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Abstract

The method of ‘linearization via the wave operator’ establishes a close con-
nection between scattering theory and complete integrability for nonlinear wave
equations in four-dimensional Minkowski space. We review the proofs of com-
plete integrability for the massive φ4 theory on the space of solutions of finite
energy, and for the massless φ4 theory on the space of solutions all of whose
images under conformal transformations have finite energy. We show that the
complete integrability is associated to the infinite-dimensional symmetry group
C(S3, U(1)) in the massive case, and a subgroup of C1(S3, U(1)) in the massless
case. We review the construction of gauge-invariant conserved quantities for
suitably regular solutions of the Yang-Mills equations in terms of asymptotic
‘in’ or ‘out’ fields, and discuss the prospects for complete integrability in this
case.

Introduction

A great deal of work has been done on completely integrable nonlinear wave
equations in two-dimensional spacetime, uncovering a rich complex of mathematical
structures. In comparison, the situation in four dimensions is largely unexplored.
There has been a detailed investigation of the self-dual Yang-Mills equations in four
dimensions [19, 25, 35], but it should be recalled that there is no such thing as
a self-dual solution on Minkowski space of the Yang-Mills equations with compact
semisimple gauge group, since in this case the square of the Hodge star operator
on 2-forms is −1, while the Lie algebra of a compact semisimple group admits no
invariant complex structure. In this paper we review some of what is known about
complete integrability for nonlinear wave equations in four dimensions. Our focus is
on relativistically invariant equations, and primarily three basic cases: the massive
φ4 theory, the massless φ4 theory, and the Yang-Mills equations.
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We wish to emphasize that by ‘completely integrable’ we do not mean ‘exactly
solvable,’ which is a rather vague notion in any event. Instead, we mean the ex-
istence of a complete set of conserved quantities with vanishing Poisson brackets,
arising from the action of a commutative Lie group of symmetries. Strictly speak-
ing, this is a property not of an equation, but of a one-parameter group of canonical
transformations of phase space. There are various ways of formulating this property
precisely, especially when the phase space is infinite-dimensional, so we begin with
some definitions. In all that follows we assume that the phase space M is a (smooth)
Banach manifold. We say that a function from M to another Banach manifold is
‘smooth’ if it is infinitely Frechét-differentiable. We say that (M,ω) is a ‘symplectic
manifold’ if ω is a smooth closed 2-form on M that is weakly nondegenerate, that is,
for any nonzero u ∈ TxM there exists v ∈ TxM with ω(u, v) 6= 0. Given a symplectic
manifold (M,ω), we say that a subspace V ⊂ TxM is ‘isotropic’ if ω|V = 0, and
‘Lagrangian’ if it is a maximal isotropic subspace. We say that a diffeomorphism
f :M → M of a symplectic manifold is a ‘symplectomorphism’ (in the language of
physics, a canonical transformation) if f ∗ω = ω.

Let (M,ω) be a symplectic manifold. We say a function f ∈ C∞(M) is ‘nice’ if it
generates a smooth vector field ζf on M in the following sense:

df = ω(ζf , ·).

Since the map v 7→ ω(v, ·) need not define an isomorphism of TxM and T ∗xM , not
every smooth function need be nice, but ζf is unique if it exists. Given nice functions
f1, f2 generating vector fields ζ1, ζ2, the function

{f1, f2} = −ω(ζ1, ζ2)

generates the vector field [v1, v2]. In other words, the nice functions form a Lie algebra
under the Poisson bracket {·, ·}, and the map f 7→ ζf is a Lie algebra homomorphism.
Let G be a Banach Lie group and ρ:G ×M → M a smooth action of G on M as
symplectomorphisms. The action ρ defines a homomorphism dρ from the Lie algebra
g of G to the Lie algebra of smooth vector fields on M . We say that the action ρ is
‘Hamiltonian’ if for each v ∈ g there is a nice function fv generating the vector field
dρ(v), and the map v 7→ fv is a Lie algebra homomorphism.

Now let V (t) be a one-parameter group of symplectomorphisms of M . We say
that V (t) is ‘completely integrable’ if there is an abelian Banach Lie group G and a
Hamiltonian action ρ of G on M such that: 1) for all g ∈ G and t ∈ IR, ρ(g)V (t) =
V (t)ρ(g); 2) except for x in a set of first category in M , the closed span of the vectors
dρ(v) for v ∈ g is a Lagrangian subspace of TxM . In this situation the functions fv
are conserved quantities:

V (t)∗fv = fv,

and the Poisson brackets {fu, fv} vanish for all u, v ∈ g.
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Returning to nonlinear wave equations, it should be clear that the question of
complete integrability depends not only on the equation, but on a choice of a particu-
lar symplectic manifold of solutions. For example, for the massive φ4 theory we shall
work with solutions having finite energy, which seems natural on physical grounds.
On the other hand, the finite-energy space is not well adapted to the conformal in-
variance of the massless φ4 theory, since the transform of a finite-energy solution by
an element of the conformal group may not have finite energy. Thus we work with
solutions all of whose conformal transforms have finite energy.

While there has not been much work explicitly concerned with the complete in-
tegrability of nonlinear wave equations in four dimensions, there has been a detailed
study of scattering theory for such equations. We consider an approach to complete
integrability that could be called ‘linearization via the wave operator’. This idea goes
back at least to the work of Calogero [10] on n-body systems with repulsive interac-
tions. For such systems, the particles’ motions are essentially free in the distant future
and past, and their asymptotic momenta define a complete set of conserved quantities
with vanishing Poisson brackets. Similarly, for the φ4 theory the solutions we consider
approach solutions of the linear Klein-Gordon equation in the distant future and past.
This permits the construction of ‘wave operators,’ symplectomorphisms intertwining
the actions of time evolution on the phase spaces of the free and interacting theories.
Using these one may immediately deduce the complete integrability of the interacting
theory from that of the free theory. The difficulty lies solely in proving the existence
of wave operators with the desired properties. This is plausible on the grounds of
deformation theory, as shown by Flato and Simon [17, 18], but for the massive φ4

theory the rigorous proof for finite-energy solutions is extremely technical. For the
massless φ4 theory the use of conformal invariance permits a more conceptual proof.

The complete integrability of the Yang-Mills equations on a suitable space of
solutions is a fascinating open question, and the study of the massless φ4 theory
may be regarded as a ‘warm-up’ for this case. Like the massless φ4 theory, the
Yang-Mills equations are conformally invariant, but their gauge invariance introduces
additional complications. In particular, since the physical phase space of the Yang-
Mills equations is not a vector space, one cannot expect a true ‘linearization’ of
time evolution. Nonetheless, there exists a very simple description of time evolution
for the solutions we consider in terms of ‘in’ and ‘out’ fields, certain limits as time
approaches ±∞. This permits the construction of infinitely many gauge-invariant
conserved quantities.

In our brief (and incomplete) histories of various results, dates always refer to dates
of publication. The author wishes to thank Irving Segal and Zhengfang Zhou for many
conversations on scattering theory for nonlinear wave equations. In particular, the
proof of Theorem 3 was developed in conversations with Zhou. The author is also
indebted to Walter Strauss for reading a draft of this paper and suggesting some
improvements.
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The Massive φ4 Theory

Let M0 denote Minkowski space, which we identify with IR4 with the coordinates
x = (x0, x1, x2, x3) = (x0, ~x). The massive φ4 theory is given by the equation

(ut +m2)φ+ λφ3 = 0, m > 0, λ ≥ 0, (1)

where φ is a real function on M0. The Hamiltonian of this theory is given by

H =
∫

x0=0

(
1

2
((∇φ)2 +m2φ2 + φ̇2) +

λ

4
φ4

)
d3x. (2)

For the free theory (λ = 0), the space of Cauchy data v = (v1, v2) for which the
energy is finite forms a real Hilbert space H with norm given by

‖v‖2 =
1

2

∫

IR3
(∇v1)2 +m2v2

1 + v2
2.

In fact, the Sobolev inequalities imply that

∫
φ4 d3x ≤ c

(∫
((∇φ)2 +m2φ2)d3x

)2

,

so even for the interacting theory (λ > 0), the energy H is finite if (φ, φ̇)|x0=0 lies in
H.

The basic global existence theorem for the massive φ4 theory is that for any v ∈ H
there is a unique solution φ of equation (1) with (φ, φ̇)|x0=0 = v. This was proved by
Jörgens [23] and Segal [40] in the early 1960’s. Note that part of proving this theorem
consists of defining precisely in what sense φ is a solution. Segal’s proof makes use of
the technique of nonlinear semigroups, in which equation (1) is transformed into an
integral equation for the Cauchy data v(t) = (φ, φ̇)|x0=t as a function of t, and it is
shown that for any v ∈ H there is a unique continuous solution v(t) with v(0) = v.
This approach underlies most of the work we will describe, but we will not emphasize
it here, referring the reader instead to the expositions by Reed and Segal [37, 47].
Other technical aspects which we will downplay, such as a priori estimates, have been
reviewed by Strauss [52].

The global existence theorem allows us to identify finite-energy solutions of the
massive φ4 theory with their time-zero Cauchy data, which we do consistently hence-
forth, treating H as the phase space of the theory. The standard symplectic structure
ω on H is given by

ω(u, v) =
∫

IR3
u1v2 − v1u2,

where we identify the tangent vectors u, v ∈ TxH with elements of H by means of
parallel translation. Of course, for the interacting theory what matters is not the
vector space structure of H per se, but its structure as a symplectic manifold.
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Let P0 denote the connected component of the Poincaré group. Given g ∈ P0 and
a finite-energy solution φ of (1), define gφ by

gφ(x) = φ(g−1x).

Then gφ is also a finite-energy solution of (1), and the map (g, φ) 7→ gφ defines an
action of P0 on H, which we denote by Vλ. When λ = 0, the maps Vλ(g) are linear.
As it turns out, even for λ > 0 the maps Vλ(g) are not only smooth but real-analytic,
that is, they have Taylor series with a nonzero radius of convergence about each point.
Thus the phase space H has canonically the structure of an analytic manifold:

Theorem 1. For any g ∈ P0, Vλ(g): H→ H is an analytic symplectomorphism. For
all v ∈ H, Vλ(g)v is continuous as a function of g ∈ P0.

Proof - The smoothness of the time evolution maps v 7→ v(t) on H was first
shown by Segal [40], who also showed that P0 acts as symplectomorphisms of a dense
subspace of H [41]. Analyticity of time evolution follows from the results of Baez
and Zhou on analytic nonlinear semigroups [7]. A proof that the whole Poincaré
group acts continuously and as analytic symplectomorphisms does not appear in the
literature, but Theorems 2 and 3 below reduce the problem to the free case, which is
straightforward. ut

We write simply t for the element of P0 corresponding to translation forwards in
time by t ∈ IR, so that

Vλ(t)
(
(φ, φ̇)|x0=0

)
= (φ, φ̇)|x0=t.

Finite-energy solutions of the interacting massive φ4 theory are asymptotic to solu-
tions of the free theory in the following sense:

Theorem 2. For any u ∈ H, there exist u+, u− ∈ H such that

lim
t→±∞

‖Vλ(t)u− V0(t)u±‖ = 0.

There exist ‘wave operators,’ analytic diffeomorphisms W±: H → H, such that u =
W±(u±) for all u ∈ H.

Proof - The study of this question was initiated by Segal [42] in 1966. The wave op-
erators were constructed as diffeomorphisms of a dense subspace F ⊂ H by Morawetz
and Strauss [30, 31]. The analyticity properties of these wave operators were studied
by Raczka and Strauss [36]. Strauss [50, 51] later proved the existence of wave opera-
tors on all of H, and inverted them at low energy, i.e., in a neighborhood of the origin
of H. In 1985, Brenner [9] constructed inverses for the wave operators throughout H.
Baez and Zhou proved that the wave operators are homeomorphisms, and analytic
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diffeomorphisms at low energy [7, 8]. In a paper to be published, Kumlin [24] has
proved that the wave operators are analytic diffeomorphisms throughout H. All this
work relies primarily on hard analysis, and particularly on sharp decay estimates for
solutions of the free theory. The technique for obtaining such estimates was found by
Strichartz [53], and developed by Marshall, Strauss and Wainger [26, 27]. ut

The wave operators have the following basic properties:

Theorem 3. The wave operators W±: H → H are symplectomorphisms. Moreover,
they intertwine the free and interacting actions of the Poincaré group, i.e.,

Vλ(g) = W±V0(g)W−1
±

for all g ∈ P0.

Proof - Morawetz and Strauss [31] proved the symplectic and intertwining proper-
ties of the wave operators on the space F ⊂ H. Baez and Zhou proved the symplectic
property at low energy [8], and the proof extends to all of H using Kumlin’s global
analyticity result. The proof of the intertwining property on all of H is straight-
forward for spatial translations and rotations, so it suffices to treat Lorentz boosts
g ∈ P0. By the result of Morawetz and Strauss, Vλ(g) equals W±V0(g)W−1

± on the
dense subspace F ⊂ H. Since W± is an analytic diffeomorphism and V0(g) is contin-
uous and linear, it suffices to show that Vλ(g) is continuous to conclude the result for
all v ∈ H. Writing Vλ(g)v explicitly in terms of v in terms of an integral equation,
continuity follows from the result of Kumlin [24] that the map from v to the solution
φ is continuous from H to L3(IR, L6(IR3)). ut

As a corollary, the scattering operator S: H → H, given by S = W−1
+ W−, is an

analytic symplectomorphism commuting with the free action of P0:

SV0(g) = V0(g)S.

This implies that scattering may be computed at low energy using an explicit Taylor
series. Another corollary is the complete integrability of the interacting massive φ4

theory on the finite-energy space:

Corollary 1. The one-parameter group Vλ(t) of symplectomorphisms of H is com-
pletely integrable, with analytic conserved quantities.

Proof - This follows from Theorems 2 and 3 and the complete integrability of the
free theory. The results of Baez and Zhou [8] together with those of Kumlin [24] give a
set of analytic conserved quantities on H with vanishing Poisson brackets, generating
vector fields spanning a Lagrangian subspace of TxH except for x ∈ H in a set of
first category. Here we construct a Hamiltonian group action of the abelian Banach
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Lie group G = C(S3, U(1)) on H, commuting with the action of time evolution, with
{fα} as associated conserved quantities. By Theorem 3 it suffices to consider the free
theory. In this case any finite-energy solution φ is determined by the restriction of its
Fourier transform to the ‘mass hyperboloid’

{k ∈M∗
0 : kµk

µ = m2, k0 > 0}.

Time evolution acts on these Fourier transforms as multiplication by a phase:

(V0(t)φ)̂(k) = eitk0 φ̂(k).

We identify elements of G with continuous functions g: IR3 → U(1) approaching a
constant at infinity, and identify the Lie algebra g of G with the abelian Lie algebra
of continuous functions v: IR3 → IR approaching a constant at infinity. There is a
representation ρ:G×H→ H given by

(ρ(g)φ)̂(k) = g(~k)φ̂(k).

It is easy to check that ρ is smooth and commutes with V0(t) for all t ∈ IR. Given
v ∈ g, let fv be the function on H mapping the finite-energy solution φ to

∫
v(~k) |φ̂(k)|2 dµ(k),

where µ is the properly normalized Lorentz-invariant measure on the mass hyper-
boloid. It can be shown [8] that fv generates the vector field dρ(v). The conserved
quantities constructed by Baez and Zhou are all of this form. ut

For the n-component generalization of the massive φ4 theory there is a similar
action of the group C(S3, U(n)) as symplectomorphisms of the finite-energy space
commuting with time evolution, and one again has complete integrability on the finite-
energy space. The n-component φ4 theory can be thought of as an approximation to
any n-component wave equation of the form

utφi +
∂F

∂xi
(φ) = 0, 1 ≤ i ≤ n,

where F : IRn → IR is smooth, for solutions in the vicinity of a nondegenerate lo-
cal minimum of F . Thus one should expect complete integrability and an action of
C(S3, U(n)) on the solutions of such an equation that lie near enough to a nondegen-
erate local minimum of F . It would be an interesting project to make this statement
precise and prove it. The work of Simon and Taflin [48] takes a step in this direction.
It is also tempting to speculate that groups of the form C(S3, G) play a role in four
dimensions somewhat analogous to the role of loop groups in two dimensions.
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The Massless φ4 Theory

The massless φ4 theory is the equation

utφ+ λφ3 = 0, λ ≥ 0, (3)

where φ is a real function on Minkowski space M0. The Hamiltonian of this theory
is

H =
∫

x0=0

(
1

2
((∇φ)2 + φ̇2) +

λ

4
φ4

)
d3x. (4)

Taking Cauchy data such that φ̇ = 0 and φ is a smooth bump function dilated so
as to have support of radius r, one easily easily estimates that

∫
(∇φ)2 d3x ∼ r,

while
∫
φ4 d3x ∼ r3. Thus in contrast to the massive theory, one cannot bound the

interaction Hamiltonian by the free Hamiltonian. This is the simplest of the ‘infrared
problems’ plaguing the massless theory. To take another example, solutions of the
free massless equation with C∞0 Cauchy data have

sup
~x
|φ(t, ~x)| = O(t−1)

rather than O(t−3/2) as in the massive case. The slower decay in the massless case
has so far prevented the formulation of a scattering theory on the finite-energy space,
despite interesting partial results [21, 49].

Luckily, all these infrared problems are directly linked to additional symmetries of
the massless φ4 theory. It is easy to see at a formal level that this theory is invariant,
not only under the Poincaré group P0, but under dilations:

φ(x) 7→ cφ(cx),

where c > 0. In fact, the massless φ4 theory is conformally invariant, and one can
develop a very elegant scattering theory for it by taking full advantage of this fact.

Let P denote the 11-dimensional group generated by P0 together with dilations.
Every orientation-preserving conformal diffeomorphism of M0 is an element of P, but
there is a 15-dimensional group of conformal transformations that are defined only
on open dense subsets of M0. This group, the ‘conformal group’ G = SO(2, 4), is
the identity component of the group generated by P and conformal inversion:

x 7→ 4x

xµxµ
.

To take advantage of conformal symmetry it is best to embed Minkowski space in a
larger spacetime on which G̃ acts as diffeomorphisms. We briefly review this part of
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conformal geometry, referring the reader to Paneitz and Segal [33] and Penrose and
Rindler [35] for the proofs and explicit formulae.

Minkowski space has a conformal compactification M, that is, a compact space-
time into which it may be conformally embedded as a dense open submanifold. As a
homogeneous space, M is just G/P. As a manifold with conformal structure, M may
be identified with S1× S3/ZZ2 (where ZZ2 acts as the product of the antipodal maps
on S1 and S3), equipped with the metric pushed down from the metric dθ2 − ds2 on
S1 × S3, where dθ2 and ds2 are the standard metrics on S1 and S3. The group G
acts on M as conformal diffeomorphisms.

Since M has closed timelike loops, it is unsatisfactory for the study of nonlinear
wave equations. It is better to work instead with the universal cover M̃, which may
be identified with the ‘Einstein universe,’ IR × S3 with the metric dτ 2 − ds2. The
coordinate τ ∈ IR is called the ‘Einstein time.’

Let ι: M0 → M̃ be a conformal embedding lifting that of M0 in M̃. Minkowski
space as embedded in the Einstein universe is given by the open set

ι(M0) = {(τ, u) ∈ IR× S3 : |τ |+ |ρ| < π},

where ρ is the angle of the point u ∈ S3 from a fixed point, for example (1, 0, 0, 0) ∈ S3.
We will identify Minkowski space with its image in M̃. The boundary of M0 in M̃ is
the union of two lightcones

C± = {(τ, u) ∈ IR× S3 : ±τ = π − ρ},

which we call the lightcones at ‘future (resp. past) infinity,’ since points in C± may
be regarded as limits of points in M0 as t→ ±∞. The action of G on M lifts to an
action of the universal cover G̃ as conformal transformations of M̃, and the subgroup
of G̃ preserving M0 is just the universal cover P̃ of the group P. It follows that P̃
also preserves each of the lightcones C±.

To take advantage of the conformal invariance of the massive φ4 theory, it is crucial
to use the fact that it is equivalent to a very simple equation on M̃. Let p: M0 → IR
be the conformal factor relating the Einstein and Minkowski metrics on M0:

ι∗(dτ 2 − ds2) = p2(dx2
0 − d~x2).

Let ũt denote the Laplace-Beltrami operator associated to the Einstein metric on M̃.
If φ̃ is a function on M̃ satisfying

(ũt + 1)φ̃+ λφ̃3 = 0, λ ≥ 0, (5)

then the function φ on M0 given by

φ(x) = p(x) φ̃(ι(x))
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satisfies the massless φ4 theory equation (3). Conversely, any solution φ of (3) on M0

defines a solution φ̃ of (5) at least on ι(M0) ⊂ M̃. As we shall see, φ̃ extends to a
solution on all of M̃ if φ has ‘finite Einstein energy.’

While the Einstein time τ is not simply a function of the Minkowski time x0, the
surface x0 = 0 is contained in the surface τ = 0. Thus we may study the Cauchy
problem on Minkowski space in terms of the Cauchy problem on M̃. For equation
(5), Einstein time evolution is associated with the Hamiltonian

He =
∫

τ=0

(
1

2
((∇̃φ̃)2 + φ̃2 + (∂τ φ̃)2) +

λ

4
φ̃4

)
d3u, (6)

where ∇̃ denotes the gradient on S3, and d3u is the standard volume form on S3.
The explicit formula for this ‘Einstein energy’ in terms of φ:

He =
∫

x0=0

(
(1 +

~x2

4
)(

1

2
(∇φ)2 +

1

2
φ̇2 +

λ

4
φ4)− 1

4
φ2

)
d3x,

shows that having finite Einstein energy imposes a spatial decay condition on the
Cauchy data in Minkowski space. One can show that the Einstein energy is always
greater than the ‘Minkowski energy’ given by (4). The key to a simple scattering
theory for the massless φ4 theory is to work with the solutions of finite Einstein
energy.

For the free theory, the space of Cauchy data v = (v1, v2) for which the Einstein
energy is finite is a real Hilbert space H with norm given by

‖v‖2 =
1

2

∫

S3
(∇v1)2 + v2

1 + v2
2.

Even for λ 6= 0, the Einstein energy He is finite whenever (φ̃, ∂τ φ̃)|τ=0 is in H. It easy
to prove [6] using nonlinear semigroup theory that for any v ∈ H there is a unique
solution φ̃ of equation (3) with (φ̃, ∂τ φ̃)|τ=0 = v. Thus we will identify finite-Einstein-
energy solutions with their τ = 0 Cauchy data.

We now describe analogs of the results of the previous section for the massless φ4

theory. The space H has a symplectic structure ω given by

ω(u, v) =
∫

S3
u1v2 − v1u2,

where we identify the tangent vectors u, v ∈ TxH with elements of H by means of
parallel translation. The group G̃ acts on functions on M̃ via

gφ̃(y) = α(g−1y)φ̃(g−1y), g ∈ G̃, y ∈ M̃,

where α is the conformal factor:

(g−1)∗(dt2 − ds2) = α2(dt2 − ds2).
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If φ̃ is a finite-Einstein-energy solution of (5) then so is gφ̃ for all g ∈ G̃. This
defines an action of G̃ on H, which we denote by Vλ. In fact, the Einstein energy
of a solution is just its Minkowski energy plus the Minkowski energy of its transform
under conformal inversion. This implies that a solution has finite Einstein energy if
and only if all its transforms under elements of G̃ have finite Minkowski energy.

We have:

Theorem 4. For any g ∈ G̃, Vλ(g): H → H is a analytic symplectomorphism. For
any v ∈ H, Vλ(g)v is continuous as a function of g ∈ G̃.

Proof - This was shown by Baez, Segal, and Zhou [2, 6, 7]. ut

Recall that P̃ may be identified with the subgroup of G̃ preserving M0. The
action Vλ of P̃ on H factors through P, and we write simply Vλ(t) for the action on
H of Minkowski time evolution. There exist wave operators as follows:

Theorem 5. For any u ∈ H, there exist u+, u− ∈ H such that

lim
t→±∞

‖Vλ(t)u− V0(t)u±‖ = 0.

There exist analytic diffeomorphisms W±: H → H such that u = W±(u±) for all
u ∈ H.

Proof - This was proved in a series of papers by Baez, Segal and Zhou in the late
1980’s [2, 4, 6, 7, 46]. The key idea is to construct u± in terms of the ‘Goursat data’
φ̃|C±, and to reduce the study of the maps W± to the problem of solving equation (5)
given Goursat data of finite Einstein energy. This idea appears formally in the work
of Penrose [34, 35], who did not consider the analytical aspects. ut

Theorem 6. The wave operators W±: H→ H are symplectomorphisms. Moreover,

Vλ(g) = W±V0(g)W−1
±

for all g ∈ P.

Proof - These results were proved by Baez [2]. ut

As in the massive case, this theorem immediately implies complete integrability:

Corollary 2. The one-parameter group Vλ(t) of analytic symplectomorphisms of H
is completely integrable, with analytic conserved quantities.
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Proof - Baez [4] constructed analytic conserved quantities on H with vanishing
Poisson brackets, generating vector fields spanning a Lagrangian subspace of TxH
except on a set of first category. Here we sketch the construction, based on earlier
work of Baez, Segal and Zhou, of a Hamiltonian group action of an abelian Banach
Lie group on H, commuting with the action of time evolution, and implying complete
integrability. By Theorem 3 it suffices to consider the free theory. Let

C∗ = C− − {ρ = 0, π}.

C∗ is a smooth submanifold of M̃, diffeomorphic to IR × S2, and we give it the
coordinates (s, ω), where s = −2 cot ρ and ω ∈ S2 ⊂ IR3 is defined by

u = (cos ρ, (sin ρ)ω),

where u ∈ S3 is regarded as a unit vector in IR4. We give C∗ the volume form ds∧d2ω,
where d2ω denotes the standard volume form on S2. The submanifold C∗ is preserved
by the action of P̃ on M̃; the advantage of the coordinates (s, ω) is that Minkowski
time translation on C∗ corresponds to translation in the s variable:

(s, ω) 7→ (s+ t, ω).

A finite-Einstein-energy solution φ̃ of equation (5) need not be continuous, but its
restriction to C∗ is well-defined almost everywhere. We define the ‘in field’ φ−:C∗ →
IR by

φ− = (sin ρ) φ̃|C∗.
The factor of sin ρ makes the action of Minkowski time evolution on Goursat data
very simple:

(Vλ(t)φ)−(s, ω) = φ−(s+ t, ω).

Let H(C∗) denote the space of functions on C∗ of the form φ− for some finite-
energy solution ṽ. The norm on H transfers to a norm on H(C∗) given by

‖φ−‖2 =
1

2

∫

C∗

(
(s2 + 4)(∂sφ−)2 + φ2

− + (∇ωφ−)2
)
dsd2ω

where ∇ω denotes the gradient on S2. In fact, all functions on C∗ for which this
norm is finite lie in H(C∗). Let φ̂−(σ, ω) denote the Fourier transform of φ− in the s
variable. For some c > 0,

‖φ−‖2 ≤ c
∫

IR×S2
(σ2 + 1)(|∂σφ̂−|2 + |∇ωφ̂−|2) dσd2ω.

All functions f(σ, ω) with f(σ, ω) = f(−σ, ω) and

∫

IR×S2
(σ2 + 1)(|∂σf |2 + |∇ωf |2) dσd2ω <∞
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are thus of the form φ̂−(σ, ω) for some φ− ∈ H(C∗). It follows that if φ− ∈ H(C∗)
and g: IR× S2 → U(1) is a C1 function with g(σ, ω) = g(−σ, ω), and with derivatives
vanishing sufficiently rapidly as σ → ±∞, then gφ̂− is the Fourier transform of a
function in H(C∗). This allows us to construct the desired Banach Lie group G of
C1 functions g: IR× S2 → U(1), with some flexibility as concerns the rate of decay of
derivatives of g, acting on H(C∗) by

(ρ(g)φ−)̂ = gφ̂− .

Using the fact that the symplectic structure in H(C∗) is given by

ω(φ−, ψ−) =
∫

C∗
(φ−∂sψ− − ψ−∂sφ−) dsd2ω,

one can show G acts as symplectomorphisms. It is easily shown that the action of
G commutes with that of Minkowski time evolution, which acts on φ̂− simply as
multiplication by a phase, and the proof of complete integrability may be completed
along the lines of [4]. Regarding S3 as a two-point compactification of IR × S2, the
group G may be identified with a subgroup of C1(S3, U(1)). ut

The Yang-Mills equations

Like the massless φ4 theory, the Yang-Mills equations are conformally invariant,
but in addition they are gauge invariant. The resulting complications have so far
precluded a proof of existence of solutions with arbitary finite-energy Cauchy data,
on either Minkowksi space or the Einstein universe. Nonetheless, scattering theory
can be formulated for the Yang-Mills equations in terms of the conformal embedding
ι: M0 → M̃ [3]. As this scattering theory is rather technical, here we just report
what is known concerning complete integrability. The possibility that the Yang-Mills
equations are completely integrable on a suitable space of solutions may have been
neglected due to various results seeming to point to the opposite conclusion. For
example, Nikolaevskii and Shchur [32] and Savvidi [38] have considered solutions
of Yang-Mills equations that are constant in space at each given time (in temporal
gauge, in Minkowski space). By proving that time evolution on this finite-dimensional
symplectic manifold is nonintegrable, they conclude that the Yang-Mills equations
are not integrable. Saviddi has also shown that radially symmetric solutions near the
Wu-Yang static solution (which has a singularity at the origin) form a nonintegrable
dynamical system [39]. In neither case, however, are the solutions considered of finite
energy, so there would be no contradiction if the Yang-Mills equations were completely
integrable on some space of finite-energy solutions. In fact, there is rather large space
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of finite-energy solutions of the Yang-Mills equations for which there exist infinitely
many gauge-invariant conserved quantities.

We begin by considering the Yang-Mills equations on the Einstein universe M̃.
For simplicity we consider C2 solutions. Let G be a compact Lie group and g its
Lie algebra. For simplicity of notation we assume without loss of generality that G
is a matrix group. Note that all G-bundles on M̃ are trivial, since π2(G) = 0 by a
theorem of Cartan. We identify the space A of C2 g-valued one-forms on M̃ with a
space of connections on the trivial G-bundle over M̃ by means of the map taking the
g-valued one-form A to the connection d+A. We let G denote the group of C3 gauge
transformations, that is, C3(M̃, G) with pointwise multiplication. The group G acts
on A as affine transformations by:

gA = Ad(g)A+ (dg)g−1, g ∈ G.

The group G̃ of conformal transformations acts as linear transformations of A by:

gA = (g−1)∗A, g ∈ G̃.

In particular, let V (t) denote the action of Minkowski time evolution on A. Given
A ∈ A, let F = dA + 1

2
[A,A]. Let Y be the set of A ∈ A satisfying the Yang-Mills

equations:
d ? F + [A, ?F ] = 0.

By the invariance of these equations under gauge and conformal transformations,
Y is preserved by the time evolution V (t) and the action of the gauge group G on
A. Moreover, if A ∈ Y, then ι∗A is a C2 solution of the Yang-Mills equations
on M0, where ι: M0 → M̃ is the conformal embedding. Thus one may regard Y
as the space of C2 solutions of the Yang-Mills equations on Minkowski space that
extend to C2 solutions on M̃. There are gauge-invariant conserved quantities for such
solutions, analogous to the conserved quantities for the massless φ4 theory constructed
in Corollary 2:

Theorem 7. Let ψ ∈ C∞(g) be an Ad-invariant function with ψ(0) = 0. Let φ ∈
C0(C∗) and let u, v be continuous vector fields on C∗ invariant under the action of IR
as Minkowski time translation. Let h = ψ(F (u, v)). Define the function f : A → IR
by:

f(A) =
∫

C∗

∫

IR
h(s, ω) φ(t, ω) h(s− t, ω) dtdsd2ω,

or, more concisely,

f(A) =
∫

C∗
h(s, ω) (φ ∗ h)(s, ω) dsd2ω.

Then for all t ∈ IR, V (t)∗f = f , and for all g ∈ G, g∗f = f .
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Proof - This was shown by Baez [5]. Note that the use of convolutions in this
theorem is simply a reformulation of use of Fourier transforms in the proof of Corollary
2. ut

To obtain conserved quantities on a symplectic manifold of solutions modulo gauge
transformations on which time evolution acts as symplectomorphisms, the above the-
orem will need to be refined. In particular, one probably should work not with C2

solutions, but with solutions in a fixed gauge having Cauchy data in certain Sobolev
spaces. For example, in temporal gauge, Cauchy data for the Yang-Mills equations
on M̃ are given by g-valued one-forms A and E on S3. Let X denote the space of such
pairs for which the components of A lie in the Sobolev space H3(S3), the components
of E lie in H2(S3) , and the constraint equation d ? E + [A, ?E] = 0 holds. Then
Choquet-Bruhat, Paneitz and Segal [14] proved that any Cauchy data (A,E) ∈ X
determine a unique global solution of the Yang-Mills equations on M̃ in temporal
gauge. Their proof uses the global existence theorem for the Yang-Mills equation on
Minkowski space, proved by Eardley and Moncrief [16], and the conformal embedding
of M0 in M̃. (One should note that the theorem of Eardley and Moncrief followed
work by Glassey and Strauss [22], Segal [44, 45], Ginibre and Velo [20], and Choquet-
Bruhat and Christodoulou [12, 13, 15]. In particular, Christodoulou seems to have
been the first to use the embedding of M0 in M̃ in this context. For a review of all
this work see Choquet-Bruhat [11].)

The space X is not the physical phase space for the Yang-Mills equations, however,
because there is still left-over gauge freedom corresponding to time-independent gauge
transformations. It has been shown by Arms, Marsden and Moncrief [1, 29], and
independently by Mitter [28], that one may remove certain singular points from X
and take the quotient by the action of the remaining gauge transformations to obtain
a symplectic manifold Z, the nonsingular part of the physical phase space. It is
possible that many of the conserved quantities on Y constructed above extend to
functions on X, and that Minkowski time evolution is completely integrable as a
one-parameter group of symplectomorphisms of ZZ. Regardless of whether this turns
out to be the case, it would be interesting to understand the significance of these
conserved quantities for the Yang-Mills equations.

*
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