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Abstract. We show that almost surely the rank of the adjacency matrix
of the Erdős-Rényi random graph G(n, p) equals the number of non-isolated
vertices for any c ln n/n < p < 1/2, where c is an arbitrary positive constant
larger than 1/2. In particular the giant component (a.s.) has full rank in this
range.

1. Introduction

Let G be a (simple) graph on n points {1, . . . , n}. The adjacency matrix QG of G
is the symmetric n by n matrix whose ij entry is one if the vertex i is connected
to the vertex j and zero otherwise.

There are several models for random graphs. We will focus on the most popular
one, the Erdős-Rényi G(n, p) model (some other models will be discussed in the
concluding remarks). In this model, one starts with the vertex set {1, . . . , n} and
puts an edge (randomly and independently) between any two distinct vertices i and
j with probability p. We say that a property P holds almost surely for G(n, p) if
the probability that G(n, p) possesses P goes to one as n tends to infinity.

We are interested in the rank of QG, where G is a graph chosen from G(n, p). An
interesting feature of this parameter is that, unlike many graph parameters (e.g.
the connectivity or the chromatic number), the rank is not monotone under the
addition of edges. For example, the path of length 4 has a full rank adjacency
matrix, but adding an edge to create a 4-cycle decreases the rank by 2 (the matrix
gains two pairs of equal rows). Nevertheless, the rank will turn out to exhibit many
of the same threshold behaviors as these monotone properties.

A vertex v of a graph G is isolated if it has no neighbor. If v is isolated, then the
row corresponding to v in QG is all-zero. Let i(G) denote the number of isolated
vertices of G. It is clear that

Fact 1.1. For any graph G, rank(QG) ≤ n− i(G).
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The main result of this paper shows that for p sufficiently large, the above upper
bound is tight for G(n, p). In other words, any non-trivial linear dependence in
G(n, p) comes from the isolated vertices.

Theorem 1.2. Let c be a constant larger than 1
2 . Then for any c lnn/n ≤ p ≤ 1

2 ,
the following holds with probability 1−O((ln lnn)−1/4) for a random sample G from
G(n, p):

rank(G) = n− i(G).

Remark 1.3. This result is sharp in two ways. Obviously, the estimate
rank(G) = n − i(G) cannot be improved. Furthermore, the bound c > 1/2 is also
the best possible. For c < 1/2 and p = c lnn/n, a random sample G from G(n, p)
satisfies the strict inequality

rank(G) < n− i(G)

almost surely. In order to see this, notice that in this range G(n, p) almost surely
contains two vertices u and v with degree one sharing a common neighbor. The
rows corresponding to u and v are not zero, but they are equal and this reduces
the rank further.

On the other hand, the upper bound p < 1
2 can be replaced without much effort

by p < α for any fixed α < 1, though we do not claim any result for p = 1− o(1).
Some sort of upper bound is needed, as the adjacency matrix of G(n, 1− ln n

3n ) again
almost surely contains pairs of equal nonzero rows.

Let us now deduce a few corollaries. It is well known that p ≥ c lnn/n for some
c > 1/2, then the random graph (a.s.) consists of a giant component and some
isolated vertices.

Corollary 1.4. Let c be a constant larger than 1
2 . Then for any c lnn/n < p <

1/2, the adjacency matrix of the giant component of G(n, p) is almost surely non-
singular.

Furthermore, if c > 1, then G(n, p) almost surely is connected and contains no
isolated vertices.

Corollary 1.5. Let c be a constant larger than 1. Then for any c lnn/n < p < 1/2,
G(n, p) is almost surely non-singular.

It follows that the non-singularity of G(n, p) has a sharp threshold at p = lnn/n.
For any positive constant ε, if p < (1 − ε) ln n/n, then G(n, p) is almost surely
singular as it contains isolated vertices. On the other hand, the above corollary
asserts that G(n, p) is almost surely non-singular for p > (1 + ε) ln n/n.

The special case p = 1/2 was a well known conjecture of B. Weiss, posed many years
ago. This special case can be viewed as the symmetric version of a well-known the-
orem of Komlós on the non-singularity of (non-symmetric) random Bernoulli ma-
trices [5] and was solved two years ago in [1]. The proof of Theorem 1.2 extends the
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ideas in that paper and combines them with arguments involving random graphs.
In the next section, we outline this proof and present the key lemmas. In Section
3, we prove the theorem assuming the lemmas. Most of the rest of the paper is
devoted to the proofs of the lemmas. The last section contains several remarks and
open questions.

Notation. In the whole paper, we will always assume that n is sufficiently large.
As usual, the asymptotic notation is used under the condition that n → ∞. P
denotes probability and E denotes expectation.

2. Outline of the proof and the main lemmas

We will assume that p = o(1), as the case p = Ω(1) was presented as Theorem 6.5
of [1]. We denote by Q(n, p) the adjacency matrix of G(n, p).

Following the ideas from [5, 1], we are going to expose Q(n, p) minor by minor.
Letting Qm denote the upper left m × m minor of Q(n, p), we view Qm+1 as
being formed by taking Qm and augmenting by a column whose entries are chosen
independently, along with the column’s transpose. Denote by Gm the graph whose
adjacency matrix is Qm. In graph theoretic terms, we are considering the vertex
exposure process of G(n, p).

Our starting observation is that when a good portion of the vertices have been
exposed, the matrix has rank close to its size.

Recall that p ≥ c lnn/n for a constant c > 1/2. We can set a constant 0 < δ < 1
such that 1/2 < δc < 3/5. Define n′ := δn.

Lemma 2.1. For any constant ε > 0 there exists a constant γ > 0 such that

P(rank(Qn′) < (1− ε)n′) = o(e−γn ln n)

Our plan is to show that the addition of the remaining n − n′ rows/columns is
enough to remove all the linear dependencies from Qn′ , except those corresponding
to the isolated vertices.

The next lemmas provide some properties of Gm for n′ ≤ m ≤ n.

Definition 2.2. A graph G is well separated if it contains no pair of vertices of
degree at most ln lnn whose distance from each other is at most 2.

Lemma 2.3. For any constant ε > 0, Gm is well separated for every m between n′

and n with probability 1−O(n1−2cδ+ε).

Here and later on, we always choose ε sufficiently small so that 1−2cδ+ε is negative.

Definition 2.4. A graph G is a small set expander if every subset S of the
vertices of G with |S| ≤ n

ln3/2 n
containing no isolated vertices has at least |S| edges

connecting S to S̄, its complement.
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Lemma 2.5. For any m > n′ the probability that Gm is well separated but is not
a small set expander is O(1/n3).

Remark 2.6. Lemmas 2.3 and 2.5 immediately imply that almost every graph en-
countered in our process after time n′ will be a small set expander. We cannot
expect this to occur for p < (.5−ε) ln n

n , as at this density the random graph will
likely contain pairs of adjacent vertices of degree 1, leading to sets of size 2 without
any edges at all leaving them.

Definition 2.7. A set S of the vertices of a graph G is nice if there are at least
two vertices of G with exactly one neighbor in S.

Remark 2.8. The vertices of G may themselves be taken from S. For example, an
isolated edge (a pair of adjacent degree one vertices) in G would form a nice set.

Set k := ln ln n
2p .

Definition 2.9. A graph G is good if the following two properties hold:

1. Every subset of the vertices of G of size at least 2 and at most k which contains
no isolated vertices is nice.

2. At most 1
p ln n vertices of G have degree less than 2.

A symmetric (0,1) matrix A is good if the graph for which it is an adjacency matrix
is good.

The next lemma states that after we are far enough in the augmentation process
we are likely to only run into good matrices.

Lemma 2.10. Let ε be a positive constant. Then with probability 1−O(n1−2cδ+ε),
Qm is good for every m between n′ and n .

Since each augmentation adds only one new row and one new column, we trivially
have

rankQm
≤ rank(Qm+1) ≤ min rank(Qm) + 2,m + 1 (1)

What our final two lemmas will say is that good matrices behave well under aug-
mentation in the following sense: With high probability the second inequality in
(1) in fact holds with equality.

Definition 2.11. A pair (A,A′) of matrices is called normal if A′ is an augmen-
tation of A and every row of all 0’s in A also contains only 0’s in A′ (in graph
theoretic terms, the new vertex added by the augmentation is not adjacent to any
vertices which were isolated before the augmentation).

Lemma 2.12. Let A be any fixed, good m × m matrix with the property that
rank(A) + i(A) < m. Then

P( rank(Qm+1)− rank(Qm) < 2|(Qm, Qm+1) is normal ∧Qm = A) = O((kp)−1/2).
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Lemma 2.13. Let A be any fixed, good, m × m matrix with the property that
rank(A) + i(A) = m. Then

P( rank(Qm+1)− rank(Qm) < 1|(Qm, Qm+1) is normal ∧Qm = A) = O((kp)−1/4).

Set Ym = m− (rank(Qm) + i(Qm)). The above two lemmas force Ym to stay near
0. Indeed, if Ym is positive, then when the matrix is augmented, m increases by 1
but the rank of Qm will likely increase by 2 (notice that kp → ∞), reducing Ym.
On the other hand, if Ym = 0, it is likely to stay the same after the augmentation.

In the next section, we will turn this heuristic into a rigorous calculation and prove
Theorem 1.2, assuming the lemmas.

3. Proof of the Main Result from the Lemmas

In this section, we assume all lemmas are true. We are going to use a variant of an
argument from [1].

Let B1 be the event that the rank of Qn′ is at least n′(1 − 1−δ
4δ ). Let B2 be the

event that Qm is good for all n′ ≤ m < n. We therefore have

P( rank(Qn) + i(Qn) < n) ≤ P( rank(Qn) + i(Qn) < n ∧B2|B1) + P(¬B1) + P(¬B2)

By Lemma 2.1 we have that P(¬B1) = o(e−γn ln n) and by Lemma 2.10 P(¬B2) = O(n1−2cδ+ε).
Both probabilities are thus much smaller than the bound O((ln lnn)−1/4) which we
are trying to prove. So, it remains to bound the first term.

Let Ym = m− rank(Qm)− i(Qm). Define a random variable Xm as follows:

• Xm = 4Ym if Ym > 0 and every Qj with n′ ≤ j ≤ m is good;
• Xm = 0 otherwise.

The core of the proof is the following bound on the expectation of Xm+1 given any
fixed sequence Qm of matrices {Qn′ , Qn′+1, . . . , Qm} encountered in the augmen-
tation process.

Lemma 3.1. For any sequence Qm = {Qn′ , Qn′+1, . . . , Qm} encountered in the
augmentation process,

E(Xm+1|Qm) ≤ 3
5
Xm + O((ln lnn)−1/4).

Proof (of Lemma 3.1) If a matrix in the sequence Qm = {Qn′ , Qn′+1, . . . , Qm} is
not good, then Xm+1 = 0 by definition and there is nothing to prove. Thus, from
now on we can assume that all matrices in the sequence are good.
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Let Zm denote the number of vertices which were isolated in Qm but not in Qm+1.
If Zm is positive, then augmenting the matrix will increase Ym by at most Zm + 1
(m increases by 1, the number of isolated vertices decreases by at most Zm, and
the rank does not decrease). Furthermore, Zm = 0 if and only if (Qm, Qm+1) is
normal.

We thus have

E(Xm+1|Qm) = E(Xm+1|Zm > 0 ∧Qm)P(Zm > 0|Qm)
+ E(Xm+1|Qm ∧ (Qm, Qm+1) is normal)P((Qm, Qm+1) is normal|Qm)
≤ E(Xm+1 χ(Zm > 0)|Qm) + E(Xm+1|Qm ∧ (Qm, Qm+1) is normal)

≤ E(4Zm+1+Ymχ(Zm > 0)|Qm) + E(Xm+1|Qm ∧ (Qm, Qm+1) is normal).

Since Qm is good, Gm has at most 1
p ln n isolated vertices. Thus, we can bound Zm

by the sum of 1
p ln n random Bernoulli variables, each of which is 1 with probability

p. It follows that

P(Zm = i) ≤ P(Zm ≥ i) ≤
(

(p lnn)−1

i

)
pi ≤ (lnn)−i.

Adding up over all i, we have

E(4Zm+1χ(Zm > 0)|Qm) ≤
∞∑

i=1

4i+1(lnn)−i = O((lnn)−1).

If Ym = 0 and (Qm, Qm+1) is normal, then by Lemma 2.13 (which applies since Qm

is good) Xm+1 is either 0 or 4, with the probability of the latter being O((ln lnn)−1/4).
Therefore we have for any sequence Qm = {Qn′ , . . . Qm} of good matrices with
Ym = 0 that

E(Xm+1|Qm) = O((ln lnn)−1/4 + (lnn)−1) = O((ln lnn)−1/4). (2)

If Ym = j > 0 and (Qm, Qm+1) is normal, then Ym+1 is j − 1 with probability
1 − O((ln lnn)−1/2) by Lemma 2.12, and otherwise is at most j + 1. Combining
this with the bound on E(4Zm+1χ(Zm > 0)|Qm) we have

E(Xm+1|Qm) = 4j−1 + 4j+1O((ln lnn)−1/2) + 4jO((lnn)−1) ≤ 3
5
4j (3)

The lemma now follows immediately from (2) and (3).

Lemma 3.1 shows that for n′ < m we have

E(Xm+1|Qn′) <
3
5
E(Xm|Qn′) + O((ln lnn)−1/4).
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By induction on m2 −m1 we now have that for any m2 ≥ m1 ≥ n′

E(Xm2 |Qn′) < (
3
5
)m2−m1E(Xm1 |Qn′) + O((ln lnn)−1/4).

In particular, by taking m2 = n and m1 = n′ we get that

E(Xn|Qn′) < (
3
5
)n−n′Xn′ + O((ln lnn)−1/4).

If Qn′ satisfies B1, we automatically have Xn′ ≤ 4
(1−δ)n′

4δ = (
√

2)n−n′ , so

E(Xn|Qn′) < (
3
√

2
5

)n−n′ + O((ln lnn)−1/4) = O((ln lnn)−1/4).

By Markov’s inequality, we therefore have

P(Xn > 3|Qn′) = O((ln lnn)−1/4)

for any Qn′ satisfying B1. It thus follows that

P(Xn > 3|B1) = O((ln lnn)−1/4).

On the other hand, by definition Xn ≥ 4 if rank(Qn) + i(Qn) < n and B2 holds.
We therefore have that

P( rank(Qn) + i(Qn) < n ∧B2|B1) = O((ln lnn)−1/4),

proving the theorem.

4. Proof of Lemma 2.1

By symmetry and the union bound

P(rank(Qn′) < (1− ε)n′) ≤
(

n′

εn′

)
×P(B∗

1),

where B∗
1 denotes the event that the last εn′ columns of Q′

n are contained in the
span of the remaining columns.

We view Qn′ as a block matrix,

Qn′ =
[

A B
BT C

]
,

where A is the upper left (1 − ε)n′ × (1 − ε)n′ sub-matrix and C has dimension
εn′ × εn′. We obtain an upper bound on P(B∗

1) by bounding the probability of B∗
1

conditioned on any fixed A and B (treating C as random).
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B∗
1 cannot hold unless the columns of B are contained in the span of those of A,

meaning the equation B = AF holds for some (not necessarily unique) matrix F .
If this is the case, then B∗

1 will hold only when we also have C = BT F . This means
that each entry of C is forced by our choice of A, B and our assumption that B∗

1

holds.

However, C is still random, and the probability that any given entry takes on its
forced value is at most 1 − p. The entries are not all independent (due to the
symmetry of C), but those on or above the main diagonal are. Therefore the

probability that B∗
1 holds for any fixed A and B is at most (1− p)

(εn′)2
2 .

We therefore have

P(rank(Qn′) < (1− ε)n′) ≤
(

n′

εn′

)
(1− p)

(εn′)2
2

≤ (
n′e

εn′
)εn′e

−p(εn′)2
2

≤ c2
ne−c1n ln n,

where c1 and c2 are positive constants depending on ε, δ, and c (but independent
of n). The result follows.

Remark 4.1. The same argument gives an upper bound of c2
ne−c1n2p on the prob-

ability for any n and p. Holding ε fixed, we see that the probability becomes o(1)
for p = y/n with sufficiently large fixed y. In particular, if p → 0 and np → ∞,
then rank(Qn,p)/n → 1.

5. Proof of Lemma 2.3

If p is at least (lnn)2/n then G(m, p) will with probability at least 1−o(1/n3) have
no vertices with degree at most ln lnn, in which case the lemma is trivially true.
Therefore we can assume p ≤ (lnn)2/n

If Gm fails to be well separated for some m between n′ and n there must be a first
m0 with this property. We are going to bound the probability that a fixed m is m0.

Case 1: m0 = n′. The probability that G′
n fails to be well separated is at most n2

times the probability that any particular pair of vertices v and w are both of small
degree and at distance at most 2 from each other.
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The probability that v has sufficiently small degree is at most

ln ln n∑
i=0

(
n′ − 1

i

)
pi(1− p)n′−i ≤ (1 + o(1))

ln ln n∑
i=0

(n′p)i(1− p)n′−i

≤ (1 + o(1))(n′p)ln ln ne−n′p,

≤ (lnn)ln ln n

ncδ
,

where the last inequality comes from our lower bound on p since the second to last
line is decreasing in p. The same holds for w even if we assume v has small degree
(although the degree of v and that of w aren’t quite independent, we can bound the
probability w has small degree by the probability it has at most ln lnn neighbors
not including v).

Since a given pair of vertices both being of small degree is a monotone decreasing
graph property, the FKG inequality gives that the probability of an edge being
present between v and w is at most p even after we condition on them both being
small degree. Similarly, the probability of the existence of an x adjacent to both v
and w is at most np2. Combining these facts, the probability of two small degree
vertices being close is at most

n2(
(lnn)ln ln n

ncδ
)2(p + np2) ≤ (lnn)2 ln ln n ln4 n

n2cδ−1
= o(n1−2cδ+ε).

Case 2: m0 = m for some n′ < m ≤ n. We bound the probability that m satisfies
the somewhat weaker condition that Gm−1 is well separated but Gm is not. Let w
be the vertex newly added to the graph. There are only two ways that the addition
of w can cause Gm to lose well separatedness: either w serves as the link between
two low degree vertices v1 and v2 that were previously unconnected, or w is itself
a low degree vertex of distance at most 2 from a previous low degree vertex v0.

Applying (4) twice, the probability that any particular v1 and v2 both have low
degree and w is connected to both of them is at most p2( (ln n)ln ln n

ncδ )2.

Again by (4) the probability that w is of low degree is at most (ln n)ln ln n

ncδ , as is
the probability that any particular choice of candidate for v0 has low degree. By
the FKG inequality, the probability that w and our candidate v0 share a common
neighbor given they both have small degree is at most np2, while the probability
they are themselves connected is p.

Since there are at most n2 choices for v1 and v2 and at most n choices for v0,
applying the union bound over all these choices, we obtain that the probability
Gm−1 is well connected but Gm is not is at most

(
(lnn)ln ln n

ncδ
)2(2n2p2 + p) = o(n−2cδ+ε)
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Applying the union bound over all possible m (there are at most n values for m),
we obtain that the probability of the existence of such an m0 is o(n1−2cδ+ε). The
proof is complete.

6. Proof of Lemma 2.5

In order to prove the edge expansion property we first show that almost surely all
small subgraphs of G(n, c ln n

n ) will be very sparse.

Lemma 6.1. For fixed c the probability that G(n, c ln n
n ) has a subgraph containing

at most n
ln3/2 n

vertices with average degree at least 8 is O(n−4)

Proof Let qj be the probability that there exists a subset of size j inducing at
least 4j edges. By the union bound, this is at most

(
n
j

)
times the probability of a

particular subset having at least 4j edges, so

qj ≤
(

n

j

)(
j2/2
4j

)
p4j

≤ (
ne

j
)j(

ejc lnn

8n
)4j

≤ (
ce5j3 ln4 n

n3
)j .

For j < n1/4 this gives qj ≤ n−2j , while for j > n1/4 we have (using our upper
bound on j) qj ≤ (lnn)−j/2 = o(n−5). By adding up over all j at least 2, we can
conclude that the failure probability is O(n−4), completing the proof.

Armed with this lemma we can now prove Lemma 2.5; we do so in two cases
depending on the value of p.

Case 1: p < 12 ln n
n :

Suppose that G failed to expand properly. If this is the case, there must be a
minimal subset S0 with fewer than |S0| edges leaving it. If any vertex in S0 were
adjacent to no other vertex in S0, it would have a neighbor outside S0 (since S0 con-
tains no isolated vertices), and dropping it would lead to a smaller non-expanding
set, a contradiction. Therefore every vertex in S0 has a neighbor in S0. By the well
separatedness assumption the vertices of degree at most ln lnn are non-adjacent
and share no common neighbors. Thus it follows that at most half the vertices
in S0 are of degree at most ln lnn. Since at most |S0| edges leave S0, it follows
that there are Ω(|S0| ln lnn) edges between vertices of S0. But by Lemma 6.1 the
probability an S0 with this many edges exists is O( 1

n4 ), competing the proof for
this case.
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Case 2: p ≥ 12 ln n
n : We estimate the probability that there is a non-expanding

small set directly by using the union bound over all sets of size i < n ln−3/2 n. The
probability in question can be bounded from above by

n ln−3/2 n∑
i=1

(
n

i

)(
i(n− i)
i− 1

)
(1− p)i(n−i)−(i−1) ≤

n ln−3/2 n∑
i=1

ni(en)i−1e−inp(1+o(1))

=
1
en

n ln−3/2 n∑
i=1

(n2e−np(1+o(1)))i.

The lower bound on p guarantees that the summand is O(n−(4+o(1))i), so the prob-
ability for any p in this range is o( 1

n4 ). Notice that in this case we do not need the
well separatedness assumption.

7. Proof of Lemma 2.10

Let C0 be the event that Gm is good for every m between n′ and n. Let C1 be the
event that Gm has at most 1

p ln n vertices of degree less than 2 for every m between
n′ and n, C2 be the event that Gm has maximum degree at most 10np for each m,
and C3 be the event that Gm is well separated and a small set expander for every
m between n′ and n. We have

P(¬C0) ≤ P(¬C0 ∧ C1 ∧ C2 ∧ C3) + P(¬C1) + P(¬C2) + P(¬C3).

It suffices to bound each term on the right hand side separately, and we will do so
in reverse order.

Lemmas 2.5 and 2.3 together show that P(¬C3) = O(n1−2cδ+ε).

P(¬C2) is at most the expected number of vertices of degree at least 10np in Gn,
which is at most

n

(
n

10np

)
p10np ≤ n(e/10p)10npp10np ≤ ne−10np = o(n−4).

To bound P(¬C1), we note that the probability that some Gm contains a set of
vertices of degree less than 2 of size s = p−1 ln−1 n is bounded from above by the
probability that at least s vertices in Gn each have fewer than 2 neighbors amongst
the vertices of Gn′ , which by Markov’s inequality is at most

1
s
n(n′p(1− p)n′−2 + (1− p)n′−1) = O(s−1n2pe−δnp) = o(n−1/3).

It follows that P(¬C1) = o(n−1/3).
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It remains to estimate the first term, which we will do by the union bound over
all m. Since property C1 implies Gm has few vertices of small degree, it suffices to
estimate the probability Gm contains a non-nice set while still satisfying properties
C1, C2, and C3.

Let pj be the probability that conditions C1, C2, and C3 hold but some subset of
exactly j vertices without isolated vertices is not nice. Symmetry and the union
bound give that pj is at most

(
m
j

)
times the probability that the three conditions

hold and some fixed set S of j vertices is not nice. We will do this in three cases
depending on the size of j.

Case 1: 1
p
√

ln n
≤ j ≤ k = ln ln n

2p .

Direct computation of the probability that a fixed set of j vertices has either 0 or
1 vertices adjacent to exactly one vertex in the set gives:

pj ≤
(

m

j

)
((1− jp(1− p)j−1)m + mjp(1− p)j−1(1− jp(1− p)j−1)m−1)

≤ (mep
√

lnn)j((1− jp(1− p)j−1)m + mjp(1− p)j−1(1− jp(1− p)j−1)m−1)

≤ (mep
√

lnn)j((1− jpe−jp(1+o(1)))m + mjpe−jp(1+o(1))(1− jpe−jp(1+o(1)))m−1)

≤ (mep
√

lnn)j(e−mjp(1+o(1))e−jp(1+o(1))
)(1 + mjpe−jp(1+o(1))).

It follows from our bounds on j and p that mjpe−jp tends to infinity, so the second
half dominates the last term of the above sum and we have:

pj ≤ (mep
√

lnn)j(e−mjp(1+o(1))e−jp(1+o(1))
)(2mjpe−jp(1+o(1))).

Taking logs and using δn ≤ m ≤ n gives:

ln(pj) ≤ (1 + o(1))j(ln(enp
√

lnn)− δnpe−jp(1+o(1)) − p +
ln(2njp)

j
)

≤ (1 + o(1))j(4 ln(np)− δnpe−kp(1+o(1)))

= (1 + o(1))j(4 ln(np)− δnp

(lnn)
1
2+o(1)

).

Since np > 0.5 ln n, taking n large gives that the probability of failure for any
particular j in this range is o(1/n4), and adding up over all j and m gives that the
probability of a failure in this range is o(1/n2).

Case 2: 10
2cδ−1 ≤ j ≤ 1

p
√

ln n
.
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Let b be the number of vertices outside S adjacent to at least one vertex in S, and
let a be the number of edges between S and the vertices of G outside S. If Gm is
to satisfy the properties C2 and C3 it must be true that j ≤ a ≤ 10jnp.

Next, we note that if S is not nice, then at least b − 1 of the neighbors of S must
be adjacent to at least two vertices in S. This implies that b ≤ a+1

2 . It follows that

pj ≤
(

m

j

)
( max
10j<w≤10jnp

P(b ≤ w + 1
2

|a = w) + P(a ≤ 10j) max
j≤w≤10j

P(b ≤ w + 1
2

|a = w))
(4)

To bound P(b ≤ w+1
2 |a = w), we fix a set of w+1

2 vertices and bound the probability
that w consequentially randomly selected vertices were in that set. We will view the
w vertices as being chosen uniformly with replacement. However, allowing edges
to be repeated can only increase the probability that few destination vertices are
chosen. Using the union bound over all possible sets of w+1

2 vertices, we have

P(b ≤ w + 1
2

|a = w) ≤
(

m− j
w+1

2

)
(

w + 1
2(m− j)

)w

≤ (
2e(m− j)

w − 1
)

w+1
2 (

w + 1
2(m− j)

)w

≤ (
4w

m
)

w−1
2 .

This last bound is decreasing in w for the entire range under consideration (our
bounds on j guarantee w is at most 10n√

ln n
). Therefore we can plug in the smallest

values of w in (4) to get

pj ≤
(

m

j

)
(P(a < 10j)(

4j

m
)

j−1
2 + (

40j

m
)

10j−1
2 )

≤ 3
√

n

(
m

j

)
(P(a < 10j)(

4j

m
)

j
2 + (

40j

m
)5j)

≤ 3
√

n(
me

j
)j(P(a < 10j)(

4j

m
)

j
2 + (

40j

m
)5j)

≤ 3
√

n(P(a < 10j)(
4e2n

j
)

j
2 + (

130j

n′
)4j).
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a here is the sum of at least n′j(1+o(1)) independent Bernoulli variables each with
probability of success at least c ln n

n . We therefore have

P(a ≤ 10j) ≤
10j∑
i=0

(
n′j

i

)
(
c lnn

n
)i(1− c lnn

n
)n′j(1+o(1))

≤
10j∑
i=0

(
cej lnn

i
)in−jcδ(1+o(1))

= n−jcδ(1+o(1)),

yielding

pj ≤ 4
√

n((
2e√

jn(1+o(1))cδ−1/2
)j + (

130j

n′
)4j).

Both terms are decreasing in j in the range under consideration, and plugging in
the lower endpoint of our range gives that pj = o(1/n4) for each j and m in the
range. By the union bound the probability of failure in this range is o(1/n2).

Case 3: 2 ≤ j ≤ 10
2cδ−1

Let a and b be as in case 2. We again bound the probability of failure for any fixed
set of vertices by the probability that b ≤ a+1

2 .

We first note that if condition C3 is to be satisfied then this inequality cannot be
satisfied any time when a is at most 10j. This is because if a is in this range it follows
that every vertex in our set is of degree below ln lnn, and the well separatedness
condition then guarantees that each edge leaving our set must go to a different
vertex.

Because of this, we can rewrite equation (4) as

pj ≤
(

m

j

)
( max
10j<w≤10jnp

P(b ≤ w + 1
2

|a = w)

≤ 4
√

n(
130j

n′
)4j ,

where the second inequality comes from our computations in case 2. Adding up
over all j in this range gives that the probability of failure in this range is o(n−3).

8. Some Littlewood-Offord-Type Results

The proof of the remaining two lemmas rely on modifications to the following lemma
of Littlewood and Offord [3]:
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Lemma 8.1. Let ai be fixed constants, at least q of which are nonzero. Let
z1, z2, . . . zn be random, independent Bernoulli variables which take on 0 and 1
each with probability 1/2. Then for any fixed c,

P(
n∑

i=1

aizi = c) = O(q−1/2),

where the implied constant is independent of n, the ai, and c.

The variables we are now considering, however, are not equally likely to be 0 and
1. Thus we need the following special case of a more general result in [4].

Lemma 8.2. Let ai be fixed constants, at least q of which are nonzero. Let
z1, z2, . . . zn be random, independent Bernoulli variables which take on 1 with prob-
ability p < 1

2 , 0 with probability 1− p. Then for any fixed c,

P(
n∑

i=1

aizi = c) = O((qp)−1/2),

where the implied constant is absolute.

Remark 8.3. The theorem is also true (with near identical proof) if one replaces the
distribution of the zi by one with P(zi = 1) = P(zi = −1) = p,P(zi = 0) = 1− 2p

Proof

Let ri be Bernoulli random variables taking on 1 with probability 2p, and 0 with
probability 1 − 2p. Let si be random variables taking on 1 and 0 with equal
probability, and replace zi by risi (which has the same distribution). We thus have

P(
n∑

i=1

(airi)si = c) ≤ P(
n∑

i=1

airisi = c|
n∑

i=1

ri ≥ qp) + P(
n∑

i=1

ri < qp)

Since E(
∑n

i=1 ri) = 2qp and V ar(
∑n

i=1 ri) ≤ 2qp, by Chebyshev’s inequality the
second term on the right is O((qp)−1) = O((qp)−1/2). In the first term there
are at least qp nonzero airi, so the bound follows immediately from the original
Littlewood-Offord lemma.

The other modified Littlewood-Offord result we need is a similar modification of
the Quadratic Littlewood-Offord lemma in [1]:

Lemma 8.4. Let aij be fixed constants such that there are at least q indices j each
with at least q indices i for which aij 6= 0. Let z1, z2, . . . zn be as in Lemma 8.2.
Then for any fixed c

P(
n∑

i=1

n∑
j=1

aijzizj = c) = O((qp)−1/4), (5)

where the implied constant is absolute.
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Proof

The proof of Lemma 8.4 relies on the use of the following application of the Cauchy-
Schwartz inequality:

Lemma 8.5. Let X and Y be random variables, and let E(X, Y ) be an event
depending on X and Y . Let X ′ be an independent copy of X. Then

P(E(X, Y )) ≤ (P(E(X, Y ) ∧ E(X ′, Y )))1/2

Proof

We will assume here that Y takes a finite number of values y1, . . . , yn (the general
case is almost identical in proof). Note that

P(E(X, Y )) =
n∑

i=1

P(E(X, yi))P(Y = yi)

and

P(E(X, Y ) ∧ E(X ′, Y )) =
n∑

i=1

P(E(X, yi))2P(Y = Yi),

and the result follows immediately from Cauchy-Schwartz.

Without loss of generality we can assume that the q indices j given in the assump-
tions of our lemma are 1 ≤ j ≤ q.

Define X := (zi)i>q/2, Y := (zi)i≤q/2. Let Q(X, Y ) be the quadratic form in (5),
and let E(X, Y ) be the event that that form is c. By Lemma 8.5 we have

P(Q(X, Y ) = c)2 ≤ P(Q(X, Y ) = Q(X ′, Y ) = c) ≤ P(Q(X, Y )−Q(X ′, Y ) = 0)

Thus it is enough to show the right hand side of this is O((qp)−1/2). To estimate
the right hand side, we note that

Q(X, Y )−Q(X ′, Y ) =
∑

j≤q/2

Wjzj + f(X, X ′),

where

Wj =
∑

i>q/2

aij(zi − z′i)

and f is a quadratic form independent of Y . As in Lemma 8.2, we next condition
on the number of nonzero Wj . Let Ij be the indicator variable of the event Wj = 0.
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We have that

P(
∑

j≤d/2

Wjzj) = −f(X, X ′)

≤ P(
∑

j≤d/2

Wjzj = −f(X, X ′)|
∑

Ij < q/4) + P(
∑

Ij ≥ q/4)

By Lemma 8.2 the first term on the right hand side is O((qp)−1/2) for any fixed
value of X, so it immediately follows that the same holds true for X random.

For the second term, we note that since Y only involves q/2 indices, each index in
Y must have at least q/2 indices in X with aij 6= 0. If follows from the remark
following Lemma 8.2 that E(Ij) = O((qp)−1/2), so E(

∑
Ij) = O(q(qp)−1/2). By

Markov’s inequality, the second term is also O((qp)−1/2), and we are done.

9. Proofs of lemmas 2.12 and 2.13

The assumption that the pair (Qm, Qm+1) is normal means that the rows in Qm

which are entirely 0 have no bearing on the rank of Qm+1. Thus without loss of
generality we can drop those rows/columns and assume that A has no rows which
are all 0, at which point A will still be singular in Lemma 2.12, but will have become
nonsingular in Lemma 2.13.

Proof of Lemma 2.12.

If the new column is independent from the columns of A, then the rank increases
by two after the augmentation (since the matrices are symmetric). Thus if the rank
fails to increase by two then adding a new column does not increase the rank.

Assume, without loss of generality, that the rank of A is D and the first D rows
x1, . . . , xD of A are linearly independent. Then the last row xm can be written as
a linear combination of those rows in a unique way

xm =
D∑

i=1

aixi.

By throwing away those ai which are zero, we can assume that there is some D′ ≤ D
such that

xm =
D′∑
i=1

aixi,
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where all ai 6= 0. Recall that we defined k = ln ln n
2p . If D′ + 1 < k, then there is a

vertex j which is adjacent to exactly one vertex from S = {1, . . . , D′,m}, thanks to
the goodness of Qm. But this is a contradiction as the jth coordinates of xm and∑D′

i=1 aixi do not match (exactly one of them is zero). Thus we can assume that
D′ ≥ k − 1.

Now look at the new column (y1, . . . , ym). Since the rank does not increase, we
should have

x′m =
D′∑
i=1

aixi,

where x′i is the extension of xi. This implies

ym =
D′∑
i=1

aiyi.

Since all ai are non zero, by Lemma 8.2 the probability that this happens is
O((Dp)−1/2) = O((kp)−1/2), concluding the proof.

Proof of Lemma 2.13. Let A be a good non-singular symmetric matrix of order
m. Let A′ be the m + 1 be m + 1 symmetric matrix obtained from A by adding a
new random (0, 1) column u of length m+1 as the m+1st column and its transpose
as the m + 1st row.

Let x1, . . . , xm+1 be the coordinates of u; xm+1 is the lower-right diagonal entry of
A′ and is zero. The determinant for A′ can be expressed as

m∑
i=1

m∑
j=1

cijxixj =
m∑

i=1

m∑
j=1

cijxixj = Q

where cij is the ij cofactor of A. It suffices to bound the probability that Q = 0.
We can do this using Lemma 8.4 if we can show that many of the cij are nonzero.

Since A is now nonsingular, dropping any of the columns of A will lead to a m ×
(m − 1) matrix whose rows admit (up to scaling) precisely one nontrivial linear
combination equal to 0. If any of the rows in that combination are dropped, we
will be left with an (m− 1)× (m− 1) nonsingular matrix, i.e. a nonzero cofactor.

As above, that combination cannot involve between 2 and k rows (since A is good,
any set of between 2 and k rows has at least two columns with exactly one nonzero
entry, and even after a column is removed there will still be one left). The com-
bination will involve exactly 1 row only when the column removed corresponds to
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the only neighbor of a degree 1 vertex (which becomes isolated upon the removal
of its neighbor). But by assumption there are only 1

p ln n = O( n
ln2 n

) possibilities for
such a neighbor.

It follows that for each index j except at most O( n
ln2 n

) indices there are at least k
indices i for which cij 6= 0, and we can therefore apply Lemma 8.4 with q = k to
get that P(Q = 0) is O((pk)−1/4), proving Lemma 2.13.

10. Open Problems and Avenues for Further Research

Theorem 1.5 gives that ln n
n is a threshold for the singularity of Q(n, p) but it would

still be of interest to describe the sources of singularity once p drops below the
threshold. While we have obtained such a description for p = Ω( ln n

n ) [2], it is still
unclear what happens when p drops below this range.

As noted in Remark 4.1, it is still the case at this point that rank(Qn,p)/n → 1,
and this will continue to occur until pn = O(1). For y fixed and p = y/n, we have
from consideration of isolated vertices and the bounds in Lemma 2.1 that

1−O(ln y/y) ≤ (1 + o(1)) rank(Qn,p)/n ≤ 1− e−y = 1− i(G)/n

It seems likely that E( rank(Qn,y/n))/n tends to some function g(y) as n → ∞,
and it would be of interest to compute g. Azuma’s inequality applied to the vertex
exposure process guarantees the ratio is highly concentrated around this g, whatever
it may be.

Let us now consider the case when p is above the threshold lnn/n. What is the
probability that Q(n, p) is singular ? The current proof gives bounds which tends
to zero rather slowly. For p > n−α we can prove the singularity probability is
O(n−1/4(1−2α)). However, for p < n−1/2, we can only prove O((ln lnn)−1/4). While
it is certain that these bounds can be improved by tightening the arguments, it is
not clear how to obtain a significant improvement. For instance, we conjecture
that in the case p = Θ(1), the singularity probability is exponentially small. Such
bounds are known for non-symmetric random matrices [6, 7, 8], but the proofs do
not extend for the symmetric case.

The assumption of independence between the edges of G seems crucial to 1.5. In
particular, the results in this paper do not yet apply to the model of random regular
graphs.

Question 10.1. For what d will the adjacency matrix of the random d-regular
graph on n vertices almost surely be nonsingular?

For d = 1, the matrix is trivially non-singular. For d = 2, the graph is union of
cycles and the matrix will almost surely be singular (any cycle of length a multiple
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of 4 leads to a singular adjacency matrix). We conjecture that for 3 ≤ d ≤ n − 4,
the matrix is again almost surely nonsingular.
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