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Topological lower bound on the energy of a twisted rod
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If one end of an elastic rod is rotated by an angle of 2n relative to the other, the “body frame” along the rod traces outa
noncontractible loop in SO{3). This is not the case for a rotation by 4. A lower bound is derived for the energy of a thin clastic
rod whose body frame traces out a noncontractible loop in 8O(3).

If one takes an elastic rod, holds one end fixed, and
twists the other through an angle of 2w, the twist can-
not be undone by moving either end as long as the
orientations of the ends are fixed. However, if one
twists by an angle of 4%, the twist can be undone by
moving the ends of the rods holding their orienta-
tions fixed. This is because the rotation group in three
dimensions, 8O(3), is doubly connected. Here we
use this fact to derive lower bounds on the energy of
a thin elastic rod with one end twisted by an angie
of 2%. While there have been a number of applica-
tions of topology to continuum mechanics [1,2], this
rather simple result seems not to have been noted
before.

The state of a thin elastic rod may be described by
2 function F from the interval [0, L], where L is the
length of the rod, to SO(3). For each point s [0, L],
F{s5) describes the “body frame” of the rod as ro-
tated from the standard frame (e, &, €;). We may
identify a tangent vector e at any point xeSO{3)
with a vector {(w,, @, ®3) in the Lie algebra
so(3) =R by left translation of the tangent space at
x to the identity in SO(3). The elastic energy of the
rod is then given by

L
3
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{under the approximations made in ref. [31), where
o is the tangent vector dF/ds, and I; are the prin-
cipal moments of inertia: I; and I, for the cross-sec-
tion of the rod and I, for the torsional rigidity of the
rod. In particular, I, =I, for a homogeneous rod with
a circular cross-section.

As a digression, note that if one interprets the pa-
rameter § in eq. {1) as time, then E equals the action
for the time evolution of a rigid body with moments
of inertia I, and angular velocity . Thus the prob-
lemn of the thin elastic rod may be mapped onto the
time evolution of a rotating rigid body. This was ap-
parently first noted by Kirchhoff [4].

Give SO(3) the Riemannian metric g such that

3
lol*= ¥ Lwt,
=

cf. ref. {5]. Let go denote this metric in the special
case where I,== 1 for all {. Note that g2 ] ,i.80, where
Inin denotes the minimum of the I, Using this and
the Cauchy-Schwarz inequality we have
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E= Jg(cu, w)ds
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G
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> 52“(£1k»§ds) , (2)

where ||w| denotes the length of @ with respect to
the metric g.

There are two homotopy classes of loops in SO(3),
the contractibie loops (such as a rotation through 4n
about any axis) and the noncontractible ones (such
as a rotation through 2x). We can find a lower bound
on the energy of a rod whose body frame Ftraces out
a noncontractible loop in SO(3) using (2). This in-
equality implies that the energy is greater than or
equal to [/ L times the square of the length of the
shortest noncontractible loop in SO(3) relative to
the metric go. :

Let @:SU(2)-80(3) be the standard two-fold
cover. {For a treatment of the relation between
SO(3), SU(2) and S? see ref. [6]; for basic facts
about covering spaces and homotopy of paths see ref.
{7].) Recall that any contractible loop in 8O(3) lifts
to a loop in SU(2), while a noncontractible loop lifts
10 a path joining antipodal points +xin SU(2). Let
&, denote the lift of the metric go on SO(3) to SU(2).
Using the standard identification of SU(2) with §°,
the invariance of the metric &, on SU(2) implies that
it is a constant multiple of the standard metric on S
Thus the shortest path between antipodal points fol-
Jows a great circle on S°. The loop in SO(3) traced
out by rotating through the angle 2x about any axis
n (fnfl=1) lLifts to a great circle between antipodal
points in SU(2), given by

oS spt+nrasinig,

as ¢ goes from 0 to 2n. This path has length

In

[ 1nndp=2,

0

relative to the metric &, Thus we have the following
lower bound on the energy E of a rod whose bady
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frame traces out a noncontractible loop in SO(3):

4n21min

7 (3)

It also follows from the argument above that this
lower bound is attained by a loop in SO(3) corre-
sponding to rotation with constant angular velocity
about an axis e; such that = I, If I, > I, 21y, this
minimum corresponds to pure bending (w;=0),
while if I}, I;> I, the minimum corresponds to pure
twisting (o, =w,=0).

Note also that between any two points in SO(3)
there are two homotopy classes of paths, and each
class will have a lower bound on its length. Thus for
any fixed orientations of the ends of a rod there will
be two lower bounds on the rod’s energy, one for each
homotopy class.

The lower bound (3) also holds for any rod that
is bent into a loop. Here we replace the condition
that the frame F(s)} traces out a noncontractible loop
in SO(3) by the condition that both ends of the rod
are at the same point in space. Let x(s) denote the
space curve in R® that the rod describes, and let x{s)
denote the curvature of this curve. Assuming that
x{L)y=x(0), it is known [8] that

L

' J kdsz2n.

Q

Moreover, it is easily seen that
L
Ezlain J k*ds.
0
Using the Cauchy-Schwarz inequality we have
L

2 L
(J;cds) -‘?_LJszS,
0

o]

s0 that Ez 47 /L.
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