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Abstract

An r-commutative algebra is an algebra A equipped with a Yang-Baxter
operator R:A ⊗ A → A ⊗ A satisfying m = mR, where m:A ⊗ A → A is
the multiplication map, together with the compatibility conditions R(a⊗ 1) =
1 ⊗ a, R(1 ⊗ a) = a ⊗ 1, R(id ⊗m) = (m ⊗ id)R2R1 and R(m ⊗ id) = (id ⊗
m)R1R2. The basic notions of differential geometry extend from commutative
(or supercommutative) algebras to r-commutative algebras. Examples of r-
commutative algebras obtained by quantization of Poisson algebras include the
Weyl algebra, noncommutative tori, quantum groups, and certain quantum
vector spaces. In many of these cases the r-commutative de Rham cohomology
is stable under quantization.

1 Introduction

Following the initiative of A. Connes [6], there has been a surge of interest in noncom-
mutative geometry, in which one treats a noncommutative algebra as if it consisted of
smooth functions on a space and pursues analogs of differential-geometric construc-
tions. As pointed out by Connes, Karoubi [16], and Woronowicz [28, 30], the analog
of differential forms for a noncommutative algebra A is a differential calculus for A,
that is, a differential graded algebra Ω that is generated as such by Ω0 ∼= A. Every
differential calculus for A is a quotient of a certain “universal” differential calculus
Ωu(A). For commutative algebras one usually works with the “classical” differential
calculus Ωc(A), which is the quotient of Ωu(A) by the relations

adb = (db)a , d1 = 0 .

When A is the algebra of smooth functions on a manifold M , Ωc(A) is isomorphic as
a differential graded algebra to the differential forms Ω(M).

The simplest generalization of the classical differential calculus treats Z2-graded
algebras that are “supercommutative,” satisfying ab = (−1)deg a deg bba. The extension
of concepts to supercommutative algebras is based on the rule that the twist map

a⊗ b 7→ b⊗ a
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should be replaced everywhere by the graded twist map

a⊗ b 7→ (−1)deg a deg bb⊗ a .

Thus one constructs an analog of the classical differential calculus for a supercommu-
tative algebra A as the quotient of Ωu(A) by the relations

a db = (−1)deg a deg b (db)a , d1 = 0 .

Supercommutative algebras arose in physics from the desire to treat bosons and
fermions in an even-handed manner. The interchange of two identical bosons is
modelled mathematically by the twist map, while for fermions one uses the map

a⊗ b 7→ −b⊗ a .

More recently, mathematical investigations of low-dimensional physics have raised
the possibility of other particle types, so-called “anyons,” for which interchange is
modelled by an operator R:A⊗ A→ A⊗ A satisfying the Yang-Baxter equations

(R⊗ id)(id⊗ R)(R⊗ id) = (id⊗R)(R⊗ id)(id⊗R) .

Such operators define representations of the braid group. This circle of ideas leads to
the concept of an “r-algebra,” an algebra equipped with a Yang-Baxter operator

a⊗ b 7→ R(a⊗ b)

compatible with the algebra structure in a certain sense. An algebra A equipped
with such an “r-structure” is said to be “r-commutative” if m = mR, where m:A ⊗
A → A is the multiplication map. Many interesting noncommutative analogs of
manifolds are r-commutative. In addition to supermanifolds, these include quantum
groups, quantum matrix algebras, quantum vector spaces [11, 12, 15, 20, 28, 29,
30], noncommutative tori [6, 8, 25], the Weyl and Clifford algebras [26], and certain
universal enveloping algebras.

Generalizing the classical differential calculus to r-commutative algebras is straight-
forward when the r-structure R is “strong,” that is, R2 = id. One simply forms the
quotient of Ωu(A) by the relations

adb =
∑

i

(dbi)ai , d1 = 0 ,

where R(a ⊗ b) =
∑
i b
i ⊗ ai. Most of our work concerns this case, which is relevant

to the Weyl and Clifford algebras and noncommutative tori. For quantum groups,
quantum matrix algebras, and quantum vector spaces one needs r-structures that are
not strong. Here there are still many basic open questions.

The plan of the paper is as follows. In section 1 we state the basic definitions
concerning r-commutative algebra and differential forms on strong r-commutative al-
gebras. In section 2 we describe two basic r-commutative algebras: the r-symmetric
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algebras, which generalize the symmetric and exterior algebras, and the r-Weyl al-
gebras, which generalize the Weyl and Clifford algebras. In section 3 we sketch the
relation between r-commutative geometry and the quantization of Poisson algebras,
and work through the details for the Weyl algebra, giving a new proof of Segal’s
Poincaré lemma for “quantized differential forms” [26]. In section 4 we give a similar
treatment of noncommutative tori. In section 5 we sketch what is known about the
r-commutative geometry of quantum groups, quantum matrix algebras and quantum
vector spaces.

The author thanks Minhyong Kim and other participants in the M. I. T. Non-
commutative Geometry and Quantum Groups seminar for helpful conversations and
a chance to present these ideas in a preliminary form, and Ping Feng, for pointing
out the importance of the Hecke relations and showing him the work of Wess and
Zumino.

2 R-commutative Geometry

We begin by describing “r-commutative algebras,” in which, following the ideas of
Manin [20], the role of the twist map

τ(a⊗ b) = b⊗ a

is replaced by an arbitrary Yang-Baxter operator. We develop only a small piece of
this theory. One could phrase some of our work in the language of tensor categories
[9, 17, 19], but we take a more pedestrian approach.

Initially we work over an arbitrary field k. By an “algebra” we will always mean
a unital associative algebra over k. Let V be a vector space over k. Given R ∈
End(V ⊗ V ), define Ri ∈ End(V ⊗n) for 1 ≤ i < n by

R(v1 ⊗ · · · vn) = v1 ⊗ · · · ⊗ vi−1 ⊗ R(vi ⊗ vi+1)⊗ vi+1 ⊗ · · · ⊗ vn .

Given R ∈ End(V ⊗ V ), we say R is a Yang-Baxter operator on V if R is invertible
and

R1R2R1 = R2R1R2

on V ⊗ V ⊗ V . We say R is strong if also R2 = id.
Yang-Baxter operators are closely related to the braid group and symmetric group,

as follows. Let si, 1 ≤ i < n, denote the standard generators of the braid group Bn,
which satisfy the relations

sisj = sjsi , |i− j| ≥ 2 ,

sisi+1si = si+1sisi+1 .

Let π:Bn → Sn denote the homomorphism such that

π(si) = σi ,
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where σi is the ith elementary transposition. Then an element R ∈ End(V ⊗ V )
is a Yang-Baxter operator if and only if for all n the map si 7→ Ri extends to a
representation ρ of Bn on V ⊗n. The Yang-Baxter operator R is strong if and only if
for all n the representation ρ factors through Sn, that is, ρ = ρ′π for some ρ′:Sn →
End(V ⊗n).

Define the element snm ∈ Bn+m by

snm = (sm · · · s1)(sm+1 · · · s2) · · · (sn+m−1 · · · sn) .

Pictorially, this element can be represented as the braid in Figure 1, which makes it
clear that π(snm) ∈ Sn+m is the permutation

(1, . . . , n+m) 7→ (n + 1, . . . , n+m, 1, . . . , n) .

Let m:A⊗A→ A be the multiplication map. We define an r-algebra to be an algebra
A equipped with a Yang-Baxter operator such that

R(1⊗ a) = a⊗ 1 , R(a⊗ 1) = 1⊗ a

for all a ∈ A, and the following diagram commutes:

A⊗4 A⊗4

A⊗2 A⊗2

-ρ(s22)

?

m⊗m

?

m⊗m

-R

(1)

A Yang-Baxter operator on an algebra A satisfying these conditions will be called
an r-structure for A. If in addition the Yang-Baxter operator is strong, we call it
a strong r-structure for A, and say that A is a strong r-algebra. We say that A is
r-commutative if m = mR. The reader may verify that every Z2-graded algebra is a
strong r-algebra with r-structure given by

R(a⊗ b) = (−1)deg a deg b b⊗ a ,

and that in this case r-commutativity is equivalent to graded commutativity.
The commutative diagram (1) deserves some comment. Roughly speaking, it

describes how to move a product ab ∈ A to the right of cd ∈ A if we know how to
move the factors a and b to the right of c and d. It has a pictorial interpretation
given in Figure 2, where the joining of two strands denotes multiplication. The
following lemma gives an alternate formulation in terms of equations (3), which are
dual to the axioms for a quasi-triangular Hopf algebra [11]. Figure 3 gives a pictorial
interpretation of these equations.
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Lemma 1. Suppose that A is an algebra, and that R:A ⊗ A → A ⊗ A is a Yang-
Baxter operator. Then R is an r-structure for A if and only if

R(1⊗ a) = a⊗ 1 , R(a⊗ 1) = 1⊗ a , (2)

and

R(m⊗ id) = (id⊗m)R1R2 , R(id⊗m) = (m⊗ id)R2R1 , (3)

as maps from A⊗3 to A⊗2.

Proof - Note that R1R2 = ρ(s21) and R2R1 = ρ(s12). Let idn denote the identity
on A⊗n, and note that

ρ(s22) = (id1 ⊗ ρ(s21))(ρ(s21)⊗ id1)
= (ρ(s12)⊗ id1)(id1 ⊗ ρ(s12)) .

Given the identities (1) and (2) we have

(id1 ⊗m)ρ(s21)(a⊗ b⊗ c) = (m⊗m)(id1 ⊗ ρ(s21))(1⊗ a⊗ b⊗ c)
= (m⊗m)(id1 ⊗ ρ(s21))(ρ(s21)⊗ id1)(a⊗ b⊗ 1⊗ c)
= (m⊗m)ρ(s22)(a⊗ b⊗ 1⊗ c)
= R(m⊗m)(a⊗ b⊗ 1⊗ c)
= R(m⊗ id1)(a⊗ b⊗ c) .

The other part of (3) follows similarly.
Conversely, given equations (3) we have

(m⊗m)ρ(s22) = (id1 ⊗m)(m⊗ id2)(ρ(s12)⊗ id1)(id1 ⊗ ρ(s12))
= (id1 ⊗m)(R⊗ id1)(id1 ⊗m⊗ id1)(id1 ⊗ ρ(s12))
= (id1 ⊗m)(R⊗ id1)(id1 ⊗ R)(id2 ⊗m)
= (id1 ⊗m)ρ(s21)(id2 ⊗m)
= R(m⊗ id1)(id2 ⊗m)
= R(m⊗m) . ut

There is a simple formula for moving the product a1 · · ·aj to the right of the
product b1 · · · bk in an r-algebra.

Lemma 2. Suppose A is an algebra with r-structure R. For any j ≥ 1, let mj:A
⊗j →

A denote the map given by mj(a1 ⊗ · · · ⊗ aj) = a1a2 · · ·aj. Then given j, k ≥ 1 and
a1, . . . aj, b1, . . . bk ∈ A, we have

R(a1 · · ·aj ⊗ b1 · · · bk) = (mk ⊗mj)ρ(sjk)(a1 ⊗ · · · ⊗ aj ⊗ b1 ⊗ · · · ⊗ bk) ,

where ρ denotes the representation of Bj+k on A⊗(j+k) determined by R.
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Proof — We prove that

R(mj ⊗mk) = (mk ⊗mj)ρ(sjk)

for all j, k ≥ 1 by induction. The case j, k = 1 simply says that R = R. Assume as
an inductive hypothesis that R(mj ⊗mk) = (mk ⊗mj)ρ(sjk) for all j ≤ J , k ≤ K. It
suffices to prove that for such j, k we have

R(mj+1 ⊗mk) = (mk ⊗mj+1)ρ(sj+1,k)

and
R(mj ⊗mk+1) = (mk+1 ⊗mj)ρ(sj,k+1) .

We only prove the first, as the second is analogous. By Lemma 1 we have

R(mj ⊗mk) = R(m⊗ id1)(id1 ⊗mj ⊗mk)
= (id1 ⊗m)ρ(s21)(id1 ⊗mj ⊗mk)
= (id1 ⊗m)(R⊗ id1)(id1 ⊗R)(id1 ⊗mj ⊗mk) ,

so by the inductive hypothesis

R(mj ⊗mk) = (id1 ⊗m)(R⊗ id1)(id1 ⊗mk ⊗mj)(id1 ⊗ ρ(sjk)) ,

and the inductive hypothesis also implies that R(id1 ⊗mk) = (mk ⊗ id1)ρ(s1k), so

R(mj ⊗mk) = (id1 ⊗m)(mk ⊗mj)(ρ(s1k)⊗ idj)(id1 ⊗ ρ(sjk))
= (mk ⊗mj+1)ρ(sj+1,k)

as desired. ut

As a consequence, an r-structure R on A is determined by its action on any
subspace V ⊆ A generating A with R(V ⊗ V ) ⊆ V ⊗ V .

Lemma 3. Suppose an algebra A is generated by a subspace V ⊆ A. Given a Yang-
Baxter operator R on V , there exists at most one r-structure on A, say R̃ ∈ Endk(A⊗
A), extending R ∈ Endk(V ⊗ V ). If R is strong then R̃ is strong if it exists.

Proof - Uniqueness is an immediate corollary of Lemma 2. If R is strong then
skjsjk acts as the identity on V ⊗(j+k) for all j, k ≥ 1, so Lemma 2 implies

R̃2(v1 · · · vj ⊗ w1 · · ·wk) = R̃(mk ⊗mj)ρ(sjk)(v1 · · · vj ⊗ w1 · · ·wk)
= (mj ⊗mk)ρ(sjk)ρ(skj)(v1 · · · vj ⊗ w1 · · ·wk)
= v1 · · ·vj ⊗ w1 · · ·wk

for all v1, . . . , vj, w1, . . . , wk ∈ V , so so R̃ is strong. ut

We define an r-ideal of an r-algebra A to be a two-sided ideal I ⊆ A such that
R preserves I ⊗ A + A ⊗ I. Given algebras A and B with r-structures RA and
RB, respectively, we say f :A → B is an r-morphism if f is a homomorphism and
(f ⊗ f)RA = RB(f ⊗ f).
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Lemma 4. Let A be an r-algebra with an r-ideal I. Then there is a unique r-structure
on A/I such that the quotient map j:A → A/I is an r-morphism. Conversely, the
kernel of any r-morphism f :A→ B is an r-ideal in A.

Proof - Suppose I is an r-ideal of A. If R′ is a strong Yang-Baxter operator on
A/I such that j is an r-morphism, we must have

R′(j ⊗ j)x = (j ⊗ j)Rx

for all x ∈ A⊗A. To show that this formula defines an element R′ ∈ Endk(A/I⊗A/I)
it suffices to note that the kernel of j ⊗ j is I ⊗ A+ A⊗ I, which is preserved by R,
so that ker(j ⊗ j) ⊆ ker(j ⊗ j)R. One may easily check that R′ is an r-structure for
A/I, and that j becomes an r-morphism relative to this r-structure.

Conversely, suppose f :A→ B is an r-morphism. Since RB(f⊗f) = (f⊗f)RA, it
follows that ker(f ⊗ f) is preserved by RA. Since ker(f ⊗ f) = ker f ⊗A+A⊗ ker f ,
it follows that ker f is an r-ideal. ut

Note that the quotient of a strong r-algebra by an r-ideal is strong, and the quotient
of an r-commutative algebra by an r-ideal is r-commutative. In parallel to Lemma 3,
we also have:

Lemma 5. Let A and B be r-algebras with r-structure RA and RB, respectively. A
homomorphism f :A→ B is an r-morphism if (f ⊗ f)RA(v⊗w) = RB(f ⊗ f)(v⊗w)
for all v, w ∈ V , where V ⊆ A is a subspace generating A with R(V ⊗ V ) ⊆ V ⊗ V .

Proof - It suffices to show that (f ⊗ f)RA(a ⊗ b) = RB(f ⊗ f)(a ⊗ b) for a =
v1 · · · vj, b = w1 · · ·wk, where v1, . . . , vj, w1, . . . , wk ∈ V . Let ρA and ρB denote the
representations of the braid group determined by RA and RB. By Lemma 2 we have

(f ⊗ f)RA(a⊗ b) = (f ⊗ f)(mk ⊗mj)ρA(sjk)(v1 ⊗ · · · ⊗ wk)
= (mk ⊗mj)f

⊗(j+k)ρA(sjk)(v1 ⊗ · · · ⊗ wk)
= (mk ⊗mj)ρB(sjk)f

⊗(j+k)(v1 ⊗ · · · ⊗ wk)
= RB(mj ⊗mk)f

⊗(j+k)(v1 ⊗ · · · ⊗ wk)
= RB(f ⊗ f)(a⊗ b) . ut

We now turn to an analog of the classical differential calculus Ωc(A) for strong
r-commutative r-algebras. Let A be an r-algebra, and let Ωu(A) be the universal
differential calculus over A [6, 16]. Recall that this may be defined by the property
that for any differential graded algebra Ω and any homomorphism f :A → Ω0, there
exists a unique differential graded algebra morphism f̃ : Ωu(A)→ Ω extending f . We
define the algebra of differential forms over A, ΩR(A), to be the quotient of Ωu(A)
by the differential ideal generated by d1 together with all elements of the form

adb−
∑

i

(dbi)ai ,
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where a, b ∈ A and R(a⊗ b) =
∑
i b
i ⊗ ai. Clearly ΩR(A) is a differential calculus for

A. Just as a smooth mapping of manifolds induces a homomorphism of differential
forms, we have:

Lemma 6. Let A and B be r-algebras and f :A → B an r-morphism. Then there
exists a unique morphism of differential graded algebras f∗: ΩR(A)→ ΩR(B) extending
f . Given r-morphisms f :A→ B and g:B → C, we have (gf)∗ = g∗f∗.

Proof - By the universal property of Ωu(A), there is a unique morphism of dif-
ferential graded algebras f̃ : Ωu(A) → ΩR(B) extending f , so it suffices for the first
claim to show that ker f̃ contains d1 and the elements adb−∑ dbi ai for all a, b ∈ A.
This follows directly from the definition of ΩR(B). For the second claim, suppose
f :A→ B and g:B → C are r-morphisms. Since ΩR(A) is generated as a differential
graded algebra by A, and since f∗ and g∗ are differential graded algebra morphisms,
we must have (gf)∗ = g∗f∗. ut

We emphasize that while ΩR(A) is well-defined for any r-algebra A, it is the
correct generalization of the classical differential calculus only if A is r-commutative
and strong. We defer remarks on the non-strong case to section 6.

3 R-symmetric and R-Weyl algebras

We now introduce two fundamental examples of r-commutative algebras. The first,
variously called the “Yang-Baxter” or “Zamolodchikov” algebra [19, 20], is a kind of
universal r-commutative algebra. As it generalizes the symmetric algebra, we prefer
to call it the “r-symmetric algebra.”

Lemma 7. Let R be a strong Yang-Baxter operator on a vector space V . Then TV
has a unique r-algebra structure R̃ ∈ End(TV ⊗ TV ) extending R ∈ End(V ⊗ V ). If
R is strong then R̃ is strong.

Proof - Define R̃:TV ⊗ TV → TV ⊗ TV such that for all a ∈ V ⊗n and b ∈ V ⊗m,

R̃(a⊗ b) = ρ(snm)(a⊗ b) ∈ V ⊗m ⊗ V ⊗n .

Note that here we are first identifying a⊗b ∈ V ⊗n⊗V ⊗m with an element of V ⊗(n+m),
and then identifying ρ(snm)(a⊗ b) ∈ V ⊗(n+m) with an element of V ⊗m⊗V ⊗n, so that
R̃:V ⊗n⊗V ⊗m → V ⊗m⊗V ⊗n. As maps from V ⊗`⊗V ⊗m⊗V ⊗n to V ⊗n⊗V ⊗m⊗V ⊗`,
we have

R̃1R̃2R̃1 = (ρ(smn)⊗ id)(id⊗ ρ(s`n)(ρ(s`m)⊗ id)

while
R̃2R̃1R̃2 = (id⊗ ρ(smn))(ρ(s`n)⊗ id)(id⊗ ρ(s`m) ,
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and one may check that these are equal using either the braid group relations or the
pictorial representation of Figure 1. It is straightforward to check that R̃ makes TV
into an r-algebra. Uniqueness follows from Lemma 3, as does the fact that R̃ is strong
if R is strong. ut

Lemma 8. Let R be a Yang-Baxter operator on the vector space V . Let TV be given
the r-algebra structure R̃ as in Lemma 1. Let I ⊆ TV be the ideal generated by all
elements of the form v ⊗w−R(v ⊗ w) for v, w ∈ V . Then I is an r-ideal and TV/I
is an r-commutative algebra.

Proof - Any element of I ⊗ A is a linear combination of those of the form a ⊗ b,
where

a = v1 ⊗ · · · ⊗ (1− R)(vi ⊗ vi+1)⊗ · · · ⊗ vn ,
b = vn+1 ⊗ · · · · · · ⊗ vn+m .

We have
a⊗ b = (1− ρ(si))(v1 ⊗ · · · ⊗ vn+m) ,

so

R̃(a⊗ b) = ρ(snm)(1− ρ(si))(v1 ⊗ · · · ⊗ vn+m)
= (1− ρ(sm+i))ρ(snm)(v1 ⊗ · · · ⊗ vn+m) .

It follows that R̃(a⊗ b) is a linear combination of elements of the form

(1− ρ(sm+i))(w1 ⊗ · · · ⊗ wn+m) ,

which lie in A⊗I. Thus R(I⊗A) ⊆ A⊗I; a similar argument shows that R(A⊗I) ⊆
I ⊗ A, so that I is an r-ideal.

Next let us show that TV/I is r-commutative. The algebra TV/I is spanned by
elements a, b of the form

a = [v1 ⊗ · · · ⊗ vn] , b = [vn+1 ⊗ · · · ⊗ vn+m] .

We have
mR̃(a⊗ b) = [ρ(snm)(v1 ⊗ · · · ⊗ vn+m)] .

Since snm is a product of generators si ∈ Bn+m, and since

[ρ(si)(w1 ⊗ · · · ⊗ wn+m)] = [w1 ⊗ · · ·R(wi ⊗ wi+1)⊗ · · · ⊗ wn+m]
= [w1 ⊗ · · ·wi ⊗ wi+1 ⊗ · · · ⊗ wn+m]

for all w1, . . . , wn+m ∈ V , we have

mR̃(a⊗ b) = [v1 ⊗ · · · ⊗ vn+m] = m(a⊗ b) . ut
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Given a vector space V equipped with a Yang-Baxter operator, we denote the r-
commutative algebra TV/I constructed in the above lemma by SRV , the r-symmetric
algebra over V . As the quotient of TV by a homogeneous ideal, SRV is naturally a
graded algebra. When R is the twist map τ(v ⊗ w) = w ⊗ v, we have SRV = SV ,
while if R = −τ , SRV is the exterior algebra ΛV . Just as the symmetric algebra SV
may be identified with the coordinate ring of a vector space, the algebra SRV may be
regarded as the coordinate ring of a “quantum vector space” [20]. Similarly, elements
of ΩR(SR(V )) may be regarded as differential forms on a quantum vector space.

Just as the exterior and symmetric algebras are special cases of r-symmetric al-
gebras, both the Clifford and Weyl algebras are “r-Weyl algebras.” Let V be a
vector space equipped with a Yang-Baxter operator R. We say that a bilinear form
ω:V ⊗ V → k is a skew form on V if ω ◦ R = −ω. Given a skew form ω on V , we
define the r-Weyl algebra WR(V, ω) to be the quotient of the tensor algebra TV by
the ideal I generated by the elements

v ⊗ w − w ⊗ v − ω(v ⊗ w)1

for all v, w ∈ V , where 1 denotes the identity of TV .
In addition to the Clifford, Weyl, and unified Clifford-Weyl algebras, a few other

r-Weyl algebras have already been studied. For example, Arik and Coon [1], and more
recently Goodearl [14], Morikawa [21], and Gelfand and Fairlie [13] have considered
a “q-deformed” Weyl algebra which is a special case of our r-Weyl algebra. Namely,
if one takes V = k ⊕ k with the basis {v, w}, and defines R ∈ End(V ⊗ V ) to be the
strong Yang-Baxter operator such that

R(x⊗ x) = x⊗ x , R(y ⊗ y) = y ⊗ y , R(x⊗ y) = qy ⊗ x ,

where q 6= 0, there is a unique skew map ω:V ⊗ V → k with ω(x, y) = 1, and the
r-Weyl algebra WR(V, ω) is isomorphic to k[x, y]/〈xy − qxy − 1〉.

Note that if ω = 0 the r-Weyl algebra WR(V, ω) is just the r-symmetric algebra
SRV . Interestingly, the r-Weyl algebra admits an r-commutative r-structure that
reduces to the standard one on SRV in the special case ω = 0.

Theorem 1. Let V be a vector space, R a Yang-Baxter operator on V , and ω a skew
form on V . Then there is a unique r-structure R̃ on WR(V, ω) such that

R̃(v ⊗ w) = R(v ⊗ w) + ω(v ⊗ w) (1⊗ 1) .

Moreover, the r-structure R̃ is r-commutative, and R̃ is strong if R is strong.

Proof - The uniqueness of R̃ follows from Lemma 3, since the span of V and
1 in WR(V, ω) is a subspace U generating WR(V, ω), with R̃(U ⊗ U) = U ⊗ U . For
existence, it is useful to construct an r-symmetric algebra containing a formal variable
x, which specializes to WR(V, ω) when we set x equal to 1 ∈ k. Let V ′ = V ⊕ k, and
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let x = (0, 1) ∈ V ′. One easily checks that there is a unique Yang-Baxter operator R′

on V ′ given by
R′((v + αx)⊗ (w + βx)) =

R(v ⊗ w) + w ⊗ αx+ βx⊗ v + (αβ + ω(v ⊗ w))(x⊗ x)

for all v, w ∈ V , α, β ∈ k. The r-symmetric algebra SR′(V
′) is automatically r-

commutative, and is strong if R, hence R′, is strong.
Let I be the ideal in SR′(V

′) generated by x − 1. We claim that I is an r-ideal.
The relations above imply that x−1 is central in SR′(V

′), so I is spanned by elements
of the form (x− 1)v2 · · · vj, where v2, . . . , vj ∈ V ′. Taking w1, . . . , wk ∈ V ′, we have

R′((x− 1)v2 · · · vj ⊗ w1 · · ·wk) =

(mk ⊗mk)ρ(sjk)((x− 1)⊗ v2 ⊗ · · · ⊗ vj ⊗ w1 ⊗ · · · ⊗ wk)
by Lemma 2. Since R′((x − 1)⊗ v) = v ⊗ (x− 1) for all v ∈ V ′, the right-hand side
above is a linear combination of elements of the form

y1 · · · yk ⊗ (x− 1)x2 · · ·xj

for xi, yi ∈ V ′. This implies that R(A⊗ I) ⊆ I ⊗A. A similar argument implies that
R(I ⊗A) ⊆ A⊗ I, so I is an r-ideal. Note that SR′(V

′) is the quotient of TV ′ by the
relations

v ⊗ w − R(v ⊗ w) = ω(v ⊗ w)(x⊗ x) , v ⊗ x = x⊗ v
for all v, w ∈ V , hence SR′(V

′)/I is the quotient of TV ′ by the above relations together
with the relation x = 1. Thus there is a unique isomorphism SR′(V

′)/I ∼= WR(V, ω)
such that the following diagram commutes:

TV ′ TV

SR′(V
′)/I WR(V, ω)

-x7→1

? ?
-∼

We use this isomorphism to transfer the quotient r-structure on SR′(V
′)/I toWR(V, ω).

Denoting this r-structure on WR(V, ω) by R̃, it is clear that this r-structure is r-
commutative, is strong if R is strong, and satisfies

R̃(v ⊗ w) = R(v ⊗ w) + ω(v ⊗ w) (1⊗ 1) . ut
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4 Quantized Differential Forms

In classical mechanics the observables of a physical system are typically represented
by a Poisson algebra, a commutative algebra A equipped with a Lie bracket {·, ·} such
that {a, ·} is a derivation of A for any a ∈ A. In quantum theory the observables of
physical system are typically modeled by a noncommutative algebra. (In physics these
are algebras over C, but we work over an arbitrary field k.) One way of obtaining such
algebras is by quantizing Poisson algebras. There are many variations on this theme,
such as formal quantization [3, 18] and deformation quantization [24], but perhaps the
simplest is algebraic quantization. An algebraic quantization of the Poisson algebra
A is an associative product ∗ on A[x] such that

a ∗ b ≡ ab mod x

and
a ∗ b− b ∗ a ≡ x{a, b} mod x2

for all a, b ∈ A, and
x ∗ a = a ∗ x = xa

for all a ∈ A[x]. We write Ã for A[x] equipped with the product ∗. One may effectively
assign the variable x any value h̄ ∈ k by forming the quotient Ah̄ = Ã/〈x− h̄〉. Note
that A0 = A is commutative, while Ah̄ is generally noncommutative for h̄ 6= 0.

Since the noncommutativity of the quantization Ã is “controlled” by the Poisson
bracket in A, the algebras Ã and Ah̄ may well be r-commutative with the quotient
map j: Ã → Ah̄ an r-morphism. This allows the systematic study of the geometry
of the commutative algebra A, its algebraic quantization Ã and the specializations
Ah̄. In the spirit of algebraic geometry, one may regard a particular value of h̄ as
a point in the “line” k[x], and picture Ã as a fiber bundle over the line, with fiber
over x = h̄ equal to Ah̄. Since the line is contractible, one may expect the map
j∗: ΩR(Ã)→ ΩR(Ah̄) to induce an isomorphism on cohomology for any h̄ ∈ k. If this
is the case, the cohomology H(ΩR(Ah̄)) of any fiber will equal that of the “classical
fiber” A = A0. In this section we use these ideas to give a new proof of Segal’s
“Poincaré lemma” for differential forms on the Weyl algebra [26].

Now we turn to the Weyl algebra. Let V be a vector space and ω an antisymmetric
bilinear form on V . We write x for (0, 1) ∈ V ⊕ k. The space V ⊕ k is a Lie algebra,
essentially the Lie algebra of the Heisenberg group, with bracket given by

[v + αx, w + βx] = ω(v, w)x

for all v, w ∈ V , α, β ∈ k. Let the Heisenberg algebra Ã over V denote the universal
enveloping algebra of V ⊕ k. Given h̄ ∈ k, let Weyl algebra Ah̄ over V denote the
quotient of Ã by the ideal generated by x − h̄. Let j: Ã → Ah̄ denote the quotient
map. We write simply A for A0; note that A is the symmetric algebra SV .

12



We now give the Heisenberg and Weyl algebras r-structures such that j: Ã→ Ah̄
is an r-morphism. By Theorem 1, Ah̄ has a unique r-structure R such that

R(v ⊗ w) = w ⊗ v + h̄ω(v, w)(1⊗ 1)

for all v, w ∈ V , and this r-structure is strong and r-commutative. By the following
theorem, if k is not of characteristic 2 then there is a unique r-structure R̃ on Ã such
that

R̃((v + αx)⊗ (w + βx)) = (w + βx)⊗ (v + αx) +
1

2
ω(v, w)(x⊗ 1 + 1⊗ x)

for all v, w ∈ V and α, β ∈ k, and R̃ is strong and r-commutative.

Theorem 2. Let g be a Lie algebra over a field k not of characteristic 2, with
[g, [g, g]] = 0. Then there exists a unique r-structure R on the universal envelop-
ing algebra Ug such that

R(v ⊗ w) = w ⊗ v +
1

2
([v, w]⊗ 1 + 1⊗ [v, w]) .

Moreover, this r-structure is strong and r-commutative.

Proof - Uniqueness follows from Lemma 2, since the span of g and 1 in Ug is
a subspace generating Ug whose tensor product with itself is preserved by R. For
existence, let L = g ⊕ k, and write e for (0, 1) ∈ L. One may verify by explicit
calculation that there is a strong Yang-Baxter operator R′ on L given by

R′((v + αe)⊗ (w + βe)) = (w + βe)⊗ (v + αe) +
1

2
([v, w]⊗ e+ e⊗ [v, w])

for all v, w ∈ V and α, β ∈ k. This calculation uses the fact that [g, [g, g]] = 0. Let us
also use R′ to denote the r-structure in SR′(L). Noting that R′((e−1)⊗u) = u⊗(e−1)
for all u ∈ L, it follows as in the proof of Theorem 1 that the ideal I ⊆ SR′(L)
generated by e− 1 is an r-ideal. Note that SR′(L) is the quotient of TL by the ideal
generated by the elements

v ⊗ w − w ⊗ v − 1

2
([v, w]⊗ e+ e⊗ [v, w]) , v ⊗ e− e⊗ v

for all v, w ∈ V . It follows that SR′(L)/I is isomorphic to the quotient of Tg by the
ideal generated by the elements

v ⊗ w − w ⊗ v − [v, w]

for all v, w ∈ g. This gives a natural isomorphism SR(L)/I ∼= Ug, which we may use
to endow Ug with an r-structure with the desired properties. ut
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Corollary 1. Let V be a vector space over a field k not of characteristic 2, and let
ω be an anti-symmetric bilinear form on V . Then for any h̄ ∈ k the quotient map
j: Ã→ Ah̄ from the Heisenberg algebra to the Weyl algebra over V is an r-morphism.

Proof - This follows from Lemma 5 and the calculation

(j ⊗ j)R̃((v + αx)⊗ (w + βx)) = (j ⊗ j)((w + βx)⊗ (v + αx) +
1

2
ω(v, w)(x⊗ 1 + 1⊗ x))

= (w + βh̄)⊗ (v + αh̄) + h̄ω(v, w)(1⊗ 1)
= R((v + αh̄)⊗ (w + βh̄))
= R(j ⊗ j)((v + αx)⊗ (w + βx)) . ut

We now consider differential forms on the Heisenberg and Weyl algebras. We
write simply Ω(Ã) and Ω(Ah̄) for the differential forms on these algebras, suppressing
reference to the r-structures involved. One easily verifies that Ω(Ã) is the quotient of
Ωu(Ã) by the differential ideal generated by the relations

vdw − wdv =
1

2
ω(v, w)dx , xdv = (dv)x , vdx = (dx)v , xdx = (dx)x

for all v, w ∈ V . The quotient map j: Ã→ Ah̄ induces a surjection j∗: Ω(Ã)→ Ω(Ah̄)
with kernel generated as an ideal by x− h̄ and dx. Moreover, Ω(Ah̄) is the quotient
of Ωu(Ah̄) by the differential ideal generated by the relations

vdw = (dw)v

for all v, w ∈ V . Taking h̄ = 1, elements of Ω(Ah̄) are precisely Segal’s “quantized
differential forms.” Taking h̄ = 0, Ω(A0) = Ω(A) is isomorphic to the algebra of
algebraic differential forms on V ∗.

Our structure theorem for the differential forms on Ã and Ah̄ is motivated by the
fiber bundle picture described above. If the “total space” Ã were simply a product
of the “fiber” Ah̄ and the line k[x], one would expect there to be a differential graded
algebra isomorphism α: Ω(Ã) → Ω(k[x]) ⊗ Ω(Ah̄) such that the following diagram
commutes:

Ω(Ã) Ω(k[x]) ⊗ Ω(Ah̄)

Ω(Ah̄)

Q
Q
Q
Q
Q
Q
Q
Q
QQs

j∗

-α

?

p⊗id

Here Ω(k[x]) denotes the differential forms on k[x] equipped with the twist map as
its r-structure, and p: Ω(k[x])→ k is the homomorphism determined by p(x) = h̄ and
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p(dx) = 0. This conjecture turns out to be only sightly over-optimistic. Note that
when k[x] is equipped with the twist map as an r-structure, the natural inclusion
k[x] ↪→ Ã is an r-morphism, so it induces a differential graded algebra morphism
Ω(k[x])→ Ω(Ã). Thus Ω(Ã) becomes an Ω(k[x])-bimodule.

Theorem 3. For any h̄ ∈ k, there is a map α: Ω(Ã) → Ω(k[x]) ⊗ Ω(Ah̄), an iso-
morphism of differential complexes and of Ω(k[x])-bimodules, such that the following
diagram commutes:

Ω(Ã) Ω(k[x]) ⊗ Ω(Ah̄)

Ω(Ah̄)

Q
Q
Q
Q
Q
Q
Q
Q
QQs

j∗

-α

?

p⊗id

Proof - It follows from the Diamond Lemma [5] that elements of the form

xi0(dx)j0 ei11 (de1)j1 · · · einn (den)jn

are a basis for Ω(Ã). Let α: Ω(Ã)→ Ω(k[x])⊗ Ω(Ah̄) be defined by

α
(
xi0(dx)j0 ei11 (de1)j1 · · · einn (den)jn

)
= xi0(dx)j0 ⊗ ei11 (de1)j1 · · · einn (den)jn .

One may check that α is a morphism of differential complexes and Ω(k[x])-bimodules
by explicit calculation. It is also easy to check that (p ⊗ id)α = j∗. To show that
α is one-to-one and onto, it suffices to note, again using the Diamond Lemma, that
elements of the form

xi0(dx)j0 ⊗ ei11 (de1)j1 · · · einn (den)jn

are a basis for Ω(k[x]) ⊗ Ω(Ah̄). ut

We emphasize that α is not natural, as it depends on the choice of ordered basis
ei, nor is it an algebra homomorphism. Theorem 3 has as a corollary a “Poincaré
lemma” for quantized differential forms. In the case k = R, the part of this corollary
concerning Ω(Ah̄) was proved by Segal [26].

Corollary 2. If the field k is of characteristic zero, the r-commutative de Rham
cohomology Hp(Ω(Ã)) vanishes for p > 0, and equals k for p = 0. The same holds
for Hp(Ω(Ah̄)) for any h̄ ∈ k.

Proof - By Theorem 3 and the Künneth product formula we have H(Ω(Ã)) ∼=
H(Ω(k[x])⊗H(Ω(Ah̄)) for any value of h̄ ∈ k. By the Poincaré lemma for algebraic
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differential forms, it follows that Hp(Ω(k[x]) equals k for p = 0 and vanishes otherwise,
and taking h̄ = 0 the same holds for Hp(Ω(A)). Thus H(Ω(Ã)) equals k for p = 0
and vanishes otherwise. Again using the Künneth formula, it follows that the same
must hold for H(Ω(Ah̄)) for all h̄ ∈ k. ut

We should make clear the sense in which the Heisenberg algebra Ã is an algebraic
quantization of the symmetric algebra A = SV . Restricting α: Ω(Ã)→ Ω(k[x])⊗Ω(A)
to elements of degree zero, we obtain a k[x]-module isomorphism of Ã and A[x]. We
can use this to transfer the product in Ã to A[x]; call this product ∗. Then we have

a ∗ b ≡ ab mod x , a ∗ b− b ∗ a ≡ x{a, b} mod x2

for all a, b ∈ A, and
x ∗ a = a ∗ x = xa

for all a ∈ A[x].
It is worth noting that Ω(Ã) also arises as a cochain complex for the cohomology

of the Lie algebra V ⊕ k with coefficients in Ã. Since V ⊕ k is nilpotent this gives an
alternate proof of Corollary 2. But, as we shall see in the next section, the approach
using r-commutative geometry also works in cases which do not arise through Lie
algebra cohomology.

5 Noncommutative Tori

Our definition of algebraic quantization in the previous section is not really sufficiently
general. At the very least, the deformation parameter space should be allowed to be
an arbitrary algebraic variety. Sometimes it is the punctured plane, that is, the
Laurent polynomials k(x). Here one specializes by setting x equal to any nonzero
q ∈ k, regarding q as the equivalent of eh̄, so that q = 1 corresponds to the classical
(commutative) case. This occurs in the theory of quantum groups. Starting with a
Cartan subalgebra of its Lie algebra, there is a canonical way to make any complex
semisimple Lie group G into a Poisson manifold [11, 12]. The algebraic functions A
on G thus become a Poisson algebra, and there is a product ∗ on A(x) such that

a ∗ b ≡ ab mod (x− 1) ,

a ∗ b− b ∗ a ≡ x{a, b} mod (x− 1)2

for all a, b ∈ A, and
x ∗ a = a ∗ x = xa

for all a ∈ A(x). Writing Ã for A(x) equipped with the product ∗, it turns out
that the “quantum group” Ã is naturally an r-commutative algebra, as are all its
specializations Aq = Ã/〈x− q〉.
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Noncommutative tori also have as their deformation parameter space the punc-
tured plane, or a product of copies thereof. They arise from quantizing the algebra
of functions on T n, which has translation-invariant Poisson structures of the form

π =
∑

1≤i<j≤n
aij

∂

∂θi
∧ ∂

∂θj
.

They have been intensively studied from the C*-algebraic viewpoint [25]. Our goal
here is to describe the r-commutative de Rham theory of noncommutative tori in a
purely algebraic setting, making use of a “universal noncommutative torus” which
has all the noncommutative n-tori as quotients.

We work over an arbitrary field k, and fix n ≥ 0 and a collection q = {qij},
1 ≤ i < j ≤ n, of nonzero elements of k. We define qii = 1 and qji = q−1

ij . The
noncommutative torus Tq is the algebra generated by elements u1, . . . , un and their
inverses, with the relations

uiuj = q2
ijujui

for 1 ≤ i < j ≤ n. (The appearance of q2
ij here rather than qij is a purely technical

matter.) The universal noncommutative torus T̃ is the algebra with generators ui, xij,
and their inverses, where 1 ≤ i < j ≤ n, with the relations

uiuj = x2
ijujui , xijuk = ukxij , xijxkl = xklxij .

Note that the quotient of T̃ by the ideal generated by all the elements xij − qij is
isomorphic to Tq. Let j: T̃ → Tq denote the quotient map. We now give T̃ and Tq
r-structures making this quotient map an r-morphism:

Theorem 4. The universal noncommutative torus T̃ has a unique strong r-structure
R̃ such that

R̃(ui ⊗ uj) = xijuj ⊗ xijui ,
R̃(ui ⊗ xjk) = xjk ⊗ ui , R̃(xij ⊗ xkl) = xkl ⊗ xij .

This r-structure is r-commutative.

Proof - Let a multi-index be an n-tuple of integers, I = (i1, . . . in), and let a double
multi-index be a family of integers B = {bij}1≤i<j≤n. Given any multi-index I, let

uI = ui11 · · ·uinn ,

and given a double multi-index B, let

xB =
∏

1≤i<j≤n
x
bij
ij .

For any multi-indices I and J , there is a unique double multi-index (IJ) such that

uIuJ = x(IJ)uI+J .
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Similarly
uIuJ = x2(I,J)uJuI

where 2(I, J) = (IJ) − (JI). By the Diamond Lemma, elements of the form xBuI

form a basis of T̃ .
To prove the uniqueness of R̃, we first determine what it does to elements of the

form u−1
i and x−1

ij . Write R(x−1
ij ⊗xkl) =

∑
α,β cαβeα⊗ eβ, where cαβ ∈ k and {eα} is a

basis of T̃ consisting of elements of the form xBuI. Then on the one hand, equation
(3) implies

(id⊗m)ρ(s21)(x−1
ij ⊗ xij ⊗ xkl) = R(1⊗ xkl) = xkl ⊗ 1 .

On the other hand,

(id⊗m)ρ(s21)(x−1
ij ⊗ xij ⊗ xkl) = (id⊗m)R1(x−1

ij ⊗ xkl ⊗ xij)
=

∑

α,β

cα,βeα ⊗ eβxij .

Comparing these, we conclude that the only nonzero term cαβeα⊗ eβ is xkl⊗ x−1
ij . In

other words,
R̃(x−1

ij ⊗ xkl) = xkl ⊗ x−1
ij .

Analogous arguments imply the following:

R̃(x−1
ij ⊗ x−1

kl ) = x−1
kl ⊗ x−1

ij

R̃(ui ⊗ x−1
jk ) = x−1

jk ⊗ ui
R̃(u−1

i ⊗ xjk) = xjk ⊗ u−1
i

R̃(u−1
i ⊗ x−1

jk ) = x−1
jk ⊗ u−1

i .

Writing R(u−1
i ⊗uj) =

∑
α,β cαβeα⊗eβ, we may calculate using the above results that

(id⊗m)ρ(s21)(u−1
i ⊗ x−1

ij ui ⊗ x−1
ij uj) = (id⊗m)R1(u−1

i ⊗ uj ⊗ ui)
=

∑

α,β

cαβeα ⊗ eβui

while by (3),

(id⊗m)ρ(s21)(u−1
i ⊗ x−1

ij ui ⊗ x−1
ij uj) = R(x−1

ij ⊗ x−1
ij uj)

= x−1
ij uj ⊗ x−1

ij ,

so that
R(u−1

i ⊗ uj) = x−1
ij uj ⊗ x−1

ij u
−1
i .

Similarly, we can show that

R(u−1
i ⊗ u−1

j ) = xiju
−1
j ⊗ xiju−1

i .
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With these determinations of the action of R̃ on tensor products of elements of the
form ui, u

−1
i , xij, and x−1

ij , we may calculate the action of R̃ on all of T̃ ⊗ T̃ using

Lemma 2. Thus there is a unique strong r-structure R̃ on T̃ meeting the hypotheses
of the theorem.

To prove existence, define R̃ ∈ Endk(T̃ ⊗ T̃ ) by

R̃(xBuI ⊗ xCuJ) = xC+(I,J)uJ ⊗ xB+(I,J)uI .

Straightforward calculations show that R̃ is a strong Yang-Baxter operator. Since
(I, 0) = (0, I) for all multi-indices I,

R̃(1⊗ xBuI) = xBuI ⊗ 1 , R̃(xBuI ⊗ 1) = 1⊗ xBuI .

We complete the proof that R̃ is an r-structure for T̃ using Lemma 2. To show that
R̃(id⊗m) = (m⊗ id)ρ(s12), one notes that

R̃(id⊗m)(xBuI ⊗ xCuJ ⊗ xDuK) = R̃(xBuI ⊗ xC+D+(JK)uJ+K)
= xC+D+(JK)+(I,J+K)uJ+K ⊗ xB+(I,J+K)uI

while

(m⊗ id)ρ(s12)(xBuI ⊗ xCuJ ⊗ xDuK) = (m⊗ id)R̃2(xC+(I,J)uJ ⊗ xB+(I,J)uI ⊗ xDuK)
= (m⊗ id)(xC+(I,J)uJ ⊗ xD+(I,K)uK ⊗ xB+(I,J)+(I,K)uI)
= xC+D+(I,J)+(I,K)+(JK)uJ+K ⊗ xB+(I,J)+(I,K)uI .

It then suffices to note that (I, J +K) = (I, J) + (I,K) for all multi-indices I, J,K.
The proof that R̃(m⊗ id) = (id⊗m)ρ(s21) is similar.

Lastly, to show that R̃ is r-commutative one notes that

mR̃(xBuI ⊗ xCuJ) = xB+C+2(I,J)+(JI)uI+J

= xB+C+(IJ)uI+J

= m(xBuI ⊗ xCuJ) . ut

Corollary 3. There is a unique r-structure R on Tq such that

R(ui ⊗ uj) = q2
ijuj ⊗ ui .

This r-structure is strong and r-commutative. The quotient map j: T̃ → Tq is an
r-morphism.

Proof - Using the notation of the proof of Theorem 3, define uI ∈ Tq for any
multi-index I by

uI = ui11 · · ·uinn ,

and define qB for any double-index B by

qB =
∏

1≤i<j≤n
q
bij
ij .

19



For any uI, uJ ∈ Tq we have uIuJ = q(IJ)uI+J and uIuJ = q2(I,J)uJuI . By the
Diamond Lemma, {uI} is a basis of Tq. Arguing as in the proof of Theorem 3, one
can show that the r-structure R must satisfy

R(u−1
i ⊗ uj) = q−2

ij uj ⊗ u1
i

R(ui ⊗ u−1
j ) = q−2

ij u
−1
j ⊗ ui

R(u−1
i ⊗ u−1

j ) = q2
iju
−1
j ⊗ u−1

i .

Lemma 3 thus implies that R is unique.
For existence, note using the technique in the proof of Theorem 1 that the ideal

generated by the elements xij − qij is an r-ideal. It follows that there is a strong
r-commutative r-structure R on Tq such that j: T̃ → Tq is an r-morphism. By the
r-morphism property, this r-structure satisfies

R(ui ⊗ uj) = (j ⊗ j)(xijuj ⊗ xijui) = q2
ijuj ⊗ ui . ut

We now develop an analog of Theorem 3 for noncommutative tori. Equipping T̃
and Tq with the r-structures given in the theorem and corollary above, we write simply
Ω(T̃ ) and Ω(Tq) for the differential forms on T̃ and Tq. The r-morphism j: T̃ → Tq
induces a differential graded algebra morphism j∗: Ω(T̃ )→ Ω(Tq).

Define Q to be the algebra of Laurent polynomials in the 1
2
n(n−1) variables {xij}.

This algebra plays the role of a moduli space for noncommutative n-tori. There is
a natural algebra inclusion Q ↪→ T̃ . Giving Q the twist map as an r-structure,
this inclusion is an r-morphism, so it induces a differential graded algebra morphism
Ω(Q)→ Ω(T̃ ), making Ω(T̃ ) into a bimodule over Ω(Q).

Theorem 5. There is a map α: Ω(T̃ ) → Ω(Q) ⊗ Ω(Tq), an isomorphism of Ω(Q)-
modules and differential complexes, such that the following diagram commutes:

Ω(T̃ ) Ω(Q)⊗ Ω(Tq)

Ω(Tq)

Q
Q
Q
Q
Q
Q
QQs

j∗

-α

?

j∗⊗id

Proof - We define α by

α


(

∏

1≤i<j≤n
x
aij
ij dx

bij
ij )uk1

1 (du1)
`1 · · ·uknn (dun)`n


 =

∏

1≤i<j≤n
x
aij
ij dx

bij
ij ⊗ uk1

1 (du1)`1 · · ·uknn (dun)`n .
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That α is well-defined, one-to-one, and onto follows from the Diamond Lemma. One
may verify by explicit computation that α is a morphism of Ω(Q)-modules and dif-
ferential complexes. To prove that the diagram commutes, note that

j∗(ωu
i1
1 du

j1
1 · · ·uinn dujnn ) = j∗(ω)(ui11 du

j1
1 · · ·uinn dujnn )

= (j∗ ⊗ id)α(ωui11 du
j1
1 · · ·uinn dujnn )

where ω ∈ Ω(Q). ut

As in Theorem 3, the isomorphism α of the above theorem is neither natural, nor
an algebra homomorphism. Interestingly, however, we have:

Corollary 4. The isomorphism α: Ω(T̃ ) → Ω(Q) ⊗ Ω(Tq) induces an isomorphism
of cohomology rings α∗:H(Ω(T̃ ))→ H(Ω(Q))⊗H(Tq).

Proof - The only point not following immediately from the theorem above is that
α∗ is an algebra homomorphism. Define ωij, µi ∈ Ω(T̃ ) by

ωij = x−1
ij dxij , µi = u−1

i dui .

Using the basis for Ω(T̃ ) in the proof of Theorem 5, one can see that these anticom-
muting elements of degree 1 anticommute generate a subalgebra of Ω(T̃ ) isomorphic
to an exterior algebra. Restricted to this subalgebra, α is a homomorphism. Noting
that ωij and µi are closed and that [α(ωij)] and [α(µi)] generate H(Ω(Q)) ⊗H(Tq),
the corollary follows. ut

Corollary 5. The r-commutative de Rham cohomology H(Ω(T̃ )) is isomorphic as
an algebra to the exterior algebra on n + 1

2
n(n − 1) generators of degree 1. For any

q, the r-commutative de Rham cohomology H(Ω(Tq)) is isomorphic as an algebra to
the exterior algebra on n generators of degree 1.

Proof - A consequence of the proof of Corollary 4. ut

It is interesting to compare work on the K-theory and cyclic cohomology of non-
commutative tori [6]. These behave similarly to r-commutative de Rham cohomology
in that, at least in a C*-algebraic setting, they are independent of the deformation
parameters qij. More refined K-theoretic invariants vary with the qij, however. It
seems natural to study these phenomena using a C*-algebraic version of the universal
noncommutative torus (which may in this case be simplified by taking the univer-
sal cover of the “base space” Q). To relate K-theory and cyclic cohomology more
precisely to r-commutative geometry, it would seem useful to develop a theory of
characteristic classes in the framework of r-commutative geometry.

To conclude this section we briefly discuss the relation between noncommutative
tori and certain r-symmetric algebras, the “quasipolynomial algebras.” As in the
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previous section, let k be any field, fix n ≥ 0 and a collection q = {qij}, 1 ≤ i < j ≤ n,
of nonzero elements of k, and let qii = 1 and qji = q−1

ij . Let V be an n-dimensional
vector space with basis {xi}, where 1 ≤ i ≤ n. There is a unique strong Yang-Baxter
operator R on V such that

R(xi ⊗ xj) = qijxj ⊗ xi .

Following De Concini and Kac [10], we call the r-symmetric algebra SRV is a quasipoly-
nomial algebra.

Let us describe ΩR(SRV ) for such algebras. We say that a multi-index I =
(i1, . . . , in) is non-negative if all its components are non-negative, and short if all its
components equal 0 or 1. Given any multi-index I and short multi-index J , let ωIJ
denote the element

ωIJ = xi11 dx
j1
1 · · ·xinn dxjnn

in ΩR(SRV ). Let Ω(SV ) denote the differential forms on SV equipped with the twist
map as its r-structure.

Theorem 6. Let SRV be a quasipolynomial algebra. Then there is an isomorphism
of differential complexes α: ΩR(SRV )→ Ω(SV ) given by

α(ωIJ) = xi11 dx
j1
1 · · ·xinn dxjnn .

Proof - Note that ΩR(SRV ) may be defined as the algebra generated by the ele-
ments xi, dxi, with the relations

xixj = qijxjxi , xidxj = qijdxjxi , dxidxj = −qijdxjdxi .

It follows that the elements ωIJ , where I is arbitrary and J is short, span ΩR(SRV ).
Moreover, the Diamond Lemma implies that they form a basis. It follows that α
is an isomorphism of vector spaces. It is straightforward that α is a morphism of
differential complexes. ut

As a corollary we have the following Poincaré lemma:

Corollary 6. Let SRV be a quasipolynomial algebra over a field of characteristic
zero. Then Hp(ΩR(SRV )) = 0 for p ≥ 1, while H0(ΩR(SRV )) = k.

Proof - A consequence of the usual Poincaré lemma and the above theorem.
ut

The isomorphism of Theorem 6 is not canonical, as it depends on the ordering of
the basis xi. Note that if R is a Yang-Baxter operator on a vector space V , so is −R.
One may define ΛRV , the r-exterior algebra over V , to be the r-commutative algebra
S−RV [20]. When R is the twist map, ΛRV = ΛV . By the same techniques used
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to prove the above theorem, one may show that there is a canonical isomorphism of
vector spaces (not of algebras) β: ΩR(SRV )→ SRV ⊗ ΛRV given by

β(v1 · · · vpdw1 · · ·dwq) = v1 · · · vp ⊗ w1 · · ·wq .

Many of the usual formulas in the differential geometry of vector spaces extend
to quasipolynomial algebras. For example, there are operations ∂k:ωR(SRV ) →
ΩR(SRV ), 1 ≤ k ≤ n, such that dω =

∑
dxk ∂kω, and the fact that d2 = 0 fol-

lows from the fact that ∂j∂k = qkj∂k∂j.
The relation of quasipolynomial algebras to noncommutative tori is two-fold.

First, there is an algebra inclusion SRV ↪→ Tq given by

xi 7→ ui .

By Lemma 5 this inclusion is an r-morphism. Second, there is a way to obtain non-
commutative tori as quotients of certain quasipolynomial algebras. This construction
is especially interesting when k = C and the qij are of unit modulus. Equip V ⊕ V
with the basis {zi, zi}, where

zi = (xi, 0) , zi = (0, xi) .

Then there is a unique strong Yang-Baxter operator R on V ⊕ V given by

R(zi ⊗ zj) = qijzj ⊗ zi , R(zi ⊗ zj) = qjizj ⊗ zi , R(zi ⊗ zj) = qijzj ⊗ zi .

The second relation together with R2 = id implies

R(zi ⊗ zj) = qjizj ⊗ zi .

The algebra A = SR(V ⊕ V ) is a quasipolynomial algebra. We may define operators
∂, ∂: ΩR(A)→ ΩR(A) by

∂ω =
∑

i

dzi ∂iω , ∂ω =
∑

i

dzi ∂iω ,

where ∂i and ∂i denote the partial derivatives with respect to zi and zi, defined as
above. One may easily verify that, as in classical complex geometry,

d = ∂ + ∂ , ∂2 = ∂
2

= ∂∂ + ∂∂ = 0 .

The algebra A is a noncommutative analog of the real-algebraic coordinate ring
of Cn. Just as Cn contains an embedded torus given by the equations zizi = 1, the
quotient of A by the ideal I generated by the elements zizi − 1 is isomorphic to Tq
via the map

zi 7→ ui , zi → u−1
i .

One may check using Lemma 5 that this map is an r-morphism.
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6 Quantum Groups

There are many directions one could take in the further study of r-commutative
geometry. The most immediately fruitful may be those providing insight into the
representation theory of quantum groups. Just as all representations of SLq(2) may
be constructed as “line bundles” (projective modules) over the quantum projective
plane [27], we may expect interesting representations of quantum groups to arise
as sections of homogeneous vector bundles satisfying invariant differential equations.
The principal difficulty is that the Yang-Baxter operators involved are not strong.
Here we sketch what is known and raise some open questions, referring the reader to
our forthcoming paper [2] for further details.

The differential forms ΩR(A) as we have defined them are suited to the case when
A is r-commutative and R is strong, but must be generalized in the non-strong case.
Here we only treat quantum vector spaces (r-symmetric algebras) satisfying certain
Hecke-type identities. Suppose that the Yang-Baxter operator R on the vector space
V is of type q, that is,

R2 = (1− q)R + q

for some nonzero q ∈ k. Letting A = SR(V ), one may define the front differential
calculus Ωf for A to be the quotient of Ωu(A) by the differential ideal generated by
d1 together with all the elements of the form

qv dw −
∑

i

(dwi)vi ,

where R(v ⊗ w) =
∑
wi ⊗ vi. The extra factor of q prevents the differential from

being over-determined, in the following sense. The modified Hecke identity implies
∑

i

R(wi ⊗ vi) = qv ⊗ w + (1− q)
∑

i

wi ⊗ vi ,

so that in Ω one has
qv dw =

∑

i

(dwi)vi

and
q
∑

i

widvi = q(dv)w + (1− q)
∑

i

(dwi)vi ,

a linear combination of which gives the relation

(dv)w + v dw =
∑

i

(dwi)vi + widvi ,

that must hold in any differential calculus for A.
One may equally well work with the back differential calculus Ωb for A, the quotient

of Ωu(A) by the differential ideal generated by d1 together with all the elements of
the form

q(dv)w−
∑

i

wi dvi .
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The front and back differential calculi are not in general isomorphic (unless q = 1).
Both these differential calculi have been considered by Pusz and Woronowicz [22, 23],
and Wess and Zumino [31, 32], in the special case where V has the basis ei, 1 ≤ i ≤ n,
and

R(ei ⊗ ej) =





ej ⊗ ei if i = j

q
1
2 ej ⊗ ei if i < j

q
1
2 ej ⊗ ei + (1− q)ei ⊗ ej if i > j .

Up to various conventional normalizations this R is the R-matrix for the quantum
group GLq(n). In this case the algebra A = SRV is often regarded as a “q-analog”
of an n-dimensional vector space.

One motivation for the study of supercommutative algebras is the supercommu-
tativity of the algebra of differential forms on a manifold (with exterior product),
relative to the Z2-grading

Ωeven(M) =
⊕

p≥0

Ω2p(M) , Ωodd(M) =
⊕

p≥0

Ω2p+1(M) .

As a generalization, we can construct an r-commutative r-structure for the front
differential calculus Ωf . Let i:V → Ωf be the natural inclusion map, and let d:V →
Ωf be inclusion composed with the differential in Ωf . Then Ωf has a unique r-
structure R̃ such that

R̃(i⊗ i) = (i⊗ i)R
R̃(i⊗ d) = q−1(d⊗ i)R
R̃(d⊗ i) = (i⊗ d+ (1− q−1)d⊗ i)R
R̃(d⊗ d) = −q−1(d⊗ d)R .

This r-structure is r-commutative. Taking q = 1, and using the fact that any strong
r-commutative algebra A is the quotient of the r-symmetric algebra SRA by an r-ideal,
one can show that the r-structure R on a strong r-commutative algebra A extends
uniquely to a strong r-commutative r-structure on ΩR(A) such that

R̃(a⊗ db) = (d⊗ i)R̃(a⊗ b)

and
R̃(da⊗ db) = −(d⊗ d)R̃(a⊗ b)

for all a, b ∈ A.
The r-commutativity of quantum groups may be shown either using the definition

of quasitriangular Hopf algebras, together with Lemma 1, or via quantum matrix
algebras. Let V be a vector space equipped with a Yang-Baxter operator R. One
may construct a Yang-Baxter operator R̃ on End(V ) using the natural isomorphism
End(V )⊗ End(V ) ∼= End(V ⊗ V ), as follows:

R̃(S ⊗ T ) = R ◦ (S ⊗ T ) ◦R−1 .
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The r-symmetric algebra MRV = S
R̃

(End(V )) is called a quantum matrix algebra
[12]. Quantum groups typically inherit the structure of r-commutative algebras from
quantum matrix algebras. For example, taking V and R as in the example above, the
quantum matrix algebra MRV is often denoted Mq(n). The quantum determinant
detq ∈Mq(n) is an element with

R̃(detq ⊗ a) = a⊗ detq ,
R̃(a⊗ detq) = detq ⊗ a ,

for all a ∈ MRV . It follows that the quantum group SLq(n), which is defined as
the quotient Mq(n)/〈detq − 1〉, has a unique r-structure such that the quotient map
Mq(n)→ SLq(n) is an r-morphism.

Returning to the general case, it is known that MRV is a bialgebra and has a
coaction on SRV . If ei is a basis for V and eij ∈ End(V ) are matrix units with
eijek = δikej, where δ is the Kronecker delta, the coproduct ∆:MRV →MRV ⊗MRV
is determined by

∆(eij) =
∑

k

ekj ⊗ eik ,

while the coaction Φ:SRV →MRV ⊗ SRV is determined by

Φ(ej) =
∑

i

eij ⊗ ei .

Woronowicz [28, 30] has initiated the study of differential calculi invariant under the
coaction of a bialgebra. If R is of type q, the front differential calculus is covariant
for the coaction Φ of MRV on SRV . Namely, Φ extends uniquely to a coaction
Φ∗: Ωf →MRV ⊗ Ωf satisfying

(id⊗ d)Φ∗ = Φ∗d .

It is natural to attempt to construct covariant differential calculi for quantum
groups and quantum matrix algebras using r-commutative geometry. One could hope
by this approach to generalize the differential calculus for SUq(2) constructed by
Woronowicz [28]. In particular, one should seek to explain the mysterious fact that
this differential calculus is left-covariant but not right-covariant for q 6= 1. One could
also hope to give a new proof of the fact that the cohomology of this differential
calculus is independent of q, using the ideas by which we treated noncommutative
tori. The difficulty is that, apart from the front and back differential calculi, the right
generalization of differential forms to r-commutative algebras that are not strong is
not known.
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