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Abstract. We investigate the rank of random (symmetric) sparse matrices.
Our main finding is that with high probability, any dependency that occurs in
such a matrix is formed by a set of few rows that contains an overwhelming
number of zeros. This allows us to obtain an exact estimate for the co-rank.

1. Introduction and Statement of Main Results

Let wij , 1 ≤ i ≤ j ≤ n be complex numbers, where the wij are non-zero for i < j
(we place no restriction on the wii). We denote by W the symmetric matrix where

• The upper diagonal entries are wij , 1 ≤ i < j ≤ n.
• The diagonal entries are wii.
• wji = wij for all 1 ≤ i < j ≤ n.

Let p (which may depend on n) be a positive number at most one and ξij , 1 ≤ i ≤
j ≤ n be independent Bernoulli random variables taking on value 1 with probability
p and 0 with probability 1− p.

We sparsify the matrix W by replacing each entry above or on the diagonal by
zero with probability 1 − p while keeping the matrix symmetric. The resulting
symmetric matrix, denoted by Q := Q(W,p) has entries qij = wijξij , 1 ≤ i ≤ j ≤ n
and qji = qij .

Q is a very general model of random matrices and the study of its linear algebraic
parameters is of considerable interest. In this paper, we will focus on the rank of
Q. This seemingly simple parameter has not been understood until very recently,
when in [1] T. Tao and the authors proved (in a slightly less general form) that if
0 < p < 1 is a constant not depending on n, then Q almost surely has full rank,
thus proving a conjecture of Weiss. A refinement of this result in [2] showed that
the same conclusion still holds as far as p > (1+ε) ln n

n . This bound is sharp, as for
p < (1−ε) ln n

n , by the coupon-collector theorem there will be an all-zero row with
probability tending to 1 as n tends to infinity.
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In the current paper, we investigate the case when p can be significantly smaller
than ln n

n . In this case, the co-rank of the matrix is almost surely positive (in fact,
polynomial in n) and this makes the situation quite different from the full-rank case
considered before.

The main intuition that underlines many problems concerning the rank of a random
matrix is that

Dependency should come from small configurations.

The most famous question based on this intuition is the (1/2)n conjecture, which as-
serts that the probability that a random Bernoulli matrix of order n (non-symmetric
matrix with entries being iid Bernoulli random variables, taking values 1 and −1
with probability 1/2) is singular is (1/2 + o(1))n. The lower bound is trivial, as it
comes from the probability that there are two equal rows. Despite several efforts
(see [7] for a recent survey), this conjecture is still open. Here and later, the as-
ymptotic notation will be used under the assumption that n, the size of the matrix,
tends to infinity.

In this paper, we are able, for the first time, verify this intuition rigorously in a
sufficiently general setting. We will show that for a certain range of p, any depen-
dency that occurs in the random matrix indeed comes from a small configuration.
To be more precise, we will prove that if p = Ω( ln n

n ), then any dependency comes
from a collection of k rows, for some k = O(1), which between them have at most
k − 1 non-zero columns. In particular, it will follow that the co-rank of Q depends
only on the local structure of an underlying graph formed by the ξij , regardless of
the values of the wij . (It is, however, critical that wij 6= 0 for i 6= j.)

In order to state our results formally, we will need few definitions:

Definition 1.1. The graph G(Q) of a symmetric matrix Q is the graph with
vertices being the rows of Q and vertex i is connected to vertex j if and only if
qij 6= 0.

Note that this graph may contain self-loops if the entries on the main diagonal
of Q are nonzero. Furthermore, except for these loops the graph of Q(W,p) is
independent of W due to our assumption that wij 6= 0.

For a set S in a graph G, let N(S) denote the neighborhood of S, that is, the
set of vertices adjacent to S. (We allow N(S) to contain elements of S.) A set
S of vertices of a graph G is non-expanding if it satisfies |N(S)| < |S|. S is
minimally non-expanding if it contains no proper non-expanding subset.

Examples. An isolated vertex forms a non-expanding set. A set of two vertices of
degree one sharing a common neighbor forms a minimal non-expanding set of size
2. However, a single vertex with a self-loop does not form a non-expanding set (as
it is its own neighborhood).
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A set T of rows of a matrix Q is non-expanding if at most |T |−1 columns of Q have
at least one nonzero entry in T . Note that a set of rows of Q is non-expanding if and
only if the corresponding set of vertices in G(Q) is non-expanding. Furthermore,
if S is a non-expanding subset of G(Q), then the corresponding rows in Q are
dependent (regardless of W ), since they span a space of dimension at most |N(S)|.
It is thus clear that for any set S of vertices of G(Q) and any weights W that

rank(Q) ≤ n− |S|+ |N(S)|.

By considering all sets of vertices in G(Q) we immediately obtain the upper bound

rank(Q) ≤ min
S⊂V (G(Q))

n− |S|+ |N(S)|.

Our first main result shows that for p which is sufficiently large, this upper bound
is tight.

Theorem 1.2. Assume that p = Ω( ln n
n ). Let W be any fixed symmetric matrix

whose off-diagonal entries are nonzero. Then almost surely

(1) rank(Q(W,p)) = min
S⊂V (G(Q))

(n− |S|+ |N(S)|).

In other words, the rank of Q is determined, almost surely, by the local structure
of G(Q), which in turn depends only on the ξ and which diagonal entries of W are
nonzero (actually, which diagonal entries are nonzero will also turn out to be with
high probability irrelevant to the rank of Q–see Remark 2.5).

Theorem 1.2, together with earlier results from [1, 2], imply the following corollary:

Corollary 1.3. Let 1/2 > p = Ω( ln n
n ), and let Q be a random symmetric matrix

whose above diagonal entries are independent random variables ξij satisfying

P(ξij = 0) = 1− p

and whose off-diagonal entries are 0 with probability at least 1− p.

Then almost surely

(2) rank(Q) = min
S⊂V (G(Q))

n− |S|+ |N(S)|)

The ξij here are not necessarily identical or Bernoulli.

We next turn to the question of classifying the dependency in Q(W,p). It is a
routine to check that for any fixed positive integer s and ε > 0, if p < (1−ε) ln n

sn then
G(n, p) almost surely contains minimal non-expanding sets of all sizes up to and
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including s. In Q(W,p) such a set of rows is automatically dependent, regardless
of the values of the nonzero entries.

Our second main result shows that this is the only reason for dependency.

Theorem 1.4. Let s be a fixed positive integer and c > 1/s a positive constant.
Assume that c ln n

n < p < 1/2. Then with probability 1 − O( 1
(ln ln n)1/4 ) = 1 − o(1),

Q(W,p) has the property that any set of dependent rows of Q(W,p) contains a non-
expanding set of size at most s − 1. The constant implicit in the O notation is
independent of W .

Note that in particular the s = 1 case of this result gives that Q(W,p) is almost
surely nonsingular for p sufficiently large. This particular case can also be extended
to non-symmetric models (see Section 11). Again, this result can easily be extended
to a result for random W in the vein of 1.3.

The special cases s = 1, 2 of this result were proved in an earlier paper [2] for
Q = Q(n, p). This theorem implies that if c ln n

n < p < 1/2, where c > 1/s for some
positive integer s, then any minimal non-expanding set has size at most s − 1. It
also implies the following corollary.

Definition 1.5. A set S of vertices of a graph G is s-unobstructed if it contains
no non-expanding subset of size at most s. S is unobstructed if it contains no
non-expanding subset.

Corollary 1.6. With probability 1 − O( 1
(ln ln n)1/4 ) = 1 − o(1), the rank of the

random matrix Q(W,p) equals the size of its largest unobstructed set in its graph.

The proofs of the main theorems combine techniques developed in earlier papers
[1, 2] with some delicate properties of sparse random graphs. We are going to sketch
the main ideas in the next section.

2. The Idea of the proofs and some Lemmas

Instead of proving Theorems 1.2 and 1.4 directly, we are going to prove the following
theorem (which is somewhat weaker than Theorem 1.4). The proof of this theorem,
combined with some lemmas will imply Theorems 1.2 and 1.4.

We say that a matrix Q is s-saturated if the rank of Q equals the size of the largest
s-unobstructed set of G(Q).

Theorem 2.1. Let s be a fixed positive integer and c > 1s a positive constant.
Assume c ln n

n < p < 1/2. Then with probability 1 − O( 1
(ln ln n)1/4 ) = 1 − o(1), the

random matrix Q(W,p) is (s− 1)-saturated.

Since the case where p = Ω(1) was already addressed in [1], we will assume that
p = o(1).
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Following the ideas from [6, 1], we are going to expose Q(W,p) minor by minor.
Letting Qm denote the upper left m × m minor of Q(W,p), we view Qm+1 as
being formed by taking Qm and augmenting by a column whose entries are chosen
independently, along with the column’s transpose. Let Gm = G(Qm). In graph
theoretic terms, we can view the sequence of Gm as a vertex exposure process of
G(n, p).

Our starting observation is that when a good portion of the vertices have been
exposed, the rank of the matrix is close to its size.

Recall that p ≥ c lnn/n for a constant c > 1/s. Let 0 < δ < 1 be a constant such
that 1/s < δc < 1/(s− 1). Define n′ := δn.

Lemma 2.2. For any constant ε > 0 there exists a constant γ > 0 such that

P(rank(Qn′) < (1− ε)n′) = o(e−γn ln n)

Our plan is to show that the addition of the remaining n − n′ rows/columns is
enough to remove all the linear dependencies from Qn′ , except those corresponding
to non-expanding subsets of at most s− 1 vertices.

The next several lemmas provide some properties of the (random) graph Gm for
n′ ≤ m ≤ n.

Definition 2.3. A graph G is well-separated if the following two conditions hold:

W1. Any connected subgraph of G on at most 5s vertices contains at most s − 1
vertices with degree at most ln lnn.

W2. No cycle of length 1 or between 3 and 12s in G contains a vertex of degree at
most ln lnn.

Lemma 2.4. For any constant ε > 0, the probability that there is an m between n′

and n for which Gm is not well separated is O(n−scδ+1+ε).

Note that by our choice of δ this probability will be o(1) for sufficiently small ε.

Remark 2.5. One corollary of this lemma and our main results is that whether
the diagonal entries of W are non-zero is likely to be irrelevant to the collection of
dependent sets in Q(W,p). The minimal dependent sets will with high probability
be the non-expanding sets of size at most s−1 and therefore correspond to vertices
of degree at most s − 1 in G. On the other hand, a graph satisfying W2 only
contains self-loops at vertices of degree at least ln lnn.

Another way of thinking about this is as follows: If we form a new matrix W ′ by
replacing all of the entries on the diagonal of W by 0, with high probability the
graph of Q(W ′, p) will contain exactly the same non-expanding sets as the graph
of Q(W,p) and thus (by Theorem 1.4) the same dependent sets of rows.

Definition 2.6. A graph G is a small set expander if every subset S of the
vertices of G with |S| ≤ n

ln3/2 n
either has at least |S| edges connecting S to S̄, its
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complement, or has a subset S′ ⊂ S with |S′| ≤ s − 1 and at most |S′| − 1 edges
connecting S′ to S̄′.

Lemma 2.7. For any m > n′ the probability that Gm is well separated but is not
a small set expander is O(n−4).

Definition 2.8. A set S of the vertices of a graph G is nice if there are at least
two vertices of G each is adjacent to exactly one vertex in S.

A set S of the vertices of a graph G is nearly nice if there is at least one vertex
in G which has exactly one neighbor in S.

Set k := ln ln n
2p . We will next define a class of ’good’ matrices which behave well

under augmentation.

Definition 2.9. A graph G is good if the following four properties hold:

1. Every minimal non-nice subset of the vertices of G either has size at least k + 1
or contains a non-expanding subset of size at most s− 1.

2. Every minimal non-nearly nice subset of the vertices of G either has size at least
k + 1 or is a non-expanding set of size at most s− 1.

3. At most 1
p ln n vertices of G have degree less than s.

4. G is well separated.

A symmetric matrix Q is good if the graph G(Q) is good.

The next lemma states that in the augmentation process we will likely run only
into good matrices.

Lemma 2.10. Let ε be a positive constant. Then with probability 1−O(n1−scδ+ε),
Qm is good for every m between n′ and n .

We now consider the effect of augmentation on the rank of A when A is a good
matrix.

Definition 2.11. A pair (G, G′) of graphs is called normal if the following prop-
erties hold:

1. G is an induced subgraph on |G′| − 1 vertices of G′.

2. The new vertex added to G is not adjacent to any vertex which was part of a
non-nearly nice subset in G′.

A pair (A,A′) of symmetric matrices is normal if the pair of graphs (Q(A), Q(A′))
is normal.
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Lemma 2.12. Let Q be any fixed, good m×m matrix which is not s−1-saturated.
Then

P( rank(Qm+1)− rank(Qm) < 2|(Qm, Qm+1) is normal∧Qm = Q) = O((kp)−1/2).

What the above lemma says is that if Qm is good but not s − 1-saturated, then
augmenting it will tend to remove some of the dependencies among the rows of
Qm (note that kp is tending to infinity by assumption). If (Qm+1, Qm) is normal,
then the dependencies removed can’t correspond to small non-expanding subsets of
the rows of Qm. This implies that in some sense Qm+1 is a little closer to being
saturated then Qm was.

Now suppose on the other hand that Qm is both good and already s− 1-saturated.
We are going to show that (again assuming no change in the non-expanding subsets)
with high probability Qm does not gain any new dependencies by being augmented.

Lemma 2.13. Let Q be any fixed, good m×m matrix which is also s−1-saturated.
Then

P( rank(Qm+1)− rank(Qm) < 2|(Qm, Qm+1) is normal∧Qm = Q) = O((kp)−1/4).

ln the next section, we prove Theorem 2.1 assuming these lemmas. The proofs of
the lemmas will be presented in the sections that follow.

3. Proof of Theorem 2.1

In this section, we assume all lemmas from the previous section are true. We are
going to use a variant of an argument from [1]. Let B0 be the event that Gn is
(s−1)−saturated. Let B1 be the event that the rank of Qn′ is at least n′(1− 1−δ

4δ ).
Let B2 be the event that Qm is good for all n′ ≤ m < n. By Bayes’ theorem we
have

P(B0) ≤ P(B0 ∧B2|B1) + P(¬B1) + P(¬B2)

By Lemma 2.2 we have that P(¬B1) = o(e−γn ln n) and by Lemma 2.10 we have
that P(¬B2) = O(n1−scδ+ε). Both of these probabilities are much smaller than the
bound O((ln lnn)−1/4) which we are trying to prove, so it only remains to bound
the first term.

Let Um denote the size of the largest (s − 1)−unobstructed subset of the vertices
of Gm.

Let Ym = Um − rank(Qm). Our goal is now to prove that Yn is almost surely 0.
Define a random variable Xm as follows:

• Xm = 4Ym if Ym > 0 and every Qj with n′ ≤ j ≤ m is good;
• Xm = 0 otherwise.
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The core of the proof is the following bound on the expectation of Xm+1 given any
fixed sequence Qm of matrices {Qn′ , Qn′+1, . . . , Qm} encountered in the augmen-
tation process.

Lemma 3.1. For any sequence Qm = {Qn′ , Qn′+1, . . . , Qm} encountered in the
augmentation process,

E(Xm+1|Qm) <
3
5
Xm + O((ln lnn)−1/4).

Let us (for now) assume Lemma 3.1 to be true. This lemma together with Bayes
theorem shows that for n′ < m we have

E(Xm+1|Qn′) <
3
5
E(Xm|Qn′) + O((ln lnn)−1/4).

By induction on m2 −m1 we now have that for any m2 ≥ m1 ≥ n′

E(Xm2 |Qn′) < (
3
5
)m2−m1E(Xm1 |Qn′) + O((ln lnn)−1/4).

In particular, by taking m2 = n and m1 = n′ we get that

E(Xn|Qn′) < (
3
5
)n−n′Xn′ + O((ln lnn)−1/4).

If Qn′ satisfies B1, we automatically have Xn′ ≤ 4
(1−δ)n′

4δ = (
√

2)n−n′ , so

E(Xn|Qn′) < (
3
√

2
5

)n−n′ + O((ln lnn)−1/4) = O((ln lnn)−1/4).

By Markov’s inequality, for any Qn′ satisfying B1

P(Xn > 3|Qn′) = O((ln lnn)−1/4)

On the other hand, by definition Xn ≥ 4 if Gn is not (s − 1)−saturated and B2

holds. It thus follows by summing over all Qn′ satisfying B1 that

P(B0 ∧B2|B1) = O((ln lnn)−1/4),

proving the theorem.

It remains to prove Lemma 3.1. If a matrix in the sequenceQm = {Qn′ , Qn′+1, . . . , Qm}
is not good, then Xm+1 = 0 by definition and there is nothing to prove. Thus, from
now on we can assume that all matrices in the sequence are good. Let Zm denote
the number of vertices of degree at most s in Gm adjacent to the m + 1st vertex of
Gm+1.

Claim: Um+1 − Um ≤ Zm + 1.

Proof. (of claim): Let Sm+1 denote a s−unobstructed subset of the vertices of
Gm+1 such that |Sm+1| = Um+1. Let S′m denote the set formed by removing the
m + 1st vertex from S, as well as any vertices of degree at most s adjacent to that
new vertex.

S′m is s−unobstructed since each subset of S′m of size at most s either contains a
vertex of degree at least s + 1 (in which case it clearly expands) or has the same
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neighborhood in Gm as in Gm+1. Since at most Zm + 1 vertices were removed to
go from Sm+1 to S′m, the claim follows. �

By the above claim, if Zm is positive, then augmenting the matrix will increase
Ym by at most Zm + 1 (Um increases by at most Zm + 1 and the rank does not
decrease). Furthermore, Zm = 0 if and only if (Qm, Qm+1) is normal. By Bayes’
theorem, we have

E(Xm+1|Qm) = E(Xm+1χ(Zm > 0)|Qm)
+ E(Xm+1|Qm ∧ (Qm, Qm+1) is normal)P((Qm, Qm+1) is normal|Qm)
≤ E(Xm+1 χ(Zm > 0)|Qm) + E(Xm+1|Qm ∧ (Qm, Qm+1) is normal)

= E(4Zm+1+Ymχ(Zm > 0)|Qm) + E(Xm+1|Qm ∧ (Qm, Qm+1) is normal).

Since Qm is good, Gm has at most 1
p ln n vertices which have degree at most s.

Thus, we can bound Zm by the sum of 1
p ln n random Bernoulli variables, each of

which is 1 with probability p. It follows that

P(Zm = i) ≤
(

(p lnn)−1

i

)
pi ≤ (lnn)−i.

Adding up over all i, we have

E(4Zm+1χ(Zm > 0)|Qm) ≤
∞∑

i=1

4i+1(lnn)−i = O((lnn)−1).

If Ym = 0 and (Qm, Qm+1) is normal, then by Lemma 2.13 (which applies since Qm

is good) Xm+1 is either 0 or 4, with the probability of the latter being O((ln lnn)−1/4).
Therefore we have for any sequence Qm = {Qn′ , . . . Qm} of good matrices with
Ym = 0 that

(3) E(Xm+1|Qm) = O((ln lnn)−1/4 + (lnn)−1) = O((ln lnn)−1/4).

If Ym = j > 0 and (Qm, Qm+1) is normal, then Ym+1 is j − 1 with probability
1 − O((ln lnn)−1/2) by Lemma 2.12, and otherwise is at most j + 1. Combining
this with the bound on E(4Zm+1χ(Zm > 0)|Qm) we have

(4) E(Xm+1|Qm) = 4j−1 + 4j+1O((ln lnn)−1/2) + 4jO((lnn)−1) ≤ 3
5
4j

The lemma now follows immediately from (3) and (4).

4. Proof of Lemma 2.2

We use a variant of an argument from [2]. By symmetry and the union bound

P(rank(Qn′) < (1− ε)n′) ≤
(

n′

εn′

)
×P(B∗

1),

where B∗
1 denotes the event that the last εn′ columns of Q′

n are contained in the
span of the remaining columns.
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We view Qn′ as a block matrix,

Qn′ =
[

A B
BT C

]
,

where A is the upper left (1 − ε)n′ × (1 − ε)n′ sub-matrix and C has dimension
εn′ × εn′. We obtain an upper bound on P(B∗

1) by bounding the probability of B∗
1

conditioned on any fixed A and B (treating C as random).

B∗
1 cannot hold unless the columns of B are contained in the span of those of A,

meaning the equation B = AF holds for some (not necessarily unique) matrix F .
If this is the case, then B∗

1 will hold only when we also have C = BT F . This means
that each entry of C is forced by our choice of A, B and our assumption that B∗

1

holds.

However, C is still random, and the probability that any given off-diagonal entry
takes on its forced value is at most 1− p (this being the probability that the entry
is 0). The entries are not all independent (due to the symmetry of C), but those
above the main diagonal are. Therefore the probability that B∗

1 holds for any fixed

A and B is at most (1− p)
(εn′)2

2 .

We therefore have

P(rank(Qn′) < (1− ε)n′) ≤
(

n′

εn′

)
((1− p)

(εn′)2
2 )

≤ (
n′e

εn′
)εn′e

−p(εn′)2
2

≤ c2
ne−c1n ln n.

where c1 and c2 are positive constants depending on ε, δ, and c (but independent
of n).

5. Proof of Lemma 2.4

If p is at least (lnn)2/n then Gm will with probability at least 1 − o(1/n3) have
no vertices with degree at most ln lnn, in which case the lemma is trivially true.
Therefore we can assume p ≤ (lnn)2/n

If Gm fails to be well separated for some m between n′ and n there must be a first
m0 with this property. We are going to bound the probability that a fixed m is this
m0.

Case 1: m0 = n′. We can bound the probability Gn′ fails condition W1 by the
union bound over all sets of at most 5s vertices of the probability that those vertices
form a connected subgraph with at least s small-degree vertices.
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The probability that any single vertex has sufficiently small degree is at most

(5)
ln ln n∑
i=0

(
n′ − 1

i

)
pi(1− p)n′−i ≤ (1 + o(1))

ln ln n∑
i=0

(n′p)i(1− p)n′ ≤ (lnn)2 ln ln n

ncδ
,

so the probability that a set of size i contains at least s such vertices is at most(
i

s

)
n−scδ+ε.

The probability that a set of size i is connected is (by the union bound over all
spanning trees) at most

ii−2pi−1 ≤ (lnn)2i

(n′)i−1

By the FKG inequality [4] these two events are negatively correlated (as one is
monotone increasing under edge inclusion, while the other is monotone decreasing),
so the probability that some subset fails the first well-separation criterion is at most

(6)
5s∑

i=s

(
n′

i

)(
i

s

)
n−scδ+ε (lnn)2i

(n′)i−1
= O(n1−scδ+ε).

Similarly, for each 1 ≤ j ≤ 12s the probability that a given set of size j contains a
spanning cycle is by the union bound at most

(i− 1)!
2

pi ≤ (i− 1)!(ln n)2i

ni

and by the FKG inequality this event is negatively correlated with the set containing
a vertex of degree at most ln lnn in G. Therefore the probability some set fails W2
is at most

(7)
12s∑
i=1

(
n′

i

)
(i− 1)!(ln n)2i

ni

(lnn)2 ln ln n

ncδ
= O(n−cδ+ε)

Case 2: m0 = m > n′. In this case we can bound the probability that m0 = m by
the probability that Gm−1 is well separated but Gm fails to be well separated. As
in the previous case we can take a union bound over all sets of at most 5s vertices,
but now we need only consider sets which contain the vertex newly added to create
Gm (all other sets are covered by our assumption that Gm−1 is well separated).
This means that the probability of failure of either requirement for any particular
m in this range is at most 12s/n times the corresponding union bound in (6) and
(7), which is O(n−scδ+ε).

By the union bound, the property that Gm is not well -separated for some m is at
most

O(n1−scδ+ε) + O(n−cδ+ε) + n×O(n−scδ+ε) = O(n1−scδ+ε),
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completing the proof.

6. Proof of Lemma 2.7

In order to prove the edge expansion property we first show that almost surely all
small subgraphs of G(n, c ln n

n ) will not have too many edges.

Definition 6.1. A graph G is locally sparse if every subgraph on at most n
ln3/2 n

vertices has average degree less than 8.

Lemma 6.2. For fixed c the probability that G(n, c ln n
n ) is not locally sparse is

O(n−4).

Proof. Let qj be the probability that a subset of size j induces at least 4j edges.
By the union bound, this is at most

(
n
j

)
times the probability of a particular subset

inducing at least 4j edges, so

qj ≤
(

n

j

)(
j2/2
4j

)
p4j

≤ (
ne

j
)j(

ejc lnn

8n
)4j

≤ (
c4e5j3 ln4 n

n3
)j .

For j < n1/4 this gives qj ≤ n−2j , while for j > n1/4 we have (using our upper
bound on j) qj ≤ (lnn)−j/2 = o(n−5). By adding up over all j at least 2, we
conclude that the failure probability is O(n−4), completing the proof. �

Armed with this lemma we can now prove Lemma 2.7, which we do in two cases
depending on the value of p.

Case 1: p ≥ 12 ln n
n : We estimate the probability that there is a non-expanding

small set directly by using the union bound over all sets of size i < n ln−3/2 n. The
probability in question can be bounded from above by

n ln−3/2 n∑
i=1

(
n

i

)(
i(n− i)
i− 1

)
(1− p)i(n−i)−(i−1) ≤

n ln−3/2 n∑
i=1

ni(en)i−1e−inp(1+o(1))

=
1
en

n ln−3/2 n∑
i=1

(n2e−np(1+o(1)))i.
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The lower bound on p guarantees that the summand is O(n−(4+o(1))i), so the prob-
ability for any p in this range is o( 1

n4 ).

Case 2: p < 12 ln n
n .

If Gm fails to expand edgewise there must be a minimal subset S0 which both fails
to expand and contains no non-expanding subset of size at most s− 1.

We claim that the subgraph formed by the vertices of S0 must have average degree
at least 8. For the sake of contradiction, let us suppose that this were not the case.
Because fewer than |S0| edges leave S0, it follows that the average degree of the
vertices of S0 in G is at most 9, meaning that at most 9|S0|

ln ln n vertices in S0 have
degree at least ln lnn in G.

We next consider the connected components of the induced subgraph of G on the
vertices in S0. Unless G fails to satisfy condition W1 (in which case we are done),
at most 9(s−1)|S0|

ln ln n of the vertices with degree at most ln lnn can be in the same
component as a vertex with degree at least ln ln n.

Furthermore, the remaining vertices must be in components of size at most s − 1
(again due to W1). Let T be one of those components. By assumption, T has at
least |T | edges leaving T , and each of these edges must also leave S0. But this
implies that S0 − T is a smaller edgewise non-expanding set, a contradiction.

What we have actually shown in the above is the following deterministic statement:
any locally sparse, well-separated graph must also be a small set expander. We can
therefore bound the probability of the existence of a minimal S0 by the probability
of G failing to be locally sparse, which by Lemma 6.2 is O(n−4).

7. Proof of Lemma 2.10

Let C0 be the event that Gm is good for every m between n′ and n. Let C1 be the
event that Gm has at most 1

p ln n vertices of degree less than s for every m between
n′ and n, C2 be the event that Gm has maximum degree at most 5knp for each
m, and C3 be the event that Gm is well separated, locally sparse, and a small set
expander for every m between n′ and n. We have

P(¬C0) ≤ P(¬C0 ∧ C1 ∧ C2 ∧ C3) + P(¬C1) + P(¬C2) + P(¬C3).

We are going to bound each term on the right hand side separately, in reverse order.

Lemmas 2.7, 2.4, and 6.2 together show that P(¬C3) = O(n1−scδ+ε).

P(¬C2) is at most the expected number of vertices of degree at least 5knp in Gn,
which is at most

n

(
n

5knp

)
p5knp ≤ n(e/5knp)5knpp5knp ≤ ne−5knp = o(n−4).
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To bound P(¬C1), we note that the probability that some Gm contains a set of
vertices of degree less than s of size t = p−1 ln−1 n is bounded from above by the
probability that at least t vertices in Gn each have at most s neighbors amongst
the vertices of Gn′ . This probability is clearly decreasing in p, and for p = ln n

sn it is
by Markov’s inequality at most

n

t

s∑
i=1

(
n′

i

)
pi(1− p)n′−i < n

(lnn)2

sn

s∑
i=1

ni (lnn)i

(sn)i
e−(1+o(1)) ln n′/s

= O((lnn)2n−1/s
s∑

i=1

(lnn)i) = n−1/s+o(1)

It remains to estimate the first term, which we will do by the union bound over
all m. Since property C1 implies Gm has few vertices of small degree, it suffices
to estimate the probability that Gm contains a non-nice set while still satisfying
properties C1, C2, and C3. Let pj be the probability that conditions C1, C2, and
C3 hold but some subset of j vertices causes Gm to fail to be good. Symmetry and
the union bound give that pj is at most

(
m
j

)
times the probability that the three

conditions hold and some fixed set S of j vertices causes the graph to fail condition
C0. We will bound this in three cases depending on the size of j.

Recall that we defined k = ln ln n
2p . Note that by our lower bound on p we have

k = o(n).

Case 1: 1
p
√

ln n
≤ j ≤ k.

We will show that there are almost surely no non-nice subsets at all in this range,
minimal or otherwise. We can give an upper bound on the probability that a
particular set S of j vertices fails to be nice by the probability that no vertex
outside S has either 0 or 1 neighbors in S (we restrict our search to vertices outside
S so we do not have to worry about the presence or absence of self-loops).

Direct computation of the probability that a fixed set of j vertices has either 0 or
1 vertices adjacent to exactly one vertex in the set gives:

pj ≤
(

m

j

)
((1− jp(1− p)j−1)m−j + mjp(1− p)j−1(1− jp(1− p)j−1)m−j−1)

≤ (mep
√

lnn)j((1− jp(1− p)j−1)m−j + mjp(1− p)j−1(1− jp(1− p)j−1)m−j−1)

≤ (mep
√

lnn)j((1− jpe−jp(1+o(1)))m−j + mjpe−jp(1+o(1))(1− jpe−jp(1+o(1)))m−j−1)

≤ ((1 + o(1))mep
√

lnn)j(e−mjp(1+o(1))e−jp(1+o(1))
)(1 + (1 + o(1))mjpe−jp(1+o(1))).

It follows from our bounds on j and p that mjpe−jp tends to infinity, so the second
half dominates the last term of the above sum and we have:

pj ≤ (1 + o(1))(mep
√

lnn)j(e−mjp(1+o(1))e−jp(1+o(1))
)(2mjpe−jp(1+o(1))).
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Taking logs and using δn ≤ m ≤ n gives:

ln(pj) ≤ (1 + o(1))j(ln(enp
√

lnn)− δnpe−jp(1+o(1)) − p +
ln(2njp)

j
)

≤ (1 + o(1))j(4 ln(np)− δnpe−kp(1+o(1)))

= (1 + o(1))j(4 ln(np)− δnp

(lnn)
1
2+o(1)

).

Since np > ln n
s , taking n large gives that the probability of failure for any particular

j in this range is o(1/n4), and adding up over all j and m gives that the probability
of a failure in this range is o(1/n2).

Case 2: 1 ≤ j ≤ 1
p
√

ln n
.

Let b be the number of vertices outside S adjacent to at least one vertex in S, and
let a be the number of edges between S and the vertices of G outside S. For j ≥ s
let Ej be the event that the graph satisfies conditions C1 through C3 but some
fixed set S of j vertices fails to be nice.

By Bayes’ theorem we have

pj ≤
(

m

j

) nj∑
w=0

P(Ej |a = w)P(a = w)

We bound the terms in two subcases depending on the size of w relative to j.

Case2a: w < 10j. The claim here is that in this range it is impossible for Ej to
occur.

Let G2 denote a graph with on the same vertex set as G, but with i connected to
j in G2 iff i and j are of distance at most 2 in G.

As in Lemma 2.7, if G is locally sparse then S must have at most 18j
ln ln n vertices of

degree at most ln lnn. Condition W1 now implies that at most 18sj
ln ln n vertices of S

can lie in the same component of the induced subgraph of G2 on S as a vertex of
degree at least ln lnn. Thus the induced subgraph of G2 must contain a component
S1 which does not contain a vertex having degree in G at least ln lnn. S1 must have
size at most s− 1 by condition W1. Note that this component shares no neighbors
in G with the rest of S.

Suppose that every vertex in G adjacent to S1 had two neighbors in S1. It would
then follow that the induced subgraph of G on S1 ∪N(S1) contained at least

2|N(S1)| − |S1 ∩N(S1)|

edges. On the other hand, condition W2 implies that this induced subgraph is a
forest, so has at most

|S1 ∪N(S1)| − 1 = |S1|+ |N(S1)| − |S1 ∩N(S1)| − 1

edges. Combining these two inequalities would yield |N(S1)| ≤ |S| − 1.
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Thus either S1 is a non-expanding subset of S of size at most s − 1, or there is a
vertex adjacent to exactly one vertex in S1 (and thus in S). This fulfills the second
requirement for G to be good.

If |S| ≥ s, then we can find a second component S2 satisfying the same conditions
as S1. Unless either S1 or S2 fails to expand, there will be a vertex in G adjacent
to exactly one vertex in S1 and another vertex adjacent to exactly one vertex in
S2, so S must be nice. Thus the first requirement for G to be good is also satisfied.

Case 2b: w ≥ 10j. If S is not nice, then at least b − 1 of the neighbors of S must
be adjacent to at least two vertices in S. This implies that b ≤ a+1

2 . It follows that
we can bound P(Ej) by P(b ≤ w+1

2 |a = w). To do this, we fix a set of w+1
2 vertices

and bound the probability that w consequentially randomly selected vertices were
in that set. Using the union bound over all possible sets of w+1

2 vertices, we obtain

P(b ≤ w + 1
2

|a = w) ≤
(

m− j
w+1

2

)
(

w + 1
2(m− j)

)w

≤ (
2e(m− j)

w − 1
)

w+1
2 (

w + 1
2(m− j)

)w

≤ (
4w

m
)

w−1
2 .

This bound is decreasing in w for the entire range under consideration (our bounds
on j guarantee w is at most 10n√

ln n
). Therefore we can bound P(qj |a = w) by the

probability given a = 10j, giving

pj ≤ 3
√

n

(
m

j

)
(
40j

m
)5j

≤ 3
√

n(
me

j
)j(

40j

m
)5j

≤ 3
√

n(
130j

n′
)4j .

This bound is decreasing in j in the range under consideration, and plugging in
j = s gives that pj = o(1/n4) for each j and m in the range. By the union bound
the probability of failure in this range is o(1/n2).

8. Proofs of Lemmas 2.12 and 2.13

8.1. Proof of Lemma 2.12. Let Q be a fixed nice matrix which is not s − 1-
saturated. Since Q is not saturated, there is a vector v := (v1, v2, . . . vm)T in the
nullspace of Q whose support does not contain the coordinates corresponding to
any non-expanding subset of at most s− 1 rows. Let D be the number of nonzero
coordinates in v. If D were at most k, then the goodness of Q would guarantee
that the support of v would be nearly nice, meaning that some vertex i has only
one neighbor in the support of v. But this is a contradiction, as the product of row
i with v would then be vi, which is by assumption not 0 since it is in the support
of v.
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We may therefore assume that D > k and, without loss of generality, that it is the
first D coordinates of v which are nonzero. We now consider the linear equation

(8)
D∑

i=1

vixi = 0

If the new column x does not satisfy this equation, then augmenting Q by this
column will increase the rank by 1 and (by the symmetry of Q) augmenting Q
simultaneously by the x and its transpose will increase the rank by 2. Therefore it
suffices to bound the probability that (8) is satisfied. To do so, we use the following
variation of the classical Littlewood-Offord Theorem [3] due to Halász [5].

Theorem 8.2. Let χi be independent random variables satisfying

max
i

sup
c∈R

P(χi = c) ≤ 1− ρ.

Then

P(
D∑

i=1

χi = 0) = O((Dρ)−1/2)

Although the xi aren’t all random in our case (our conditioning on the normality
of (Gm, Gm+1) guarantees that all variables corresponding to vertices in non-nice
subsets of G are 0), most of them will be random. Since we are assuming G to be
good, the number of non-random xi is bounded above by the number of vertices of
degree at most s, which is in turn bounded above by 1

p ln n = o(D).

Thus after removing the xi which are forced to be 0 we are left with D(1 + o(1))
independent variables with nonzero coefficients. Each vixi is equal to 0 with prob-
ability 1−p and viwi with probability p. Applying Theorem 8.2 with ρ = p, we see
that the probability (8) is satisfied is therefore at most O((Dp)−1/2) = O((kp)−1/2).

8.3. Proof of Lemma 2.13. Just as in the proof of Lemma 2.12, the goal will
be eventually to use a Littlewood-Offord Lemma to show that a certain expression
is almost surely not equal to 0. In this case, the expression in question will be
the determinant of an appropriately chosen submatrix of the augmentation of Q.
Before we apply it, however, we first attempt to obtain additional information on
the structure of Q, and in particular on G = G(Q).

Let T be the union of all minimal non-expanding subsets of G which contain at
most s− 1 vertices. We begin by proving two lemmas on the structure of T under
the assumption that G is well-separated.

Lemma 8.4. Let T be defined as above. Then N(T ) ∩ T = ∅.

Proof. Assume to the contrary that there are two vertices v and w in T which are
adjacent in T . Let Tv and Tw be minimal non-expanding subsets of G such that Tv
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contains v, Tw contains w, and |Tv| and |Tw| are both at most s−1 (Tv and Tw may
in fact be equal here). By the minimality of Tv, we have |N(Tv − v)| ≥ |Tv| − 1 ≥
|N(Tv)|, so it follows that w must also be in N(Tv − v). A similar argument shows
that any vertex in Tv with a neighbor in Tw has at least one other neighbor in Tw,
and vice versa.

We now consider the graph on vertex set Tv ∪ Tw whose edges correspond to edges
in G with one vertex lying in Tv and the other vertex in Tw (one or both of these
vertices may be in Tv ∩ Tw). By the above argument, no vertex in this graph has
degree exactly 1. However, the well-separation condition W2 guarantees that this
graph is a forest (since any vertex in T has degree at most s−1 in G), which implies
that the graph must in fact be empty. �

Lemma 8.5. Let T be defined as above. Then there is a T1 ⊂ T with |T1| = |N(T )|
such that G has exactly one matching between T1 and N(T ).

Proof. Consider the graph on T ∪N(T ) which includes all edges with at least one
endpoint in T . We perform the following algorithm to construct T1: At each step
we pick an unused vertex in T with exactly one unused neighbor in N(T ). We then
add that vertex to T1 and consider both it and its neighbor as used.

Assuming this algorithm eventually matches every vertex in N(T ) with a vertex in
T , we are done, since the uniqueness of the matching is clear from our matching
process. Showing the algorithm does not terminate prematurely is equivalent to
showing that after every step either every vertex in N(T ) is used or there is an
unused vertex in T with exactly one unused neighbor in N(T ).

To do this, we first note that any unused vertex in N(T ) has at least two unused
neighbors in T (the argument in the previous lemma shows that it has at least
two neighbors in T , and by construction our algorithm marks a vertex in N(T ) as
used as soon as its first neighbor in T is used). Furthermore, by well separation
the induced subgraph on the unused vertices of T and N(T ) is a forest, which is
nonempty unless all vertices of N(T ) have been used. It therefore must have a
vertex of degree one, which must be in T since every unused vertex in N(T ) has
degree at least two. This allows us to continue the algorithm until all of N(T ) is
matched. �

Without loss of generality we can now view A(G) as the block matrix below

A(G) =


A(G\(T ∪N(T ))) A(G\(T ∪N(T )), N(T )) 0 0

A(N(T ), G\(T ∪ T1)) A(N(T )) A(N(T ), T1) A(N(T ), T\T1)
0 A(T1, N(T )) 0 0
0 A(T\T1, N(T )) 0 0

 ,
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where A(G, H) denotes the adjacency matrix of the induced bipartite subgraph
between G and H. The blocks in the lower right are 0 because of Lemma 8.4. By
construction the fourth row of blocks is contained in the span of the third row.

Let B be the matrix formed by the first three rows and columns of blocks of A (note
that rank(B) = rank(A)). To prove 2.13 it suffices to show that augmentation will
almost surely increase the rank of B. Our assumption of normality guarantees we
can think of the augmentation as

B′ =


A(G\(T ∪N(T ))) A(G\(T ∪N(T )), N(T )) 0 x

A(N(T ), G\(T ∪ T1)) A(N(T )) A(N(T ), T1) y
0 A(T1, N(T )) 0 0

xT yT 0 0

 ,

where x and y are random vectors each of whose entries are 1 with probability p,
0 otherwise. We now expand det(B′) by minors simultaneously along all rows and
columns in the third row and column of blocks. By Lemma 8.5, only one nonzero
term remains, so we are left with

det(B′) = ±det
(

A(G\(T ∪N(T ))) x
xT 0

)
= ±

m∑
i=1

m∑
j=1

A(i, j)xixj ,

where A(i, j) denotes the (i, j) cofactor of A(G\(T ∪N(T ))).

This is the expression that we are aiming to show is almost surely non-zero. Unlike
in the proof of Lemma 2.12, however, this expression is a quadratic form in the
variables xi. Thus instead of using the original Littlewood-Offord Lemma, we will
use the following quadratic version proved in [2].

Lemma 8.6. Let aij be fixed constants such that there are at least q indices j such
that for each j there are at least q indices i for which aij 6= 0. Let z1, z2, . . . zn be
as in Lemma 8.2. Then for any fixed c

(9) P(
n∑

i=1

n∑
j=1

aijzizj = c) = O((qρ)−1/4),

where the implied constant is absolute.

Our goal will be to show that probably enough of these cofactors are nonzero that
we can apply this Quadratic Littlewood-Offord Lemma to say that the determinant
of B′ is probably not zero. To do so, we first establish some properties of the matrix
C := A(G\(T ∪N(T ))).

Lemma 8.7. C is nonsingular.

Proof. Any subset of T1 must be expanding due to the matching between T1 and
N(T ). This implies that the first three rows of blocks of A cannot contain any
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non-expanding subsets of size at most s − 1 (such a subset would have to be in T
by the definition of T , but could not be entirely within T1 since T1 expands. Since
A is (s− 1)−saturated, it follows that the rank of A is at least n− |(T\T1)|.

On the other hand, we know the third row of blocks is independent (the unique-
ness of the matching in Lemma 8.5 implies A(T1, N(T )) has determinant ±1), and
contains the fourth row of blocks in its span. Since this already accounts for the
entire nullspace of A, the first three rows of blocks of A must be independent.

This implies we can perform row reduction to eliminate the A(G\(T ∪N(T )), N(T ))
block of A, and that the rows of the reduced matrix (including the rows of C) are
still independent. �

Lemma 8.8. G\(T ∪N(T )) is ”almost good” in the following sense:

1. Every minimal non-nice subset of the vertices of G\(T ∪N(T )) has size either
at most s− 1 or at least k − 1

p ln n .

2. Every minimal non-nearly nice subset of the vertices of G\(T ∪N(T )) has size
at least k − 1

p ln n .

3. At most 1
p ln n vertices of G\(T ∪N(T )) have degree less than s.

Proof. Let S be a subset of the vertices of G\(T ∪N(T )) of size at most k− 1
p ln n ,

and let S1 denote those vertices in N(T ) which have exactly one neighbor in S. We
now perform the following algorithm: So long as S1 remains nonempty, we choose
a vertex v in S1, choose a vertex of T adjacent to v which is not already in s, add
that vertex in T to S, and update S1 accordingly. Since each vertex in N(T ) has
at least two neighbors in T , we will always be able to continue this process so long
as S1 remains nonempty. In particular, the process must terminate by the time we
have added all the vertices in T to S.

Let S′ be the set which results once the algorithm terminates. We first note that
S′ can have size at most k (The vertices in T which we add to S always have degree
at most s− 1, and the number of such vertices is bounded by our assumption that
G is good). Furthermore, there is a natural matching between S′ ∩ T and N(T )
given by matching each vertex of S′ ∩ T with the v in N(T ) which caused it to
be added to S′. This implies that S′ ∩ T (and thus S′) does not contain any non-
expanding subset of size at most s− 1. Since G is good, this implies that S′ must
be nearly-nice, meaning there is some w with only one neighbor in S′. This w can’t
be in N(T ) by construction, and it can’t be in T since S′ contains no vertices from
N(T ). It follows that w’s neighbor must be in S, so S is also nearly-nice.

A similar argument gives that all minimal non-nice subsets in G\(T ∪N(T )) either
have size at least k − p

ln n or at most s − 1. To show there aren’t many vertices
of degree at most s in G\(T ∪ N(T )), we first note that by condition W1 of well
separation a given vertex can only have s − 1 neighbors in N(T ). It follows that
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any vertex of degree at most s in G\(T ∪N(T )) had degree at most 2s in G, and
this can be bounded by the same argument as (5). �

Since C has full rank, dropping any of the columns of C will lead to a m×m− 1
matrix whose rows admit (up to scaling) precisely one nontrivial linear combination
equal to 0. If any of the rows in that combination are dropped, we will be left with
an m− 1×m− 1 nonsingular matrix, i.e. a nonzero cofactor.

As in Lemma 2.12, the rows with nonzero coefficients in this linear combination
must form a non-nearly nice subset of the rows of the column deleted matrix of C.
By Lemma 8.8 the only way that the combination can involve fewer than k− 1

p ln n

rows is if the rows involved formed a non-nice subset of G\(T ∪N(T )), one of whose
neighbors was the removed column. We can upper bound the number of columns
whose removal could possibly cause this difficulty by the number of vertices in
G\(T ∪ N(T )) which have at least one neighbor which has degree at most s in
G\(T ∪N(T )), which by Lemma 8.8 is O( s

p ln n ) = o(n).

Dropping any other column will lead to many nonzero cofactors, so we can apply
the Quadratic Littlewood Offord Lemma with q = k− 1

p ln n = k(1−o(1)) and ρ = p

to bound the probability that the determinant is 0, proving Lemma 2.13.

9. Proofs of Theorem 1.4 and 1.2

Proof of Theorem 1.4: What we will show here is that every (s− 1)−saturated
good matrix satisfies the conclusion of the theorem. This is sufficient since by
Theorem 2.1 and 2.10 the graph will be both (s − 1)−saturated and good with
probability 1−O(ln lnn−1/4). We will prove this result by contradiction.

Suppose that some subset R of the rows of Qn is minimally dependent but does
not contain a non-expanding subset of size at most s− 1. Since G is good, it much
be true that |R| > ln ln n

p .

Since G is (s−1)−saturated, there must be a subset S0 ∈ R which is both indepen-
dent and maximal subject to not containing any non-expanding sets of size at most
s− 1. In particular, any row in R which is not in S0 would create a non-expanding
set when added to S0. Since non-expanding sets are dependent, any row in R\S0

can be written as a linear combination of at most s− 1 rows of S0.

Now by assumption the rows of R satisfy some linear relationship

(10)
∑
i∈W

aivi = 0.

For each row which is in R but not in S0, we substitute the corresponding linear
combination of at most s − 1 rows in S0 which equals it into (10). This yields a
linear relationship between the rows of the independent set S0, which must therefore
have all its coefficients equal to zero. There were initially at least ln ln n

p nonzero
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coefficients in (10), and each substitution can change at most s of them to zero. It
follows that

|R\S0| ≥
ln lnn

sp
.

Each vertex in R\S0 is part of a non-expanding set of size at most s− 1, and thus
has degree at most s− 2. However, G is by assumption good, so has at most 1

p ln n

vertices of degree this small. This is a contradiction, so Theorem 1.4 is proved.

Proof of Theorem 1.2: Again, we will show that any (s − 1)-saturated, good
matrix satisfies the conclusion of the theorem.

On one hand, it is clear that, for any S, the expression n − |S| + |N(S)| is an
upper bound for the rank of A(G). Thus it suffices to exhibit some set S for which
that expression is at most as large to the rank. To do so, we return to the block
decomposition of the proof of Lemma 2.13. Note that by the proof of Lemma 8.7
the rows of the first three blocks of A in this decomposition are independent, so we
have

rank(A) ≥ n− |T\T1|.

Conversely, if we take S = T then we have

n− |S|+ |N(S)| = n− |T |+ |T1| = n− |T\T1|,

where the first inequality comes from the matching between N(S) and T1. Com-
bining these two equations yields the desired result.

10. Extensions, Open Problems and Avenues for Further Research

Although the symmetric model Q(W,p) is natural from a graph theoretic viewpoint,
it is also of interest to consider what happens when the matrix W is no longer
symmetric. In the case s = 1, we can show via a similar argument to the one in
this paper that the following result holds:

Theorem 10.1. Let W be any (symmetric or non-symmetric) matrix of weights
which is non-zero off the main diagonal. Let (1+ε) ln n

n < p < 1
2 , and let ξij be

independent Bernoulli variables which are 1 with probability p and 0 otherwise. Let
A(W,p) be the matrix whose entries are given by aij = wijξij. Then

P(A(W,p) is singular = O((ln lnn)−1/2)

It seems more difficult to obtain a workable extension of the full statement of
Theorem 1.4 to non-symmetric models. For example, suppose we were to look at
a matrix A whose entries were 1 with probability 0.8 ln n

n and 0 otherwise. With
high probability this matrix will have rows and columns that are entirely 0, and
furthermore the number of nonzero rows and columns of A will likely not be equal.
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If A has more nonzero rows than columns, then that would imply some sort of
dependency among the nonzero rows of A. However, there does not seem to be any
obvious way to describe this dependency.

The assumption in Corollary 1.3 that the entries of A have equal probabilities of
being 0 seems quite artifical, and it would be of interest to replace that assumption
by the assumption that no entry is too likely to take on the value 0. More generally,
we have the following conjecture

Conjecture 10.2. Let A be a random symmstric matrix whose above-diagonal
entries aij are independent, random variables satisfying

sup
i,j

sup
c∈C

P(aij = c) ≤ 1− (1 + ε) ln n

n
.

Then A is almost surely non-singular.

The methods of [1] give that this conjecture is true if (1+ε) ln n
n is replaced by n−1/2+ε.

Conversely, the methods in this paper and [2] cover the case where the entries are
allowed to concentrate on the particular value of 0 with high (equal) probability.
However, there seems to be no natural reason why the singularity probability should
be less when the variables concentrate on 0 as opposed to some other value.

Alternatively, we can consider the situation where the matrix W which is being
sparsified already has certain entries set equal to 0. Here the intutition is that if W
does not have too many entries already set equal to 0, then the results of this paper
should also hold for the sparsified matrix. This leads to the following conjecture

Conjecture 10.3. Let W be a symmetric matrix containing at least m nonzero
entries in each row. Then if (1+ε) ln n

m < p < 1
2 , then Q(W,p) is almost surely

nonsingular.

This conjecture and a short coupling argument would be sufficient to handle the
case of matrices whose entries are 0 with nonequal probability.

To motivate our final conjecture, we again turn to the linkage between expansion
of a graph G and dependencies in its adjacency matrix A(G). One way of thinking
of our theorems is that, even for our very sparse graphs, non-expansion is the only
source of dependency in the adjacency matrix. If every subset of a set S of rows
expands well, then S will be independent. Although random regular graphs are
very sparse, they also typically will expand very well. Is it then the case that the
adjacency matrix of a random d−regular graph will almost surely be nonsingular?

This is not the case for d = 2 (as the graph will almost surely contain a 4k-cycle
for some k, which implies a singular adjacency matrix), but it seems likely to be
true for larger d.

Conjecture 10.4. For any fixed d > 2, the adjacency matrix of a random d−regular
graph is almost surely non-singular.
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