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Let pj, q,, denote the self-adjoint operators -iajax, and multiplication by x, on 
L’(W), respectively. Let H,, = (l/2) xyr= r o,(pf +qj-l)whereo,>O,andletPbe 
a polynomial in the q’s that is bounded below. The existence and uniqueness 
problems are considered for H, + IF’(q) renormalized relative to its own ground 
state. For example, suppose that P has degree 2d and P(q) >~(qf + ... +qz)“-k 
for some E, k z 0. Then for some lo > 0 there exists a unique continuous function 
u: [0, A,] + Z,*(W) such that u(n) is the nonnegative normalized ground state of 
Ho + 2 :P(q):,,,, and (u(A), P(q) u(1)) is bounded on [0,&l. If u is continuous 
only on (0, A,] uniqueness may fail. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let us recall some of the logical development of constructive quantum 
field theory, summarizing the more thorough account given in [l]. The 
objects of study of quantum field theory were originally presumed to be 
operator-valued functions on space-time, lR4, satisfying nonlinear wave 
equations such as 

(0 +m2)q5+1qi3=0, 

together with the canonical commutation relations 

C4t3 x)3 4th Y)l = Cd@, XL IQ, Y)l = 0, 

C&t, xl, At, Y)l = id@ - y). 

* On leave from the University of California at Riverside. 
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RENORMALIZED HAMILTONIANS 107 

Of course, the appearance of the Dirac delta in the commutation relations 
implies that d is not a true operator-valued function on R4, but a 
generalized function of some kind. This immediately makes the interpreta- 
tion of nonlinear functions of 4 problematic. 

Thus in practice one begins by considering a “free field” satisfying a 
linear wave equation such as the Klein-Gordon equation 

(0 +m2)$,=0. 

For simplicity let us consider this equation on Iw x S’. The free field &, is 
a distribution with values in self-adjoint operators on a Hilbert space K; it 
satisfies the canonical commutation relations and the Klein-Gordon 
equation, with time evolution generated by a nonnegative self-adjoint 
operator H,-, on K, 

eifHo~,(O, x) eCirHo = tio(t, x). 

The “free Hamiltonian” Ho has a nondegenerate ground state uO, the “free 
vacuum.” There exist “Wick” or “normal-ordered” powers of &,, operator- 
valued distributions :&( t, - ): on S1 for any t, that satisfy a nonlinear 
generalization of the canonical commutation relations 

C:&(t, x):9 do(t, Y)l = 0, 
[:&(t, x):, do(t,y)] =inS(x-y) :&-‘(t, x):, 

and have vanishing expectation values relative to the free vacuum 

(ug, :&(t, x): 00) =o. 

Here these equations are to be interpreted in a distributional sense, i.e., 
they hold upon integrating against smooth functions of x, y E S ‘. The Wick 
squares of D &, and do are also well-defined, and the free Hamiltonian H,, 
may be expressed as 

Ho = f Jt=, { :( V do)*: + m* :&: + :&:} dx. 

One can proceed to treat nonlinear quantum field equations as follows. 
Formally, the Hamiltonian for the “interacting field” Q satisfying 

(0 +m*M+p(4)=0 

for some polynomial p is given by 

s 
~{(~~)*+m*~*+~*}+P(~)dx, 

r=0 
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where P is an antiderivative of p. To make sense of this expression one may 
use the free field &, and its Wick powers, thus interpreting it as 

4 (:( V ~+4~)~: + m2 :qht: + :c)$} + : P(q5,): dx = Ho + s,=, : P(&): dx. 

It is important, however, to realize that this ad hoc manuever is unnatural 
in at least three respects: (1) There is no a priori reason to substitute the 
free field b. into the Hamiltonian for the interacting field. (2) The Wick 
powers of do are defined in terms of the free vacuum, which has no intrinsic 
relation to the nonlinear quantum field equation. (3) Integrating over the 
surface t = 0 is a purely arbitrary choice, and any other value of t would 
lead to a different operator. 

It is thus somewhat remarkable that anything useful comes of this 
approach. As it turns out, there is a well-defined operator 

v=J : P(q5,): dx, 
r=0 

for any polynomial P, and if P is bounded below then Z-Z, + V is essentially 
self-adjoint. Let H denote the closure of Ho + V. Defining 4 by 

qd( t, x) = ei’Hq50(0, x) eCifH, 

it is natural to ask whether 4 satisfies the differential equation 

(0 +m’)c+4+:p(fj):=O. 

It does not, but it satisfes a different nonlinear wave equation. The 
Hamiltonian H has a unique ground state u, and one can define renor- 
malized products relative to o with properties analogous to those of the the 
Wick product. For example, there are operator-valued distributions 
:$“(t, x):, satisfying the commutation relations 

C$“(t, XL, $(t, Y)l = 0, 
[$“(t, x):“, $(t, y)] = ind(x-y) $“-‘(t, x):“, 

with vanishing expectation values relative to the state u, 

(u, :qP(t, x):, 0) =o. 

The Hamiltonian H may be rewritten in terms of these renormalized 
products as 

H = closure of s f { :( V #)2:u + m2 :d2:” + :d2:“} + :&4):, dx 
t=0 

where P is a polynomial different from P, but with the same leading term. 
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It can then be shown that 4 satisfies the nonlinear wave equation 

(0 +mZ)~+:p((b):,=o, 

where p is the derivative of P. We have thus solved a nonlinear quantum 
field equation different from the one with which we began. However, the 
three objections raised above may now be answered: (1) The Hamiltonian 
H for the interacting field 4 is defined in terms of 4 itself. (2) The renor- 
malized products appearing in H are defined in terms of the ground state 
u of H itself, not the free vacuum. (3) The self-adjoint closure of the integral 

I $((:O qS)2:v +m2 :q52:D + :d2:“} + :P(4):, dx 
f = I, 

can be seen to be independent of t, as a consequence of (1) and (2). 
It remains to consider the existence and uniqueness, for a given polyno- 

mial P, of an operator of the form 

H = closure of s f { :( V 4)2:o + m2 :d2:” + :d2:“} + : P(d):” dx 
r=o 

renormalized relative to its own ground state u. These are nonlinear 
problems of a distinctive sort, in which one simultaneously solves for an 
operator and its ground state in terms of a relation between them. Here we 
investigate the corresponding problems for perturbations of harmonic 
oscillator Hamiltonians by polynomial potentials that are bounded below. 
These arise as Hamiltonians of quantum field theories that have been cut 
off to a finite number of modes. We will treat the case of infinitely many 
degrees of freedom in a future paper. 

These problems, and a plan of attack, were proposed by Irving Segal 
[7], whom we thank for many useful discussions. Some of our results are 
extensions of the work of Friedman [2]. 

2. PRELIMINARI~ 

Let H be a complex Hilbert space. The free boson field over H is a 
system (K, W, r, uo), unique up to unitary equivalence, such that: (1) K is 
a complex Hilbert space; (2) W is a strongly continuous map from H to 
unitaries on K satisfying the Weyl relations 

W(x) W(y) = ei1mcx,y>‘2 W(x + y); 
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(3) r is a strongly continuous unitary representation of U(H) on K such 
that 

T(T) W(x)r(T)-‘= W(Tx) 

for all TE U(H) and x E H, and dT(A) 2 0 for all positive self-adjoint A on 
H; (4) “0, the free vacuum, is a unit vector in K invariant under r and 
cyclic for W. 

Let IC be a conjugation on H, and let H, be the real part of H fixed by 
K. Define U(x) and V(x) for XEH, by 

U(x) = W(x), V(x) = W(ix). 

Then (U, V) is a WeyZ pair, i.e., a pair of strongly continuous maps from 
H, to U(K) satisfying 

U(x) U(y)= UXfY), Ux) V(y)= Vx+y), 

U(x) WI = e i<xd) V(y) U(x). 

Throughout this paper we assume that H is finite-dimensional. Fix a 
conjugation IC on H and choose a basis {ei} for H, so as to identify it with 
I?‘, with the usual coordinates xi. In the Schrodinger representation of the 
free boson field K is then identifield with L’(W) (relative to Lebesgue 
measure), U and V are given by 

U(x):f(u)+f(u+x), V(x):f(u) + eiuxf(u), 

and the free vacuum v. is given by 

Let pi denote the self-adjoint generator of the one-parameter group U(tej), 
and let qj denote the self-adjoint generator of V(tej). In the Schrodinger 
representation pj corresponds to the operator - iiT/i3xj, while qj 
corresponds to the operator of multiplication by xi. Let A be the self- 
adjoint operator on H given by 

Aej = ojej, 

where wi, . . . . w, >O. Let Ho, the free Hamiftonian, denote 

dT(A) = f 1 w,(pf + q; - 1). 
i=l 
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Let P denote the vector space of real-valued polynomials of degree < 2d 
on IV’, where d > 1. Equip P with the vector space topology, so that P, + P 
if and only if all the coefficients of P, converge to those of P. Let Cc P 
denote the convex cone consisting of those elements that are bounded 
below as functions on IR”. While C is not closed, it does contain the origin. 

The following facts about operators of the form Ho + P(q) are well- 
known [S, 7,8, lo]. For any P E C, the operator H, + P(q) is essentially 
self-adjoint; let H, denote its self-adjoint closure. The operator H, is 
bounded below, has pure point spectrum, and has a unique nonnegative 
normalized lowest eigenvector, or vacuum for short, which we denote by 
u(P). Define E(P) E [w by 

H,o( P) = E(P) u(P). 

Note that E(0) = 0 and v(0) = Q,. 
Renormalized products of the p’s and q’s relative to the free vacuum u,, 

are often called ‘Wick” or “normal-ordered” products, and they have a sim- 
ple description in terms of reordering annihilation and creation operators. 
Renormalized products relative to quite general states have been developed 
in a series of papers by Segal [7]; an exposition is also given in [ 11. In the 
present context it suffices to introduce renormalized products relative to 
states in the space D”( IV) of C” vectors for the Weyl system W. In the 
finite-dimensional case at hand, D”(W) is precisely the space of C” 
vectors for HO, and in the Schrodinger representation it corresponds to the 
Schwartz space on IF!“. Let W denote the infinitesimal Weyl algebra over H, 
that is, the associative algebra with unit generated by (pi, qj}r=, with the 
relations 

CPj9 Pkl = Cqj? q/cl = O, [Pjv qkl = i-‘ajk. 

By the above remarks, the algebra W has a natural representation on 
D”(W). A monomial in W is an element of the form zi . ..zk. where 
zr, . . . . zk E H. Given u ED”(W) there is a unique renormalization map from 
monomials in W to W, denoted : :“, such that 

and 

(u, :z, . ..zk.“u)=o 

for all z, z, , . . . . zk E H. The element :z, . . . zk:” is called the renormalized 
product of zl, . . . . zk relative to u. The renormalization map extends uniquely 

607/92/l-8 
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to a linear transformation on the subalgebra of W generated by {qj}r=, ; 
we also denote this extension by : :a. We write the renormalization map 
relative to the free vacuum u0 simply by : :. 

To apply the above definition of renormalized products to the vacua 
u(P), note the following: 

LEMMA 1. For all P E C, u( P) E D” ( W). 

Proof We shall show that any eigenvector of H, lies in D”( IV). 
Suppose u E K has H,u = Au. Working with the Schrodinger representation, 
it follows from elliptic regularity that u E Ca(R”), and it suffices to show 
that u is in the Schwartz space Y’(IV). We will prove by induction that for 
all multi-indices Z and all p > 0, there exists c > 0 such that 

la’u(x)l Gc(lxl +1)-P. (1) 

It is known [9] that for all p > 0 there exists c>O such that 
[u(x)1 < c(lxl + 1))“. Suppose that the induction hypothesis (1) holds for 
all Z with 111 <k. Let A denote the operator C w,pf, which is the (non- 
negative) Laplacian for some flat metric on R”. By the induction 
hypothesis, A& =f for some fe C “(l@) such that for all p > 0 there exists 
c > 0 with If(x)1 < c( 1x1 + 1))“. Taking x0 with IIx - x011 d l/2, we have 

aqx)=j 
Il.ro -YII 6 1 G(x, v)f(v) d"Y + j,,,p. Y 

where G(x, v) is the Green’s function for A on the ball [lx0 -ylJ < 1 with 
G(x, y) = 0 for y on the boundary. We may differentiate this to obtain 

a*wG Y 1 
axi an aIuty) d”-‘y, 

Il.~o-yll = 1 

noting from explicit formulas [3] that the function aG(x, . )/axi is in 
L:,,. It follows that for all p>O there exists c>O such that 
la’a’u(x)l < c( 1x1 + 1))“. Thus the induction hypothesis (1) holds for all Z 
with 111 <k+l. 1 

3. RENORMALIZING THE INTERACTION HAMILTONIAN 

In this section we consider the following problem: 

PROBLEM 1. Given P in C, find u E K such that the vacuum of the closure 
of Ho + : P(q):,, is u. 
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We deal with the troublesome circularity of this problem as follows. 
Given P E C, let o(P) be the vacuum of the closure of ZZ, + P. For some 
~EC we have P(q)= :8(q):o(p,. Thus o(P) is the vacuum of the closure of 
&I + :m:“iP), so u(P) solves Problem 1 for P. It is easy to see that all 
solutions of Problem 1 are of this form, but it is difficult to determine 
precisely which polynomials Z-j arise in this manner. However, we shall 
show that the differential of the mapping PI+ P at 0 E C is the identity, so 
that by the implicit function theorem there exists a solution to Problem 1 
for all “sufficiently small” polynomials in the interior of C. More precisely, 
we have: 

THEOREM 1. Suppose that P E P satisfies 

P(q) 2 EM + . . . +qy-k 

for some E, k > 0. Then for sqme 1, > 0, there is a unique map u : [0, A,] + K 
such that: 

1. u(A) is the vacuum of H, + 1 : P:,(Aj. 

2. u is norm-continuous from [0, A,] to K. 
3. (u(A), P(q) u(l)) is bounded for Iz E [0, A,]. 

ProoJ Suppose PE C. By Lemma 1, u(P) E D”(W), so the renormaliza- 
tion map relative to u(P) is a well-defined linear transformation of P. If 
Z= (il, . . . . i,) is a multi-index, or n-tuple of nonnegative integers, let qr 
denote the polynomial qi; - .a qk, and let /Zl = i, + . .+ + i,. The qr with 
111~ 2d forms a basis for P. By the general theory of renormalized products 
Cl, 61, :q’:u(p) - q1 is a polynomial of degree less than 111. The renormaliza- 
tion map relative to v(P) thus can be written in upper triangular form with 
l’s on the diagonal. Thus there exists a unique P E C such that 

P(q) = :&zL,.,. 

Deline the map T: C + C by T(P) = H. 
We begin the proof with some lemmas on the dependence of u(P) and 

E(P) on P E C. We will develop only the bare minimum of properties 
needed, following well-established techniques (see the references cited 
above). One technical problem is that there exist sequences Pj~ C such that 
Pi + 0 but u( Pi) p vO. One can avoid this problem by working with a 
slightly smaller cone. Let Co be any open convex cone contained in C. 

LEMMA 2. For any P E Co there exist E, k > 0 such that 

P(q) 2 +z: + -.. +q;+k. 
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Proof The polynomial Q(q) = (qf + . . . + qz)d is in P. Since P is in the 
open cone C,, for some E > 0 we have P- EQ E Co, so that P- EQ is 
bounded below. [ 

Let D = D(H,) n D((qi + . . . + qi)d), which is a Hilbert space with the 
norm 

IWII:,= /IK3$I12+ ll(d+ ... +4Yw. 

LEMMA 3. For all PE CO, D(H,) = D. 

Proof. We follow the method of [S]. As operators on CT(KY), 

(Ho + p(q))* = fG + p(q)* + HclP(9) + P(q) HI3 

By Lemma 1, for any a > 1 there exists b > 0 such that 

P(q)2p~ui$ (q)>ap’(P(q)2-b)’ * 
Thus for + E C~(R”), 

Taking limits, the inequality follows for all $ E D. By Lemma 2, 
D(H,) n D(P(q)) = D. Clearly D(H,) n D(P(q)) s D(H,), and (2) implies 
the reverse inclusion. 1 

LEMMA 4. u(P) E D and E(P) E R are real-analytic functions of P in C,. 

Proof: By Lemma 2, if Q E P is sufficiently close to the origin, Q(q) is 
bounded relative to H, with relative bound < 1. Since E(P) is an isolated 
nondegenerate eigenvalue of H,, Kato’s theory of type A perturbations 
[4] implies that u(P) is analytic from C, to K and E(P) is analytic from 
C,, to R. (While Kato’s theory is formulated in terms of one-parameter 
families of perturbations, the relevant results are easily seen to extend to 
many-parameter families.) 

Next we show that u(P) is actually norm-analytic as a function from Co 
to D. Suppose P E C,. The operator H, + o is bounded from D to K, and 
norm-analytic from D to K as a function of QE P. For sufftciently large 
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c>o, (&+c)-l exists and by the estimate (2) is bounded from K to D. 
Thus (Hp+o + c)-‘: K + D is bounded and norm-analytic in Q for Q in a 
neighborhood of 0 E P. Since 

it follows from the above that u( P + Q) E D is norm-analytic as a function 
of Q for Q near 0. 1 

LEMMA 5. As P + 0 in Co, E(P) + 0 and u(P) + u. in D. 

Proof: It follows from results of [ 10 J that E(P) + 0 and 

u(P) + uo, (4: + . . . + qy u( P) + (4; + . . . + q;)d ug, 

in norm in K as P + 0. Thus it suffices to show that H,u( P) + H,u, = 0 as 
P--t 0. This is a consequence of the relation 

H,u(P)= -Pu(P)+E(P)u(P). 1 

LEMMA 6. Suppose Q E P. Then the directional derivatives 

$W+EP) 
E=O 

and 

-$(P+&Q) 
&=O 

conuerge, the latter in the norm topology on K, as P -+ 0 in Co. 

Proof: By Lemma 4, E(P) E R and u(P) ED are differentiable functions 
in Co. Thus we may differentiate the relationship 

HAP) = E(P) u(P), 

obtaining 

(fb-E(P))-+‘+sQ)~ =(-$E(P+eQ) 
I > 

-Q u(P). (3) 
EZO &=O 

Taking the inner product of both sides with u(P), it follows that 

-&P+&Q) = <u(p), Qu(P)h &SO (4) 
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so as P+O, 

-++EP) + <vo, Quo> 
&=O 

by Lemma 5. 
Equations (3) and (4) imply 

Vfd’U’+P+~Q)~ e=o= ((v(P), Qv(f’)) - Q) v(P). 

Next note that 

(5) 

;B(P+&Q) &=O 

is orthogonal to v(P), hence to the kernel of HP-E(P). Since the 
resolvent of H, converges to that of Ho in norm away from the spectrum 
of Ho as P-r 0 [lo], and the right hand side of (5) converges to 
(( vo, Qvo) - Q) v. as P + 0 by Lemma 5, it follows that 

-$(P+EQ) +&‘Wo, Quo>-Q)vo 
&=O 

as P + 0, where 8;’ is the inverse of the operator R. that is the restriction 
of Ho to the space of vectors orthogonal to vo. 1 

LEMMA 7. Suppose Q E P and 1 II < 2d. The directional derivative 

converges as P + 0 in Co. 

Proof One notes that 

-&v(P+EPMv(P+EQ))I =2Re(iv(P+eQ),q’v(P)), 
&=O 

and it follows from Lemmas 5 and 6 that the right side converges as P + 0 
in Co. 1 

Next we prove a modified version of the implicit function theorem, 
dealing with a map defined on a cone, rather than a neighbourhood of 
a point. Then we show using the above lemmas that T satisfies the 
hypotheses of this implicit function theorem. 
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LEMMA 8. Let C be a convex open cone in a Banach space V. Sup- 
pose that F: C + V is C’, and F(x) + 0 and jldF(x) -III + 0 as x + 0. Zf u 
is in C, then for some A, > 0 there is a unique continuous function 
y: [0, A,] -+ CU (0) such that 

for A>O, andy(O)=O. 

Proof: First we prove existence. We assume without loss of generality 
that llull= 1. Choose d > 0 such that [Ix- uI[ <d implies XE C. By 
hypothesis there is a monotone increasing continuous function f with 
f(0) = 0 such that 

W’(x)-III ~f(bll) (6) 

for small enough x in C. Choose Iz,, > 0 such that 

f (21,) < min( l/4, d/2). (7) 

Let 

Note that by the choice of the constant d, XS C. Define G: X --+ V by 

G(x) = x-F(x) + Au. 

We claim that G maps X into X contractively for 1 E (0, A,]; the fixed point 
y(l) will then satisfy F(y(A)) = Au. 

Assume x E X. Then using (6) and (7) we have 

IlGb)ll G llx- F(xNl + 2 Gf(llxll) llxll + 2 
<2;lf(2n)+n<2n, 

and similarly 

IIW) - WI = Ilx - F(x)11 < 2Af(2n) <Id. 

Thus G(x)EX. To see that G is a contraction note that 

IIG(x)-G(x’)ll = II(Z-F)x-(I-F)x’II <f(2A) IIx-x'll <:11x-x'H. 

Since F(y(A)) = r2u and dF is invertible at y(r2) for Iz E (0, I,], the usual 
implicit function theorem implies that y(l) is continuous for I E (0, &,I. 
Defining y(O) = 0, continuity at 1= 0 is easily seen. 
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As for uniqueness, suppose that z: [0, 2,] -+ C is continuous, 
F(z(2)) = Au, and z(0) = 0. If z #y, let A1 E [0, 2,) be the inlimum of 1 with 
y(2) #z(n). By continuity ~(2,) = z(n,), and the implicit function theorem 
implies that y(i) = z(2) for 1 close to A1, obtaining a contradiction. 1 

LEMMA 9. Let C, be a convex open cone contained in C. The map T is 
real-analytic from C, to P, T(P) + 0 and IIdT( P) - Z/I + 0 as P + 0 in Co, 
and T(0) = 0. 

Proof It is clear that T(0) =O, since the vacuum of H, is uO. Given 
multi-indices I and J, define I< J to mean that I# J and I, < J,+ for all k. 
By the general theory of renormalized products, for any v E D”( W) 

:q’: = :ql:u + 1 C,J(U) :qJ:u, 
J<I 

where the coefficients c,~(v) are fixed polynomials (each with vanishing 
constant term) in the expectation values (u, :qK: v) for K< I. Writing 
PEC, as 

P(q)=Ca,:q’:, 
I 

it follows that 

p(q) = P(q) + C C aIclJ(v(P)) 4’. 
I J<I 

By Lemma 4, the coefficients cIJ are real-analytic in Co. It follows that T 
is real-analytic on Co. 

To show that T(P) -+ 0 and IldT( P) - 111 -+ 0 as P + 0 in C, it suffices 
to show that cIJ(u( P)) + 0 as P + 0 in C,, and that the first derivatives of 
c,~(v( P)) are bounded for P near 0 in Co. The first fact is a consequence 
of Lemma 5. The derivative in the direction Q of cIJ(v( P)) is a polynomial 
in the functions 

(4f7, :qK: 4P)) 

and 

$ (v(P+@), :q?v(P+&Q)) 
&=O 

for Kc I. These are bounded for P near 0 in Co by Lemmas 5 and 7. 1 

To conclude the proof of Theorem 1, suppose that P satisfies the bound 
given in the hypothesis of the theorem. Then P is in the interior of C, so 
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we may choose a convex open cone Co contained in C with P E C,,. As a 
consequence of Lemmas 8 and 9, for some Iz,, >O there is a unique 
continuous function Q: [0, A,] -+ Co such that 

Define u(n) E K by 

T@(n)) = IZP. 

u(J) = v(Q(n)). 
Then by the definition of T, the closure of Ho + 1, :P(q):,(,, is HocAl, so 
its vacuum is u(1). Thus u(n) satisfies condition 1 of the theorem. By 
Lemmas 4 and 5, U: [0, &] -+ D is continuous, so u(n) satisfies conditions 
2-3, completing the proof of existence. 

To prove uniqueness, suppose that w: [0, A,] + K is another function 
that satisfies conditions l-3. By conditions 2 and 3 and Lemma 2, 
(w(J), q’w(l)) is bounded on [0, A,] for all I with )I) < 2d. It follows from 
the general theory of renormalized products that 1 : P(q):,(,, + 0 in some 
open convex cone C, c C as ;1+ 0. Write J : P(q):,(,, = (Q(A))(q). By con- 
dition 1, w(n) = u(Q(n)). It follows that ,iP= T(Q(A)). By the uniqueness 
result of the previous paragraph, it follows that w(n) = u(J) for 1 E [O, &] 
if A, > 0 is taken to be sufficiently small. 1 

The conditions in Theorem 1 hold for any interaction Hamiltonian of the 
form 

I P(4(0, xl) d’k 
M 

where M is a complete Riemannian manifold, &t, x) is the free real scalar 
quantum field of mass m on R x M cut off to finitely many modes, and P 
is a polynomial that is bounded below. 

It is an interesting question whether the technical condition that 
(u(J), P(q) u(n)) be bounded can be omitted from Theorem 1. The condi- 
tion that u(J) be continuous from [0, &,I to K is essential. The following 
one-dimensional example adapted from the work of Friedman [2] shows 
that uniqueness may fail if u(n) is only continuous on a half-open interval 
(0, &I. 

TI-EOREM 2. Let n = 1, so H = C, and let Ho = ( 1/2)(:p2: + :q2:). For 
some 1, > 0 there exists u: (0, A,] + K such that: 

1. u(1) is the vacuum of the closure of Ho + I :q4+) 
2. u is norm-continuous from (0, A,] to K. 
3. u(i) converges weakly to zero as I + O+. 

4. liml,,+ (u(n), q2u(A)) = 00. 
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Proof. Let G(b) be the vacuum of the Hamiltonian 

H(b) = +( p* + bq2) + q4, 

i.e., H(b) G(b) = E(b) G(b), where b E KY. Since G(b) is the ground state of an 
even potential, G(b) is an even function. Completing the square in H(b) yields 
E(b) > - b*/16. If b < 0, taking u(x) = z-1/4 exp( - (1/2)(x - (l/2) lb\ “2)2), 
then 

E(b)<(u,H(b)u)= -;-;+I. 

It follows that 

lim E(b) 1 
b---a, -F= -16’ 

Using (8), for b < - 10, 

(G(b), q’G(?) >?a -i-z. 

(8) 

(9) 

Since 

:q4:ce, = q4 - 6 <G(b), q*G(b)) q* - <G(b), q4W)) + WG(b), q*G(b)>*, 

G(b) is the vacuum of 

f(P2 + mq2) + :q4:q*p 

where 

m = b + 12( G(b), q*G(b)). 

By the estimate (9), m > - (l/2) b - 72/5 > 3/5 for b < - 30. Using the scale 
transformation 

g(b, x) = m-1’8G(b, m-“4~), 

it is easy to check that g(b) satisfies the equation 

{4(p2+m -‘bq2) + m-‘bq2) +m-3/2q4) g(b) = m-“‘E(b) g(b), (10) 

and that g(b) is the vacuum of the Hamiltonian 

H,+mp312 :q4:gcb,. 
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Letting u(A) =g(b), where Iz =m- 3’2 the continuity of u(A) follows from , 
Lemma4, and &, can be taken as (1/2)sup{m-3/21bE(-co, -301). 
Conditions 1 and 2 are then evident. For condition 4. note that as b + -co 

as 
as 

we have m +’ +co, so <g(b), q2g(b)) = m112(&b), q2G(b)) + cx) 
b + -co. For condition 3 it suffices to show that (g(b), w) +O 
b -+ -cc for all w E C:(R). It follows from Eq. (10) that 

(g(b), {i(p2+m- lbq2) + m-3/2q4) w) = m -“‘E(b) (g(b), w). ( 11) 

The left hand side of Eq. (11) stays bounded as b + -co since b/m is 
bounded and m -+ co. Note that 

b<q2Wh G(b))+ <q2W), WD2 <b(W), q*W)> + <G(b), q4GW 

= E(b) - W(b), N(b) > G 0 

if b < 0 and lb1 is sufficiently large, by (8). It follows that 
(G(b), q*G(b)) < 161. Therefore Im-“‘E(b)l2 I12bl -‘I2 /E(b)1 + 00 as 
A+0 by (8), which implies that (g(b), w)+O by Eq. (11). 1 

It follows that in this l-dimensional case there exist two distinct solu- 
tions u,(A) and u*(A) to Problem 1 for Izq4 if A > 0 is suBiciently small. Both 
are continuous functions of small 1> 0, but u,(A) converges to the free 
vacuum as 110, while u,(l) does not converge to any state. 

It follows from the proof of Theorem 2 and Theorem 5 below that there 
is a one-to-one correspondence between solutions to Problem 1 for Aq4 
(where I > 0) and values of b E R such that 

b+ 12(G(b), q2G(b)) =m, 

where A = rnm3j2. To estimate m, consider the operator 

fi(b)=;( -$+bx2)+x4 

on L2[ - 10, 101, with vanishing Dirichlet boundary conditions. Let i?(b) 
be the lowest eigenvalue of l?(b) and let C?(b) be the corresponding eigen- 
function. One can show using standard techniques [9] that 

I 
10 

x2&b, x)’ dx < 
- 10 s 

* 
x’G(b, x)’ dx, 

-cc 

so that m 26 = b + 12 s?ro x’e(b, x)’ dx. In addition to being a lower 
bound on m, fi should be a good approximation to m for b E [ - 30,0]. To 
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FIG. 1. Numerical approximation to m = b + 12 (G(b), $G(b)). 

numerically calculate fi, we used the central difference method to discretize 
the equation E?(b) 6(b) = g(b) 6(b), with step size h =O.Ol. It is known 
that the error from the discretization is O(h2). 

Figure 1 is the graph of the numerically calculated fi as a function of b 
for b E [ - 30,0], which indicates that 

min{mIbE[-30,0]}=m0>0. 

It is easily seen that there exists E > 0 such that m > E for all b 20. If 
b 6 -30 it follows from (9) that m > 3/5. Thus we conjecture that m has 
minimum m,>O, implying that Problem 1 has a solution for llq4 only if 
1~ I, = m,-3’2. Moreover, we conjecture that m has only one critical 
point, where it attains its minimum. If this is the case, then there are two 
continuous solutions ui(A) and z+(A) of Problem 1 for IE (0, A,]; 
moreover, these are the only solutions, and u,(A) # z+(A) for 1 E (0, A,), but 
UI&) = ~2(&). 

4. RENORMALIZING THE TOTAL HAMILTONIAN 

In the previous section we renormalized the interaction Hamiltonian 
relative to the ground state of the total Hamiltonian. We next consider 
renormalizing the total Hamiltonian relative to its own ground state: 
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PROBLEM 2. Given P in C, find u E K such that the vacuum of the closure 
of 

+ :q; :J + : P(q):, 

is 24. 

The relation between this problem and Problem 1 is given in the 
following: 

LEMMA 10. Suppose that u E K has (u, qiu) = 0 for all 1 < i < n. Then u 
is a solution to Problem 1 for P E C if and only ifit is a solution to Problem 2 
for P. 

ProoJ: If u satisfies (u, qiu) = 0 for all i and is a solution to either 
Problem 1 or Problem 2 for PE C, then (l/2) C ~,(:pf:~ + :qy :J differs 
from Ho by a constant, by the general theory of renormalized products. 
Thus u is a solution to both Problems 1 and 2 for P. 1 

Friedman [2] showed that, due to a translational invariance in 
Problem 2, there does not exist a solution for generic P E C, and when a 
solution exists it is never unique. For the convenience of the reader we 
present these results here, in a generalized form. 

THEOREM 3. (Friedman). Suppose that u E K is a solution to Problem 2 
for P. Then for any x E R”, U(x)u is a solution to Problem 2 for P. 

Proof: Let T = U(x). Note that 

:p;:, = :p;:, = T :p;:, T-’ 

by the general theory of renormalized products and the fact that T 
commutes with pi. Note also that 

:Q(q)+, = T :Q(q):, T-’ 

for any Q E P. This can be shown using induction on the degree of Q using 
the definition of renormalized products and the properties 

(Tu, (T:Q(q):, T-‘) Tu)=O, 

[qj, T :Q(q):, T-l]= T[ T-‘qjT, :Q(q):,] T-’ 

= T[qj + xi, :Q(q):,] T-’ = 0, 
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[pi, T:Q(q):, T-l]= T[pj, :Q(q):U] T-’ = - iT :z (q):U T-‘. 
I 

It follows that 

$ JJ, wi(:Pf:Tu+ :qf:Tu) + :p(q):7id 

1 i wj(:p;:U+:q;:U)+:P(q):,, T-’ 
i= 1 > 

so that the vacuum of the closure of this operator is Tu. 1 

COROLLARY 1 (Friedman). The set of P E C for which there is a solution 
to Problem 2 is of Lebesgue measure zero in C. 

Proof This follows from Sard’s theorem, see [2]. 1 

We may eliminate the translational degrees of freedom described in the 
theorem above by requiring that (u, qiu) = 0. This device allows us to 
easily prove an existence and uniqueness theorem for Problem 2 if we 
restrict ourselves to even polynomials, i.e., polynomials satisfying 
P(x) = P( -x). 

THEOREM 4. Suppose that P E P is even and satisfies 

P(q) a 4q: + ... +qy-k 

for some E, k > 0. Then for some 1, > 0 there is a unique map u: [0, A,] + K 
such that: 

1. u(A) is the vacuum of the closure of 

f igl oi(:Pt :u(l) + :&u(A)) + A :P(q):u(A,. 

2. u is norm-continuous from [0, A,] to K. 
3. (u(A),qiu(A))=Ofor l<i<n. 

4. (u(A), P(q)u(A)) are boundedfor AE [0, A,]. 

Proof. Note that the map T described in the proof of Theorem 1 maps 
even polynomials to even polynomials, since an even polynomial in the q’s 
renormalized relative to a state v E D”( W) that is even in the Schriidinger 
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representation is again even. Defining u: [0, &] + K as in Theorem 1, it 
follows that conditions 2-4 hold, so by Lemma 10 condition 1 holds as 
well. Uniqueness follows similarly from Theorem 1 and Lemma 10. 1 

COROLLARY 2. Given u as in Theorem 4, then u(O) = u0 and u is norm- 
continuous from [0, A,] to D for some I, > 0, and norm-analytic from 
(0, A,] to D. 

Proof It follows from Theorem 6 below that any solution u of 
Problem 2 for P = 0 satisfying (u, qiu ) = 0 for all i has u = uO. The con- 
tinuity property of u was shown in the proof of Theorem 1. The analyticity 
property follows from Lemmas 4 and 9 and the proof of Theorem 1. i 

As with Problem 1, uniqueness need not hold if we do not require 
continuity at Iz = 0: 

COROLLARY 3. Let n = 1, so H = C. For some I,>0 there exists a 
function u: (0, A,] + K such that: 

1. u(A) is the uacuum of (1/2)(:p’:,,,, + :q2:UCA,) + I :q4:UCiJ. 

2. u is norm-continuous from (0, A,] to K. 
3. (u(A), qu(A)) = 0. 

4. u(A) converges weakly to zero as I + 0 + . 

5. lim,,,+ <u(n), q2w> = 00. 

Proof: Construct u(n) as in Theorem 2. Since u(n) is even, 
(u(J), qiu(l) ) = 0 for 1 < i < n, proving that condition 3 holds. Condition 1 
then follows from Lemma 10, and the rest follow from Theorem 2. 1 

5. POLYNOMIALS OF DEGREE FOUR 

In this section we present some nonperturbative results for polynomial 
interactions of degree four. 

LEMMA 11. Suppose that Q E P has the form Q = Q, + C biqi, where Q, 
is an even polynomial, and suppose that (u(Q), q&Q)) = 0 for all 1 < i< n. 
Then u(Q) E L2( W) is even, and bi = 0 for 1 < i < n ; i.e., Q is euen. 

Proof: Let H = Ho and H, = Ho. with lowest eigenvalues E = E(Q) and 
E, = E(Q,). From the definition of E and E,, we have 

E= <v(Q), WQ)) = <u(Q), He-v(Q)) 2Ee 
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since (u(Q), qiu(Q)) = 0. On the other hand, the nondegeneracy of the 
lowest eigenvalue implies that u(Q,) is an even function of q, so 

Ee = (u(Qeh HAQ,)) = <u(Q,), Hu(Q,)) BE. 

Combining these two inequalities, it follows that E = E, and 
(u(Q,), Hu(Q,)) = E, so u(Q,) = u(Q) by the uniqueness of the vacuum, 
and u(Q) is an even function of q. From H,u(Q) - Eu(Q) = - Ci biqiu(Q), 
the right hand side of the equation is even, hence bi = 0. 1 

THEOREM 5. Suppose that PE C, and suppose u is the uacuum of the 
closure of H,, + : P(q):,,. Zf the degree of P is 4 and P is even, then u is even. 

Prooj Let ci = (u, qiu) for 1 < i< n. Using Lemma 11 it is enough to 
show that ci=O by noting that 

:P(q):,=P(q)+ c avkrciqjqkqr + Q,(q) + 1 bjqj, 

where Q, is an even quadratic polynomial of q. 
Let w(q,, . . . . 4”) = u(q, + c,, . . . . qn + c,). It is easy to check that 

(w, qiw ) = 0, and by Theorem 3, w is the vacuum of the closure of 

Ho + : P(q):,, - 1 oiciqi= Ho + R(q) + C aiqi, 

where R is an even polynomial of degree 4. It follows from Lemma 11 that 
w is an even function and ai = 0 for all 1 d id n. Thus by the general theory 
of renormalized products : P(q):,,, is an even polynomial, so ci = ai/oi = 0, 
completing the proof. 1 

THEOREM 6. Suppose that u is the uacuum of the closure of 

iif, COi(:pf:,+ :qf:u)+ IP(q 

and (u, qiu ) = 0 for 1 < i < n. Zf the degree of the polynomial P is 4 and P 
is even, then u is even. 

Proof Since ( 24, qi u ) = 0, 

C Oi(:Pf 1” + :qf :u) + : P(q):, = Ho + Q(q) + 1 biqi, 

where Q is an even polynomial of degree 4. It follows immediately from 
Lemma 11 that u is even. 1 
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COROLLARY 4. If the degree of P E C is 4 and P is even, u E K is a solu- 
tion to Problem 1 if and only ifit is a solution to Problem 2 and (u, qiu > = 0 
for all 1 <i<n. 

ProoJ: This follows from Theorems 5 and 6, together with Lem- 
ma 10. 1 

It is an interesting problem to try to extend these results to polynomials 
of higher degree. 
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