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Introduction

They look placid lapping against the beach on a calm
day, but the oceans are actually quite dynamic. The
ocean currents act as ‘conveyor belts’, transporting
heat both vertically between the water’s surface and
the depths and laterally from one area of the globe
to another. This effect is so significant that the tem-
perature and precipitation patterns can change dra-
matically when currents do.

For example: shortly after the last ice age, north-
ern Europe experienced a shocking change in climate
from 10,800 to 9,500 BC. At the start of this period
temperatures plummeted in a matter of decades. It
became 7◦ Celsius colder, and glaciers started form-
ing in England! The cold spell lasted for over a thou-
sand years, but it ended as suddenly as it had begun.

Why? The most popular theory is that a huge lake
in North America formed by melting glaciers burst its
bank—and in a massive torrent lasting for years, the
water from this lake rushed out to the northern At-
lantic ocean. By floating atop the denser salt water,
this fresh water blocked a major current: the At-
lantic Meridional Overturning Circulation. This cur-
rent brings warm water north and helps keep north-
ern Europe warm. So, when it shut down, northern
Europe was plunged into a deep freeze.

Right now global warming is causing ice sheets
in Greenland to melt and release fresh water into
the North Atlantic. Could this shut down the At-

lantic Meridional Overturning Circulation and make
the climate of Northern Europe much colder? In
2010, Keller and Urban [4] tackled this question us-
ing a simple climate model, historical data, probabil-
ity theory, and lots of computing power. Their goal
was to understand the spectrum of possible futures
compatible with what we know today.

Let us look at some of the ideas underlying their
work.

Box models

The earth’s climate is too complex to simulate from
the bottom up using basic physical principles, at least
for now. The most detailed models we have use sim-
plifying assumptions—and even so, they take days to
run on very powerful computers. So, to make reason-
able predictions on a laptop in a tractable time-frame,
geophysical modellers need to use some clever tricks.

First, it is possible to split geophysical phenomena
into ‘boxes’ containing only strongly related things.
For example: atmospheric gases, particulate levels
and clouds all affect each other strongly; likewise the
heat content, currents and salinity of the oceans all
interact strongly. However, the interactions between
the atmosphere and the oceans are weaker, and we
can approximately describe them using just a few pa-
rameters, such as the amount of atmospheric CO2

entering or leaving the oceans. Clearly these interac-
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tions must be consistent—for example, the amount
of CO2 leaving the atmosphere box must equal the
amount entering the ocean box—but breaking a com-
plicated system into parts lets different specialists fo-
cus on different aspects; then we can combine these
parts and get an approximate model of entire planet.
The box model used by Keller and Urban is shown
in Figure 1.

Second, it turns out that simple but effective box
models can be distilled from the complicated physics
in terms of forcings and feedbacks. A forcing is a
measured input to the system, such as solar radia-
tion or CO2 released by burning fossil fuels. As an
analogy, consider a child on a swing: the adult’s push
every so often is a forcing. A feedback describes
how the current state of our system influences its fu-
ture state. In the swing analogy, one feedback is how
the velocity will influence the child’s future height.
Specifying feedbacks typically uses knowledge of the
detailed low-level physics to derive simple, tractable
functional relationships between groups of large-scale
observables, a bit like how we derive the physics of a
gas by thinking about collisions of lots of particles.

However, it is often not feasible to get actual set-
tings for the parameters in our model starting from
first principles. In other words, often we can get the
general form of the equations in our model, but they
contain a lot of constants that we can estimate only
by looking at historical data.

Probability modeling

Suppose we have a box model that depends on some
parameters S. For example, in Keller and Urban’s
model, S is a list of 18 numbers. To keep things
simple, suppose S is an element of some finite set.
Suppose we also have huge hard disc full of historical
measurements, and we want to use this to find the
best estimate of S. Because our data is full of ‘noise’
from other unmodeled phenomena, we usually can-
not unambiguously deduce a the correct value of S.
Instead we have to look at things in terms of proba-
bilities. More precisely, we need to study the proba-
bility that S take some value s given that the mea-
surements take some value. Let’s call the sequence of

measurements M , and again let’s keep things simple
by saying that M takes values in some finite set of
possible measurements.

The probability that S = s given that M takes
some value m is called the conditional probabil-
ity P (S = s|M = m). How can we compute this
conditional probability? This is a somewhat tricky
problem.

One thing we can more easily do is repeatedly run
our model with randomly chosen settings and see
what measurements it predicts. By doing this, we
can compute the probability that given setting val-
ues S = s, the model predicts measurements M = m.
This again is a conditional probability, but now it is
called P (M = m|S = s).

This is not what we want: it’s backwards! But
here Bayes’ rule comes to the rescue, relating what
we want to what we can more easily compute:

P (S = s|M = m) = P (M = m|S = s)
P (S = s)

P (M = m)

Here P (S = s) is the probability that the parameters
take a specific value s, and similarly for P (M = m).
Bayes’ rule is quite easy to prove, and it is actually
a general rule that applies to any random variables,
not just the parameters and the measurements in our
problem [7]. It underpins most methods of figuring
out hidden quantities from observed ones. For this
reason, it is widely used in modern statistics and data
analysis [5].

How does Bayes’ rule help us here? We need to
start with some prior guess about the probability
P (S = s): this is called our prior. We might assume
the settings S are equally likely to take any value in
some range, or we might use the opinions of experts
to make a more informed guess. Second, as men-
tioned, we can compute P (M = m|S = s). Finally,
the number P (M = m) is independent of our choice
of settings, so we can treat it as a constant. Thus, we
can use Bayes’ rule to compute P (S = s|M = m) as
a function of the settings s—at least up to a constant
factor. Then, since probabilities must sum to 1, we
can figure out this constant.

We call P (S = s|M = m) the posterior, because
it is the probability that the settings take some value
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Figure 1: The box model used by Keller and Urban

after taking into account our measurements. Know-
ing this lets us do many things. It lets us find the
most likely values of the parameters for our model,
given our hard disc full of observed data. It also lets
us find the probability that the settings lie within
some set. This is important: if we’re facing the pos-
sibility of a climate disaster, we don’t just want to
know the most likely outcome. We would like to
know that with 95% probability, the outcome will
lie in some range.

An example

Let us look at an example much simpler than that
considered by Keller and Urban. Suppose our mea-
surements are real numbers m0, . . . ,mT related by

mt+1 = smt −mt−1 +Nt (1)

Here s, a real constant, is our ‘setting’, while Nt is
some ‘noise’: an independent Gaussian random vari-
able for each time t, with mean zero and some fixed
standard deviation. Then the measurements mt will

have roughly sinusoidal behavior but with irregular-
ity added by the noise at each time step, as shown in
Figure 2. Note how there is no clear signal from ei-
ther the curves or the differences that the green curve
is at the correct setting value while the blue one has
the wrong one: the noise makes it nontrivial to esti-
mate s. This is a baby version of the problem faced
by Keller and Urban.

Markov Chain Monte Carlo

Having glibly said that we can compute the condi-
tional probability P (M = m|S = s), how do we ac-
tually do this? The simplest way would be to run
our model many, many times with the settings set
at S = s and determine the fraction of times it pre-
dicts measurements consistent with m. This gives us
an estimate of P (M = m|S = s). Then we can use
Bayes’ rule to work out P (S = s|M = m), at least
up to a constant factor.

Doing this by hand would be incredibly time con-
suming and error prone, so computers are used for
this task. In our example, we do this in Figure 3. As
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Figure 2: The example system: red are predicted
measurements for a given value of the settings, green
is another simulation for the same s value and blue
is a simulation for a slightly different s.

we keep running our model over and over, the curve
showing P (S = s|M = m) settles down to the right
answer.

However, this is computationally inefficient, as
shown in the probability distribution for small num-
bers of samples. This has quite a few ‘kinks’, which
only disappear later. The problem is that there are
lots of possible choices of s to try. And this is for a
very simple model!

When dealing with the 18 settings involved in the
model of Keller and Urban, trying every combina-
tion would take far too long. A way to avoid this
is Markov Chain Monte Carlo sampling. Monte
Carlo is famous for its casinos, so a ‘Monte Carlo’
algorithm is one that uses random steps to converge
upon the answer. A ‘Markov chain’ is a random walk:
for example, where you repeatedly flip a coin and
take one step right when you get a heads, and one
step left when you get a tails. So, in Markov Chain
Monte Carlo, we perform a random walk through the
collection of all possible settings, collecting samples.
From these samples we can estimate the density in
the same way as before, only with greater computa-
tional efficiency.

The key to making this work is that at each step
on the walk a proposed modification s′ to the current
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Figure 3: Estimates of the conditional probability
P (S = s|M = m), where at each step we run the
model at all possible settings, and we keep a running
total of the fraction of times each measurement m
occurs when the setting is s.

settings s is generated randomly—but it may be re-
jected if it does not seem to improve the estimates.
By cleverly choosing the rule for doing this, in a way
motivated by Bayes’ rule, the random walk can be
designed so that in the long run it visits each setting
s with a frequency equal to to P (S = s|M = m).
With some additional tricks—such as discarding the
very beginning of the walk—this gives a set of sam-
ples which can be used to estimate P (S = s|M = m).
For details, try the textbooks by Bolstad [3] or Press
et al. [6].

Figure 4 shows the results of using the Markov
Chain Monte Carlo procedure to figure out P (S =
s|M = m) in our example. Compared to the method
in Figure 3, we run the Markov Chain Monte Carlo
method for more steps, but each step involves running
the model at just one setting, instead of all possible
settings, so it is really much more efficient.

The key advantage of Markov Chain Monte Carlo is
that it avoids performing many simulations with set-
tings where the probability is low, as we can see from
the way the red path of the random walk stays under
the big peak in the probability density almost all the
time. More impressively, it achieves this without us
needing to know ahead of time where this peak will
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Figure 4: The estimates of P (S = s|M = m) using
Markov Chain Monte Carlo, showing the current dis-
tribution estimate at increasing intervals. The red
line shows the current position of the random walk.
Again the kinks are almost gone in the final distribu-
tion.

be! This becomes even more important as we move to
dealing with more complicated models, where often
the regions of high probability density are irregularly
shaped multidimensional ‘blobs’, as it proves very ef-
fective at finding them efficiently.

Why is it worth doing so much work to estimate
the probability distribution for settings for a climate
model? One reason is that we can then estimate
probabilities of future events, such as the collapse of
the Atlantic Meridional Ocean Current. And what’s
the answer? According to Keller and Urban’s calcu-
lation, this current will likely weaken by about a fifth
in the 21st century, but a complete collapse is un-
likely before 2300. This claim needs to be checked in
many ways—for example, using more detailed mod-
els. But the importance of the issue is clear, and we
hope we have made the importance of good mathe-
matical ideas for climate science clear as well.

Exploring the topic

The Azimuth Project is a group of scientists, engi-
neers and computer programmers interested in ques-

tions like this [2]. If you have questions, or want to
help out, just email us. Versions of the computer
programs we used in this paper available at [1].

Here are some practical issues to investigate:

• The collapse of the Atlantic Meridional Over-
turning Circulation would cause a temperature
drop in Northern Europe. Research the effects
on humans and ecosystems of drops of 1◦, 3◦ and
7◦ Celsius.

• Learn in detail how Markov Chain Monte Carlo
works [3, 5, 6]. Also learn about some other
methods of parameter estimation and try those
in the example here.

• We’ve seen a one-dimensional system with one
setting. Simulate some multi-dimensional and
multi-setting systems. What new issues arise?
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