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We discuss the possible topological terms in (2 + 1)d sigma models for antiferromagnets
and point out errors in some of the ‘proofs’ of the nonexistence of the Hopf term.

In considering the high T superconductivity which occurs in materials with
antiferromagnetic 2-dimensional layers, it is common to use a continuum approxi-
mation in terms of a spin field n(t, , ¥} where n = (n, ny ny) satisfies the constraint
n-n = 1. The classical action in this approximation is:

s ./(B#ni)zdtd:cdy .

where 5 is the spin. Differentiating the constraint on n implies that the two-form
F defined by F,) = eijkma,,nj Ayny. is closed: dF = 0. It follows immediately that
the ‘topological current’ J# = ¢#**Fu) is conserved: 8,J% = 0. It also follows
from DeRahm theory that F = dA for some one-form A: 0,4, —~ 8, A, = Fy.
Dzialoshinskii, Polyakov, and Weigmann® suggested that to the above action for
the 2+ 1 dimensional Heisenberg antiferromagnetic field should be added the Hopf
term:

—'i—r /AyJ“dtdmdy.

The Hopf term assumes nonzero integer values on “Hopf textures”, or homotopically
nontrivial maps from S° to 52, Since the Hopf term is constant for each homotopy
class of maps, it does not affect the classical equations of motion, but in the quantum
theory it endows the skyrmions described by the model with fractional statistics.
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Since then several .authors have claimed that the Hopf term in the action for
the Heisenberg antiferromagnet is actually zexro.»®%® At present the general belief
seems to be that there are several proofs that the Hopf term is zero.

In the work of Haldane,? the (2 4 1)d problem is considered as a generalisation
of the (1 1)d problem. This topological term that appears in the (1+ 1}d problem
is the Pontryagin index:
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If we consider the {14-1)d problem as imbedded in the (2 + 1)d problem as the plane
(y = const) then the integrand of the above expression is the y-component of the
topological current J,: @ = (1/4x) fJ,dedt. 1f one imposes the boundary condition
that n(t, £, y) = ng at space-time infinity then Q is an integer independent of the
plane {y = const}. Thus

/6nydtda:dy = 0 and similarly /C%detdxdy =1. (0

These expressions are part of the topological term that Haldane® calculates in
(2 + 1)d as a direct generalization of the topological term in (1 -+ 1}d, The fact
that both expressions are zero leads him to conclude that there is no topological
term in (2 4+ 1)d or any higher dimension. It is clear, however, that these terms are
not part of the Hopf term. They are part of [ 8, J"dzdydt = 0.

Dombre and Read?® expand the Lagrangian for the lattice (2 + 1)d problem in
powers of the space-time derivatives up to the third order. The terms with third-
order derivatives are essentially the same as the integrals in Eq. (1), and vanish as
_in Ref. 2 because of the boundary conditions. Here it is important to note that
the Hopf invariant is nonlocal in terrms of n and an expansion of the Lagrangian in
powers of the space-time derivatives cannot give a nonlocal function of n(x, y, ).
The third order terms considered in Ref. 3 do not represent the Hopf term.

In both works,2?® the derivation of the continuum limit requires that the num-
ber of spins along a line in the {z, y) plane be even. This seemingly unphysical
assumption indicates that the passage to the continuum limit for antiferromagnetic
theories is not well understood.

In general, in a system that may be separated into ‘slow’ and ‘fast’ variables,
topological terms may appear as a Berry’s phase. Let denote the phase space
of the slow variables (which are treated classically) and let H denote the Hilbert
space of states for the fast variables {which are treated quantum-mechanically). The
state of the slow variables defines an external Hamiltonian for the fast variables,
ie., for each s € S there is 2 Hamiltonian H, on H. A smoothly varying family
of riondegenerate eigenvalues, ¥, € H with H,¥, = E;¥,, defines a complex line
bundle on S, and adiabatic evolution of the system corresponds to parallel transport
in this bundle with respect to the Berry connection. The holonomy arcund a loop
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is known as Berry’s phase. It is worth noting that there are two sources of Berry’s
phase: by the Ambrose-Singer theorem® the holonomy of a connection arises from
curvature (a local effect) and from transport around noncontractible loops (a global
effect). It is the latter that should be the natural source of Hopf term.
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