition of Lj may contain repeated elements. Clearly
1 ≤ Lj ≤ nj , and by treating ij as fixed we furthermore see that
Lj−1 ≤ Lj ≤ nLj−1. This implies that one of the following two cases must hold

• There is a j between 1 and ` for which Lj ≥ nq−
2

2`+1 Lj−1.
• L` ≤ n`q−

2`
2`+1 .

We handle each case separately.

Case 1: L` ≤ n`q−
2`

2`+1 . Here we will make use of the following result of Halász
(implicit in [6], see also [16]):

Theorem 7. Let ` > 0 be fixed, and let a1, . . . , an be nonzero (real or complex)
coefficients. Let R` be the number of 2`−tuples (i1, . . . , i`, j1, . . . , j`) for which
ai1 + · · ·+ ai`

= aj1 + · · ·+ aj`
. Then for xi independent ±1 symmetric variables,

P(
n∑

i=1

aixi = c) = O(n−2`−1/2R`).

Given two integers u and v and a such a 2`−tuple, denote by R(u, v, i1, . . . , i`, j1, . . . , j`)
the property that

v(ai1 + · · ·+ ai`
− aj1 − · · · − aj`

) = u(bi1 + · · ·+ bi`
− bj1 − · · · − bj`

).
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Combining the Halász bound in Theorem 7 above and the union bound, we can
write

P(Eq) ≤
∑
(u,v)

P(
n∑

i=1

(aiv − biu)xi = 0)

= O(n−2`−1/2)
∑
(u,v)

∑
(i1,...,i`)
(j1,...,j`)

χ(R(u, v, i1, . . . , i`, j1, . . . , j`))

= O(n−2`−1/2)
∑

(i1,...,i`)
(j1,...,j`)

∑
(u,v)

χ(R(u, v, i1, . . . , i`, j1, . . . , j`)),

where the sum is taken over all pairs (u, v) such that |u|, |v| ≤ q, either u > 0 or
u = 0 and v > 0, GCD(u, v) = 1, and at least n

10 different i satisfy ubi 6= vai. This
last assumption guarantees that the linear form in the first inequality has at least
0.1n nonzero coefficients for every (u, v) we are summing over, so that the Halász
bound in Theorem 7 above will be sufficiently strong.

In the final term in the above bound, the inner summand is at most 1 unless

(ai1 , bi1) + (ai2 , bi2) + · · ·+ (ai`
, bi`

) = (aj1 , bj1) + (aj2 , bj2) + · · ·+ (aj`
, bj`

),
(5)

since otherwise u and v are uniquely determined by the values of the a and b (recall
that u and v are assumed relatively prime). If (5) holds then any relatively prime
(u, v) contributes 1 to the inner summand, so we can bound the inner sum by q2.
Since the outer sum contains O(n2`) terms and by assumption (5) has at most L`n

`

solutions, it follows that

P(Eq) = O(q2n−`−1/2L` + n−1/2),

which by our assumptions on L` and ` is O( q
1+ 1

2`+1
√

n
) = O( qnα

√
n

).

Case 2: Lj ≥ n

q
2

2`+1
Lj−1. Let (c, d) be a (fixed and non-random) pair which is the

sum of Lj different j−tuples. By our assumption on the bi, and ai, we know that
either d is positive or d = 0 and c is positive. In particular, at least one of c and d
must be nonzero.

We know that each variable (ai, bi) can be involved in at most jLj−1 different
j−tuples which sum to (c, d), since there are j locations for (ai, bi) in the tuple and
at most Lj−1 choices for the remaining j − 1 elements that add to (c− ai, c− bi).
Since each j−tuple adding to (c, d) intersects at most j2Lj−1 other such j−tuples,
it follows that we can form a collection S of disjoint j−tuples summing to (c, d)
satisfying

|S| ≥ Lj

j2Lj−1
≥ n

j2q
2

2`+1
.

Define a j−tuple (i1, . . . , ij) to be agreeable if xi1 = xi2 = · · · = xij
. Note

that each tuple has a constant probability 21−j of being agreeable. Let S′ be
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the collection of tuples in S which are agreeable, and let B be the event that
|S′| ≥ 2−j |S|. We have

P(Eq) ≤ P(¬B) + P(Eq ∧B).

Note that the agreeability of each tuple in S is an independent event due to our
assumption that the tuples are disjoint. Since the expected number of agreeable
tuples is 21−j |S|, it follows from Hoeffding’s inequality [7] that

P(
∣∣|S′| − 21−j |S|

∣∣ > λ|S|) ≤ e−2λ2|S|.

Taking λ = 2−j , we see that P(¬B) = o(n−1/2). We therefore focus on the second
term.

To bound P(Eq∧B), we will expose the variables by first exposing S′, then exposing
the value of all the variables not involved in a tuple in S′. We will then finally expose
the values of the variables in S′.

We have for any tuple that

P(
j∑

k=1

(aik
, bik

) = (c, d)|(i1, . . . , ij) agreeable ) = 1/2,

and the same for (−c,−d). It follows that, treating the set S′ and the value of xj

for variables not in S′ as fixed,∑n
i=1 aixi∑n
i=1 bixi

∼
c
∑|S′|

j=1 yj + z1

d
∑|S′|

j=1 yj + z2

,

where z1 and z2 are fixed constants and the yi are independent symmetric ±1
variables. Let y equal the sum of the yi. By Hoeffding’s inequality again, we know
that

P(|y| >
√

n log n) ≤ n− log n/2,

so it suffices to estimate the contribution to P(Eq) from those y which are at most√
n log n in absolute value. By the linear Littlewood-Offord Theorem 1, we know

that each such y occurs with probability at most n−1/2, and we will soon show:

Lemma 9. Let α > 0 be any fixed parameter. Let n ≥ N0(α) be an integer, and let
w1, w2, w3, w4 be real numbers such that w1w4 6= w2w3. Then for any 1 ≤ q ≤ n,
there are at most qnα integers z ∈ {−n, . . . , n} such that

h(z) :=
w1z + w2

w3z + w4

has height at most q (where the height of a rational number h is defined to be
the minimum of the absolute values of the numerator and denominator when h is
written in lowest terms).

Assuming Lemma 9 to be true, we know that for fixed z1, z2 the probability that

this fraction can be written as u
v 6= c

d is at most qn
1
3`√
|S′|

. Taking expectations over



BILINEAR AND QUADRATIC VARIANTS ON THE LITTLEWOOD-OFFORD PROBLEM 17

all z1, z2, S
′ and using our bounds on |S′| under the assumption that B holds gives

that

P(Eq ∧B) ≤ Cjq
1+ 1

2`+1 n
1
3`

√
n

+ P(
∑

ai∑
bi

=
c

d
∧ dai − cai 6= 0 for

n

10
different i).

The second term on the right side corresponds to a linear form with n
10 nonzero

coefficients, so is O(n−1/2). The first term on the right side is at most qn1/`

√
n

, since
q is assumed to be at most n. Since 1/` is by construction at most α, this is at
most qnα

√
n

. Again the result follows.

It remains to prove Lemma 9.

3.7. The proof of Lemma 9. 1

We may without loss of generality assume that |w1| ≥ |w3|. We will further assume
without loss of generality that no prime divides all of the wi.

Let ∆ = |w1w4 − w2w3| > 0. Note that any common divisor of w1z + w2 and
w3z + w4 is also a common divisor of |w1(w3z + w4) − w3(w1z + w2)| = ∆. Let
τ(∆) be the number of divisors of ∆. We will consider two cases.

Case 1: τ(∆) < nα/2. For 0 ≤ i ≤ (1 + α) log2 n, let Si denote the set of
z ∈ {−n, . . . , n} such that |w1z + w2| ∈ [2i, 2i+1]. It is clear that each Si lies in the
union of two intervals, each of which has size at most 2i. For any z ∈ Si such that
h(z) has height at most q, it must be the case that w1z +w2 shares a divisor v with
w3z + w4 and ∆ such that v > 2i/q. We next claim that for any given v, there are
not many v for which this can occur, as:

Claim 1. If v|GCD(w1z1 + w2, w3z1 + w4) and v|GCD(w1z2 + w2, w3z2 + w4),
then v|(z1 − z2).

Proof Let p be a (fixed) prime dividing v, and let pm be the largest power of p
dividing v. If p does not divide w1, then pm must divide z1 − z2, since v divides
(w1z1 + w2) − (w1z2 + w2) = w1(z1 − z2). Similarly, either pm divides z1 − z2 or
p also divides w3. However, p cannot divide both w1 and w3, for it would then
follow that p also divided (w1z1 + w2) − w1z1 = w2 and, similarly, w4, violating
our assumption that the wi share no common factor. Therefore it must be the case
that pm|(z1 − z2). But this is true for any prime, so we are done.

It follows that for a given v, there are at most 2i+1/v choices of z for which v
provides the required cancellation. Adding up over all v, the number of z ∈ Si

which lead to a height of at most q is at most∑
v|∆

v>2i/q

(
2i

v
+ 1

)
≤ (q + 1)τ(∆) ≤ (q + 1)nα/2.

1Many of the key ideas in the proof of Lemma 9 are due to Ernie Croot
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Adding up over all Si, we see that the lemma holds in this case.

Case 2: τ(∆) ≥ nα/2. In this case it follows from classical number theoretic bounds
on the number of divisors of an integer that ∆ > nω(n) for some ω(n) tending to
infinity with n. We will show that if ∆ is this large it is impossible to have even 3
different z in [−n, n] with sufficiently small height.

Suppose to the contrary that there are z1, z2, and z3 such that each w1zi+w2
w3zi+z4

has
height at most q. It then follows that

w1z1 + w2

w3z1 + w4
− w1z3 + w2

w3z3 + w4
=

∆(z1 − z3)
(w3z1 + w4)(w3z3 + w4)

(6)

and
w1z2 + w2

w3z2 + w4
− w1z3 + w2

w3z3 + w4
=

∆(z2 − z3)
(w3z2 + w4)(w3z3 + w4)

(7)

have height at most 2q2. Taking their ratio, we see that the height of (z1−z3)(w3z2+w4)
(z2−z3)(w3z2+w4)

is at most 4q4. Since |z1 − z3| and |z2 − z3| are each at most 2n, there must be a
solution to

r1(w3z2 + w4) = r2(w3z1 + w4)

with |r1|, |r2| ≤ 8q4n. Rearranging this equation as

w3

w4
=

r2 − r1

r1z2 − r2z1
,

we see that w3/w4 has height at most 16q4n2. An identical argument (replacing
each fraction on the left hand side of (6) and (7) by its reciprocal) shows the same
holds for w1/w2. In other words, we can write

w1z + w2

w3z + w4
=

W

W ′

(
w′

1z + w′
2

w′
3z + w′

4

)
,

where each |w′
i| ≤ 16q4n2, and W = w1

w′
1
. Here W ′ = w3

w′
3

are relatively prime due to
our assumption that the wi share no common factor. For this fraction to ever have
height at most q, it must be the case that |W | ≤ 32q5n3, and the same for W ′. But
this contradicts our lower bound on ∆.

3.8. The proof of Lemma 4 for k > 2. Let (v1, . . . , vk) be a neighborly tuple.
We first modify the definition of Commensurability slightly, writing

Comm∗(a1, . . . , ak) = Comm(a1, . . . , ak)χ(
k∏

i=1

ai 6= 0).

We have by Theorem 1 and the fact the Commensurability is always at most 1 that

Ey(Comm∗(vT
1 y, . . . , vT

k y)) ≥ Ey(Comm(vT
1 y, . . . , vT

k y))−P( some vT
i y = 0)

≥ Ey(Comm(vT
1 y, . . . , vT

k y))− kr−1/2

≥ 1
12

r−
1
2+ 5ε

8 .
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The advantage to this modified commensurability is that we have the relationship

Comm∗(a1, . . . , ak) ≥ 1
R
⇔ a1

z1
=

a2

z2
· · · = ak

zk

for some integers z1, . . . , zk which are at most R in absolute value.

As in the k = 2 case, we have

Ey(Comm∗(vT
1 y, . . . , vT

k y)) ≤ (
∫ r

1
2−

ε
4

1

pv(q)
q2

dq) + r−
1
2+ ε

4 (8)

+P(
vT
1 y

l1
=

vT
2 y

l2
= · · · = vT

k y

lk
for a degenerate l),

where

pv(q) := P(∃l = (l1, . . . , lk) : l is non-degenerate ∧ aT
i y

li
all equal ∧ |li| ≤ q),

and a k−tuple (l1, . . . , lk) is degenerate if (li, lj) is degenerate for (vi, vj) for every i
and j. Note that a given (v1, . . . , vk) again has (up to multiples) only one degenerate
l.

It follows from Lemma 7 that for any particular (i, j), the contribution to pv(q)
from those tuples where (li, lj) is nondegenerate is O( q

r1/2−α ) for any α. Adding up

over all pairs, it follows that pv(q) = O( k2q
r1/2−α ). As in the k = 2 case, we now have∫ r

1
2−

ε
4

1

pv(q)
q2

dq = O(k2r−1/2+α log r) = o(r−
1
2+ 5ε

8 ).

by taking α to be sufficiently small. Again the contributions from the first two
terms on the right hand side of (8) are small, so the last term must be large, that
is to say

P(
vT
1 y

l1
=

vT
2 y

l2
= · · · = vT

k y

lk
) ≥ 1

14
r−

1
2+ 5ε

8 . (9)

Let dj = l1
lj

, and Sj be the places where v1 differs from djvj . We can rewrite the
event on the left hand side of (9) as the system∑

i∈S2

(d2v2(i)− v1(i))xi = 0

∑
i∈S3\S2

(d3v3(i)− v1(i))xi = −
∑
i∈S2

(d3v3(i)− v1(i))xi

...
...∑

i∈Sk
i/∈S2∪···∪Sk−1

(dkvk(i)− v1(i))xi = −
∑

i∈S2∪···∪Sk−1

(dkvk(i)− v1(i))xi.

We now successively expose the variables in Sj\(S2 ∪ . . . Sj−1) for each j and ex-
amine each equation in turn.

After we expose the variables in S2, the probability that the first equation above
holds is at most |S2|−1/2

1 by the Linear Littlewood-Offord Theorem 1. We now
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treat the variables in S2 as fixed, meaning that the right hand side of the second
equation above is constant, and expose those in S3\S2. For any particular value
of the variables in S2, it again follows from Theorem 1 that the probability that
the second equation holds is at most |S3\S2|−1/2

1 . Continuing onwards through the
entire system, we have that the probability that the above system holds is at most

k∏
j=2

|Sj\
j−1⋃
i=1

Si|−1/2
1 .

The lemma follows by combining this with (9). Uniqueness follows as in the k = 2
case: Since the conclusion of the Lemma implies that each Si is still Oε(r1−5ε/4),
and it is impossible for djvj and d′jvj to each disagree with v1 in so few places
unless dj = d′j .

3.9. The proof of Lemma 2. This proof will follow along very similar lines to
that of Lemma 1.

Again we let k0 := blog7 rc, and the argument will make use of the following
analogue of neighborliness:

Definition 6. A tuple (v1, . . . , vk) of vectors is friendly if

P(vT
1 y = vT

2 y = · · · = vT
k y = 0) ≥ 1

6
r−1+ε.

We again have that there are many friendly k−tuples.

Lemma 10. Let k ≤ k0. Under the hypotheses of Lemma 2, there are at least
mk(1− r1− ε

4

m ) friendly k−tuples such that each vT
i is a row of A.

We also claim that friendly tuples exhibit a similar structure as neighborly ones:

Lemma 11. Let k ≤ k0, and let (v1, . . . , vk) be friendly. Then there are unique
complex numbers dj such that if Sj denotes the places where v1 differs from djvj,
then

k∏
j=2

|Sj\
j−1⋃
i=2

Si|1 ≤ 2r1−2ε.

(Recall that |S|1 is defined to be 1 if S is empty, and max{|S|, 4} otherwise).

The proof of Lemma 2 from these two lemmas is exactly the same as that of Lemma
1 from Lemmas 3 and 4. We will therefore focus on the proofs of the two lemmas,
which will again turn out to be similar to the proofs of the corresponding lemmas
for neighborly tuples.
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3.10. The proof of Lemma 10. Let A be such that y is atypical with probability
at least 1

2r−1+ε. We define Z to be those k−tuples satisfying

P(vT
1 y = vT

2 y = · · · = vT
k y = 0 ∧ y atypical) ≥ 1

3
P(y atypical).

The hypotheses of Lemma 2 mean that the above equation guarantees that every
tuple in Z is friendly. Now consider a tuple (v1, . . . , vk; y) where the vT

i are chosen
randomly (with repetition allowed) from the rows of A and y is uniform and random.
We estimate the probability that y is atypical and vT

j y = 0 for every j in two
different ways.

Method 1: For any atypical y, there are at least (m−r1− ε
4 )k choices for the tuple.

It follows that the probability is at least

(m− r1− ε
4 )k

mk
P(y atypical ).

Method 2: We first choose the k−tuple, then bound the probability that y works
based on whether or not the tuple is in Z. Doing this gives that the probability is
at most

1
mk

(|Z|+ 1
3
(mk − |Z|))P(y atypical ).

The result follows by comparing the bounds from the two methods, along with the
bound

(m− r1− ε
4 )k ≥ mk(1− kr1− ε

4

m
) ≥ mk(1− r1− ε

4+o(1)

m
).

Remark 8. The lower bound obtained on |Z| above is independent of the probability
that y is atypical. However, we need the hypotheses of Lemma 2 to be able to say
that the tuples in Z are friendly.

3.11. The proof of Lemma 2. We first note that for any j, we can view the system
vT
1 y = vT

j y as a single vector equation
∑

i wiyi = 0 in C2, where wi = 〈v1(i), vj(i)〉.
Since by assumption this equation is satisfied with probability 1

6r−1+ε, it follows
from the 2-dimensional Theorem 2 of Halász that there must be a 1-dimensional
subspace containing all but O(r1−ε) of the wi. In terms of the vj , this says that for
each j there is a multiple of vj differing from v1 in at most r1−ε places. We will
take those multiples to be our dj , and Sj to be the places they differ.
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The relationship vT
1 y = vT

2 y = · · · = vT
k y = 0 is equivalent to the system∑

i∈S2

(d2v2(i)− v1(i))xi = 0

∑
i∈S3\S2

(d3v3(i)− v1(i))xi = −
∑
i∈S2

(d3v3(i)− v1(i))xi

...
...∑

i∈Sk
i/∈S2∪···∪Sk−1

(dk(i)− v1(i))xi = −
∑

i∈S2∪···∪Sk−1

(dk(i)− v1(i))xi

∑
i/∈S2∪···∪Sk−1

v1(i)xi = −
∑

i∈S2∪...Sk−1

v1(i)xi,

since the first k − 1 equations each represent djv
T
j y = vT

1 y for some j and the last
equation represents vT

1 y = 0. As in the proof of Lemma 4, we expose each variable
in S2, then the remainder of S3, then the remainder of S4, and so forth. After all the
variables in S2 through Sj have been exposed, the probability that the remaining
variables in Sj+1 cause the next equation to be satisfied is at by Theorem 1 most

|Sj+1\
j⋃

i=2

Si|−1/2
1 .

Since each Sj contains at most r1−ε elements, it follows that for sufficiently large
r there must be at least r/2 variables satisfying v1(i) 6= 0 still unexposed by the
time we expose Sk and arrive at the last equation. Therefore by Lemma 1 the
probability this last equation holds is at most 2r−1/2, so

P(vT
1 y = · · · = vT

k y = 0) ≤ 2r−1/2
k∏

j=2

|Sj+1\
j⋃

i=2

Si|−1/2
1 .

The lemma follows.

4. The proof of Theorem 6

We first note that for any θ,

P(xT Ax = L(x) + c) ≤ P(xT Re(eiθA)x = Re(eiθ(L(x) + c))).

Since we can always choose a θ such that eiθaij has non-zero real part for every i
and j for which aij is nonzero, it suffices to prove the result for the case where the
entries of A, as well as the coefficients of L and c, are real. We will now assume
this to be the case.

The proof will proceed by contradiction. Let us assume that for some δ and all r0

there is an r > r0 and a matrix A such that for some c we have P(xT Ax = c) >
r−1/2+δ and every row of A has at least r nonzero entries.
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We will use a decoupling argument to relate probabilities involving the quadratic
form defined by A to a probability involving a suitable bilinear form xT By. We
will then combine those bounds with Theorem 5 to obtain

Lemma 12. Let A be a matrix satisfying the hypotheses of Theorem 6 such that
there is a c such that P(xT Ax = c) > r−1/2+δ. Then there is a principal minor A′

of A of size at least n − O( r log n
log5 r

) and a rank one matrix A′′ such that A′ = A′′

everywhere off the main diagonal.

This allows us to essentially reduce to the case where A is rank one. Let us (for
now) assume that this lemma is true.

Without loss of generality we may assume that A′ consists of the first m rows and
columns of A. Let z = (x1, . . . , xm)T . For any particular values of xm+1, . . . , xn,
we have the relationship

xT Ax = zT A′z + L̃(z) + c′,

where L̃ and c′ are dependent on the exposed variables. Because x2
i = 1 for every

i, we can further replace A′ by A′′ by changing c′. It follows that

P(xT Ax = L(x) + c) ≤ sup
L̃,c′

P(zT A′′z = L̃(z) + c′).

Since A′′ has rank one, the quadratic form zT A′′z factors as the square of a linear
form. Since we only removed O( r log n

log5 r
) columns in going from A to A′, it follows

that for sufficiently large r and n every coefficient of that linear form must be
nonzero (as A′′ still has at least r

2 nonzero entries per row). We will soon show

Lemma 13. Let b1, . . . , bm, c1, . . . , cm, d be real numbers such that all of the bi are
nonzero, and let α > 0. Then

P((
m∑

i=1

bixi)2 =
m∑

i=1

cixi + d) = Oα(n−1/2+α). (10)

Combining Lemma 13 with Lemma 12, we see that if for sufficiently large n we
have P(xT Ax = c) > r−1/2+δ, then we also have P(xT Ax = c) = O(r−1/2+δ/2),
which is a contradiction. We now turn to the proofs of the lemmas.

4.1. The proof of Lemma 13. We define

t1 =
bm

2 c∑
i=1

bixi, s1 =
bm

2 c∑
i=1

cixi,

t2 =
m∑

i=bm
2 c+1

bixi, s2 =
m∑

i=bm
2 c+1

cixi.

In terms of these new variables, we are attempting to show

P(2t1t2 + t21 + t22 = s1 + s2 + d) = O(m−1/2+α). (11)
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The left hand side of (11) can be thought of as the probability that the point p and
the line l are incident, where

p = (t2, s2 − t22), l = {y = 2t1x + t21 − s1 − d}.

Note that p and l are independent, as p depends only on {x1, . . . , xbm/2c}, while l
depends only on {xbm/2c + 1, . . . , xm}. We now make use of the following proba-
bilistic variant of the Szemerédi-Trotter theorem, which is a rescaled version of the
weighted Szemerédi-Trotter result of Iosevich, Konyagin, Rudnev, and Ten [8]:

Theorem 8. Let (p, l) be a point and line independently chosen in R2. Let

qp := sup
p0

P(p = p0) ql := sup
l0

P(l = l0).

Then the probability that p and l are incident is bounded by

P(p ∈ l) = O((qpql)1/3 + qp + ql).

Since p uniquely determines t2 and l uniquely determines t1, it follows from Theorem
1 that qp and ql are at most O(m−1/2). We are therefore done unless

qpql ≥ m−3/2+α. (12)

If (12) holds, it follows that there is some point p0 which is chosen with probability
at least m−1+α. From the definition of p, we know that there are real numbers t0
and s0 such that

P(t2 = t0 ∧ s2 = s0) ≥ m−1+α.

If follows from the d = 2 case of Halász’s Theorem 2 that the coefficient vectors of
t2 and s2 must be close to being multiples of each other, that is to say there is an
|S| ⊆ {bm

2 c+ 1, . . . ,m} with |S| > m
4 and a real number c0 such that cj = bjc0 for

every j ∈ S.

We now expose every variable not in S. Once we have done so, (10) reduces to an
equation of the form

(
∑
j∈S

bjxj + d1)2 = c0(
∑
j∈S

bjxj) + d2, (13)

where d1 and d2 are constants depending on the exposed variables. For any given d1

and d2, there are at most 2 values of
∑

j∈S bjxj for which (13) holds. It therefore
follows from the Linear Littlewood-Offord Theorem 1 that for any given d1 and
d2 the probability that (13) holds is O(m−1/2). Lemma 13 follows from taking
expectations over all xi not in S.

4.2. The proof of Lemma 12. We will make use of the following “decoupling”
lemma (originally proved in [15]) to reduce from the quadratic case to the bilinear
one.

Lemma 14. Let Y and Z be independent variables, and let Z ′ be a disjoint copy
of Z. Let E(Y, Z) be an event depending on Y and Z. Then

P(E(Y, Z))2 ≤ P(E(Y, Z) ∧ E(Y, Z ′)).
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In our case this implies that if X = {x1, . . . , xn} is a collection of independent
symmetric ±1 variables variables partitioned into two disjoint subsets Y and Z,
then

P(xT Ax = L(x) + c)2 = P(
n∑

i=1

n∑
j=1

aijxixj = L(x) + c)2

≤ P(
n∑

i=1

n∑
j=1

aijxixj = L1(y) + L2(z) + c ∧
n∑

i=1

n∑
j=1

aij x̃ix̃j = L1(y) + L2(z′) + c)

≤ P(
n∑

i=1

n∑
j=1

aijxixj − L1(y)− L2(z) =
n∑

i=1

n∑
j=1

aij x̃ix̃j − L1(y)− L2(z′)),

where x̃j = xj if j ∈ Y and x̃j = x′j if j ∈ Z. Here L(x) = L1(y) + L2(z) is the
natural decomposition of L into the sum of linear forms on y and z.

All terms only involving variables in Y disappear from this last inequality, and we
have

P(xT Ax = L(x) + c)2 ≤ P(2
∑

xi∈Y

∑
xj∈Z

aijxi(xj − x′j) = L1(z)− L1(z′) + Q(z, z′)),

where Q is another quadratic form. By assumption the left hand side of this
equation is at least r−1+2δ, while the right hand side has the form yT Bz = f(z).

If we further knew that for every i ∈ Y there were at least r
4 different j ∈ Z such

that aij 6= 0, it would follow from Theorem 5 that the matrix B must contain a
rank 1 square submatrix of size n− Oδ( r

log6 r
). With this observation in mind, we

make the following definition:

Definition 7. Given a quadratic form A, a partition {x1, . . . , xn} = Y ∪ Z of the
n variables into two disjoint subsets is balanced if for every xi ∈ Y there are at
least r/4 different xj ∈ Z for which aij 6= 0.

In terms of our original A, we know that for any balanced decomposition of the
variables into two equal parts Y and Z, the submatrix corresponding to Y × Z is
equal to a rank one matrix except for a few rogue variables. Our next goal will be
to play many such decompositions off of each other.

Since the reduction to a bilinear form only gives us information about the entries
in Y × Z, we will want to choose a collection of balanced decompositions such
that most entries appear in this submatrix for some element of the decomposition.
Motivated by this, we make the following definition:

Definition 8. Let F = (Y1, Z1), . . . , (Ym, Zm) be a collection of balanced partitions
of a set X = {x1, . . . , xn} into pairs of disjoint subsets of equal size. We say F
shatters X if for every i 6= j 6= k 6= l there is a r = r(i, j, k, l) such that i, j ∈ Yr

and k, l ∈ Zr.

In terms of our decoupling, a shattering collection of partitions means that every
pair of off-diagonal entries aik and ajl will appear simultaneously in the bilinear
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form for some element of F . We next show that we do not have to consider too
many partitions at once.

Lemma 15. If |X| = n, there is an F of size at most d 5 log n
log(17/16)e < 83 log n which

shatters X.

Proof Let an F of size d 5 log n
log(17/16)e be formed by independently and uniformly

choosing (Ys, Zs) from the set of all partitions of X into two parts of equal size (or
size differing by 1, if n is odd). For any given quadruple (i, j, k, l), the probability
that Yr contains {i, j} while Zr contains {k, l} is at least 1

17 , and these events
are independent over all r. It therefore follows from the union bound that the
probability that X fails to be shattered by this collection is at most

n4(
16
17

)|F| + P(some (Ys, Zs) is not balanced).

The first term is O( 1
n ) by our choice of |F|. For the second term, we first note that

for a random partition and a given xi ∈ Y , it follows from a “without replacement”
variant of the Chernoff-Hoeffding bound (see Prop 2.1 in [4] for a precise statement)
that the probability that xi has too few nonzero aij across the partition is O(e−r/8).
Taking the union bound over all partitions in our collection and all variables in each
Y , we see the second term is o(1). Since a random collection almost surely shatters
X, there must be at least one shattering collection.

We now fix some F0 which shatters our original set of variables and has size at
most 83 log n. For each r, we know from Theorem 5 that we can find exceptional
sets Y ′

s ⊆ Ys, Z
′
s ⊆ Zs with |Y ′

s |, |Z ′
s| = O( r

log6 r
) such that the submatrix of A

corresponding to (Ys\Y ′
s )× (Zs\Z ′

s) has rank one. Let

W =
⋃

(Ys,Zs)∈F0

(Y ′
s ∪ Z ′

s).

Without loss of generality we may assume that W = {xn−t+1, . . . , xn}. By assump-
tion t = O( r log n

log5 r
). Since r is by assumption at least exp((log n)1/4), it follows that

t = o(r), meaning each row still contains many nonzero entries outside the columns
of W . In particular, we may without loss of generality assume a12 6= 0.

For any 4 distinct elements (i, j, k, l) disjoint from W , we know from the definition
of F0 and W that for some s the 2×2 submatrix of A on {i, j}×{k, l} appeared in a
rank one submatrix of Ys×Zs. It follows that for every such set of distinct (i, j, k, l),
we have aikajl = ajkail. In particular, for every pair (j, l) with 3 ≤ k 6= l ≤ n− t,
we have

ajl = a1l
aj2

a12
. (14)

We can therefore take A′ to be the principal minor of A on {x3, . . . , xn−t}, and A′′

to be the matrix for which the right hand side of (14) also holds for j = l.

4.3. The proof of Corollary 1. Construct a graph whose vertices are the vari-
ables xi, with xi adjacent to xj for i 6= j if and only if aij are nonzero. By assump-
tion, this graph has average degree at least m− 1. It follows that it must contain a
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subgraph of minimum degree at least m−1
2 (e.g., by greedily removing the vertex of

lowest degree, since removing vertices of degree less than m−1
2 never decreases the

average degree). In matrix terms, this implies that A contains a principal minor A′

such that every row of A′ has at least m−1
2 nonzero entries. Without loss of gener-

ality we may assume that the minor corresponds to the variables x̃ = {x1, . . . , xk}.
For any fixed value of xk+1, . . . , xn, the equation xT Ax = L(x) + c becomes

x̃T Ax̃ = L̃(x̃) + c̃,

an equation which holds with probability Oδ(m− 1
2+δ) by Theorem 6. The result

follows from taking expectations over all values of xk+1, . . . , xn.

5. Extensions of the Main Results and Conjectures

5.1. Inverse results for more weakly concentrated Bilinear Forms: It is an
interesting problem to consider whether there are similar inverse results holding in
general for when a bilinear form has polynomially large concentration on one value
P (xT Ay = c) ≥ n−b for some b.

There are at least two different types of structure that lead to sufficient conditions
for this to occur. One possibility is algebraic: If the coefficient matrix has low
rank, then xT Ay will be equal to 0 whenever a small number of linear forms are
simultaneously equal to 0, which may not be too unlikely an event if some of those
forms are themselves structured (in the sense of the results of [19]). For example,
if A is chosen to satisfy aij = f(i) + g(j) (for arbitrary f and g), then xT Ay can
be expressed as

(x1 + x2 + · · ·+ xn)(g(1)y1 + · · ·+ g(n)yn) + (f(1)x1 + · · ·+ f(n)xn)(y1 + · · ·+ yn)

and is 0 whenever x1 + · · · + xn = y1 + · · · + yn = 0, an event which occurs with
probability approximately 1

n . More generally, if A has rank a1, then xT Ay can
equal 0 whenever a1 linear forms are simultaneously 0, an event which can occur
with probability on the order of n−a1/2.

Another structure that can cause polynomially large concentration is arithmetic:
If the entries of the coefficient matrix A are all drawn from a short generalized
arithmetic progression of rank a2 and volume na3 , then the output of xT Ay will
also lie in such a progression, and with high probability will take on one of only
na2+a3 values. So by the pigeonhole principle some value is again taken on with
polynomial probability. We conjecture that these two structures (and combinations
thereof) are the only ways a form can have polynomial concentration

Conjecture 1. Fix a > 0. There is an N0 (dependent on a) such that the following
holds. Let n > N0 and let A be an n× n matrix of nonzero entries such that for x
and y consisting of n independent ±1 symmetric random variables we have

sup
c

P(xT Ay = c) > n−a.

Then there exist integers a1, a2, a3 ≥ 0 satisfying
a1

2
+ a2 + a3 ≤ a. (15)
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such that A can be written as A1+A2+A3, where A1 has rank at most a1, the entries
of A2 are drawn from a generalized arithmetic progression of rank at most a2 and
volume at most na3 , and A3 contains at most n2

log n nonzero entries.

Note that if a < 1 we must have a1 = 1 and a2 = a3 = 0, corresponding to Theorem
5. Nguyen [13] has recently proven a version of this conjecture 2 with (15) replaced
by the weaker bound a1, a2, a3 = Oa(1).

5.2. Higher degrees. In this section we give several conjectured extentions of the
main results to this paper to multilinear and polynomial forms. We begin with
the following (simplified) analogue of Theorem 4, which can be proved by the same
method.

Theorem 9. Let k be a fixed positive integer. Let y1 = (x1,1, . . . , xn,1), . . . , yk =
(x1,k, . . . , xn,k) be k independent vectors of independent ±1 symmetric random vari-
ables, and let

A(y1, y2, . . . , yk) :=
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1

ai1i2...ik
xi1,1 . . . xik,k

be a k−multilinear form whose coefficients ai1...ik
are all nonzero. Then for any

function f of k − 1 vectors of length n,

P(A(y1, . . . , yk) = f(y2, . . . , yk)) = Ok(n−1/2). (16)

Again, this is tight for degenerate forms which contain a linear factor. A natural
conjecture would be that non-degenerate forms are significantly less concentrated.

Conjecture 2. Let k, A, y, and f be as in Theorem 9, and let ε > 0 be fixed. Then
there is a constant N0 depending only on ε and k such that if

P(A(y1, . . . , yk) = f(y2, . . . , yk)) ≥ n−
k
2 +ε,

and n > N0, then there is a partition of {y1, . . . , yk} into disjoint sets S and T and
functions f1 and f2 such that f1 depends only the variables in S, f2 only on the
variables in T , and A differs from f1f2 in o(n2) coefficients.

The k/2 in this conjecture comes from how nk/2 is the typical magnitude of f in
the case where the coefficients of A are random (small) integers.

We can also conjecture a polynomial analogue to Theorem 6, including an analogous
inverse theorem to the above multilinear one.

Conjecture 3. Let x1, . . . , xn be independent ±1 symmetric random variables, and
let

f(x1, . . . , xn) =
∑

1≤i1···≤ik≤n

ai1...ik
xi1 . . . xik

2Nguyen actually gives a stronger characterization of the matrix A1, for full details see his
paper
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be a degree k homogeneous polynomial with at least mnk−1 nonzero coefficients.
Then

sup
c

P(f(x1, . . . , xn) = c) = O(m−1/2).

If the above concentration is at least Ωk(m−k/2+ε), then f differs in only a few
coefficients from a polynomial which factors.

In [2], a proof of the first half of this conjecture was given with m−1/2 replaced by
m−ck , where ck = 2−(k2+k)/2. For the second half, we do not have a proof of this
conjecture even in the case k = 2.
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