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The wave and scattering operators for the eguation ({14 m*) ¢ + le® =0 with
m, 1> 0 on four-dimensional Minkowski space are analytie on a neighborhoed of
the space of finite-energy Cauchy data, L*'(R*)® L2(R*). This atlows the construc-
tion of infinitely many independent conserved quantities with vanishing Poisson
brackets and implies that the massive @* theory is completely integrable at low
energy,  © 1990 Academic Press, Inc.

- ' 1. INTRODUCTION

We begin by recalling some basic facts about scattering for the massive
@* theory equation,

(O+m*) e+’ =0, m>0, 120, (1)

where ¢ is a real function on Minkowski space My, which we identify with
R* given the coordinates (xo, x;, X5, X3) = (X, x). Let L#"(R") denote the
Sobolev space of functions on R” with r derivatives in LY, where here and
in what follows all function spaces are of real functions unless otherwise
specified. The space of finite-energy Cauchy data, H, is defined as the
Hilbert space L>'(R*)@® L*(R?) with norm given by

1
(g, un)))? = 3 Le} (Vie, ) + mPub + ug
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Given uzcH there is a unique distributional solution ¢ of (1) with
u= (@, §) o Let V() u=(0, @)= Then ¥ is a strongly continuous
one-parameter group of diffeomorphisms of H. In the special case 2=0, (1}
reduces to the linear Klein-Gordon equation, and we denote the corre-
sponding one-parameter group by U. For all re R, U(f) is an orthogonal
finear operator on H. ¥ may be defined in terms of U via an integral equa-
tion: if N denotes the function from H to H given by N{u,, uy) = (0, — Aud),
then

V(£ u=U(0) +f Ult— ) N(V(s) u) ds.

For any ueH, there exist u ., u_. & H such that

Lm JU@)u, —V(thul=0

t— do

or, equivalently,

wy=u+ lim j U(—s) N(V(s) ) ds.

1= koD Y0

In fact there are homeomorphisms, the wave operators W, H - H, such
that W, (u,)=u. The scattering operator §: H — H may thus be defined
by S=(W. )" "W_.

The most natural way to prove the existence of the limit above is to
prove absolute convergence of the integral [T U(~s) N(V(s) u) ds. By the
Sobolev inequalities it suffices to show that

+ oo /2
j U o(t, x)° dt) dr < 0.
o w3

in other words, it suffices to show that ¢ & L>(L®), where we write L#(L7)
for LP(R, LYR?)). Though this has been shown for u satisfying various
decay conditions [8, 117, it has never been shown for all ueH. Thus
Strauss took an indirect approach, whereby for all sufficiently small neH
he proved the existence of the limit without proving absolute convergence
of the integral {12, 13]. By a substantial elaboration of Strauss’ method,
Brenner [47 was able to coasfruct an everywhere-defined scattering
operator S:H —»H.

In fact, ¢ & L3(L®) for all ueH. Let L?(L*") denote L7(R, Lo (R?)) and
let X = L°(L>1yn L}(L?%), a Banach space with the norm

lollx = el gy + 1ol us-

oo
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Then we have:

TueoreM 1. If ue W and ¢ is the unigue distributional solution of (1)
with 1= (@, )l o =0, then @ € X. Moreover, for some neighborhood 2 of the
origin of H the map wr @ is analytic from £ to X

By “analytic” we mean real-analytic, that is, infinitely Frechét-differen-
tiable with a locally norm-convergent Taylor series. Our proof of
Theorem | makes use of Brenner's work and recent work of Marshall, who
essentially proved that u e H implies @ € X in the linear case [6].

Theorem I has as a consequence:

THEOREM 2. The operators W.,S:H->H are analytic in a
neighborhood @ of the origin of H.

Theorem 2 strengthens earlier results of Raczka and Strauss [10] and
the authors [3]. The analyticity of the wave operators in a neighborhood
@ of the origin allows the construction of infinitely many analytic functions
F,: Q — R that are conserved quantities for the nonlinear time evolution
¥(1). In fact, the massive ¢ theory is completely integrable at low energy.

To make this precise, recall that the space H has a symplectic structure
@ given by

w{u, v) =j. (“z”z—uzvj) d’x,
xgmt

where u, ve T,H are tangent vectors identified with vectors in H. The
following propositions extend the work of Morawetz and Strauss [9]:

ProvosiTion 1. The operators W, ,S:H—H are symplectomorphisms
on a neighborhood Q of the origin of H.

PROPOSITION 2. For all teR, V(t)=W. Ut} W3

Using the above propositions we obtain the following:

TueoREM 3. There exists a neighborhood Q of the origin of H that is
invariant under V{t} for all t1eR, and there exist analytic functions
F,: Q2 —R such that for all j and all te R, V(2)* F;=F;. There exist vecior
Sields v, on Q such that

dF, = w(v;, -).

Moreover: {1) For all j and k, w(v;, v) = 0. (2) Generically, le., except for
u in a set of first category in Q, the subspace L= {ve T H:¥jdF{v)=0}
is isotropic in T,H. (That is, w{v, w)= 0 for all o, we L}



400 _ BAEZ AND ZHOU

In other words, the functions F, are a complete set of integrals of motion
for the massive @* theory at low energy, with pairwise vanishing Poisson
brackets. (For a discussion of complete integrability see, for example, [13.)
A similar result has been obtained for the massless @* theory without any
such “small data™ condition [2]. If one could show that the map ui— ¢ is
analytic from all of H to X, then the “small data” condition in Proposi-
tion 1 and Theorems 2 and 3 could be omitted.

2. PROO¥ OF ANALYTICITY

First we note that Theorem 1 holds for the linear Klein-Gordon equa-
tion. Given ueH, let @, denote the unique distributional solution of the
linear Klein-Gordon equation ([J +m?) @, =0 with (@q, @o)lxymo= 2

Levma 1 (B. Marshall), [eollx<c fuliy.

Proof. Marshall proved this in the case where @gl,,.o=70; we defer the
proof to the Appendix. §

We write the solution to (1) with inifial data neH as
t .
o) = oolt) = [ K(1—=5) ols) db,

where K{(t1)=B 'sinzB and B=./4+m" We will use the following
estimates on K{(z):

LemMa 2. Suppose that 1jg+1/g'=1,1<g¢'<g<co, d=1/2—1/q, and
56=r —r+1. Then

1K(0) gy, <K(2) gl

where
ct™? if te{0, 17

Ko< {ct””(ln(l +0)* i te[l, o).

Proof. This follows from Brenner's estimate A [4], but we present a
simplified. proof in the Appendix. [

LemMa 3. Given @, 93, 0 € X, let

W)= K(1=5) .(6) 93(5) 03(5) .

Then X and the map (¢, @a, @3) =Y is analytic from X* 10 X.
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Proof. Since the map (@, @, @3)— ¥ is multilinear it suffices to show
that

Wllx < c ol boalix loslix

Let F(1, 5)= K(t—5) @,(s) @2(5) @3(s). By Holder's inequality
8/

W (Olls< J, P 5y @)

r E1i9
U F{t,5)ds
0 8

12

We estimate the first factor using Hélder’s inequality as follows:

¢
2

!r Fle, s)ds

o

L: K(t=5) @,(5) 02(5) @sls) ds

2

<[ 10us) 02(s) @3(s)la ds

-0

<[ 1os)ls I9a(0)ls os(s)ls ds

< llolx ol loslx- (3)

To treat the second factor, we first note that by Lemma 2,
1B, s s < k(2 —3) Jo.(s) @als) @sisiigmos

where k e L}(R). It follows from Young’s inequality that for some constant

I VL <o)

< M | @; 0203) Feaomy- (4)
Writing @, for ¢,(¢), by Héider’s inequality we have

8/¢
<
L)

¢
J F(r, syds
1]

LE3 R

1P P> Pl
<UD aar 1Dallaan 1Dsllzar + (1D1 125 1Pal2as 125l + ),

whére the dots indicate two terms obtained from the first by cyclic per-
mutations of 1, 2, 3. Using Holder’s inequality again we obtain

o, @20, sogenny < e § rsgrzeny bepall ra 2o N3l raeraem

-+ (Nl =y N2l poasy losllpes + - )
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By Lemma 4 below, for some constant ¢,
H@Iiz_s(l_“ﬁp H(ngﬂ"(ﬂ“ﬁ)gc el
1t follows that for some constant ¢,
002030 sy < lloylix ool x loslx

Thus (4) implies that for some constant M,

(o] )

By (2), (3), and (5) we have for some constant C,

< M(llohx lolix loal)™. (5)

L3R}

Wl s < Cllodx leadx foslx

To complete the proof it thus suffices to prove that
Bl Loz < C loallx loallx losix

for some constant €. This may be seen as follows: for all te R,

(il sc

L{ E(t—5) @.(s) @2(s) @5(s) ds

2,1

<cf Uous) oals) as)lz ds

0y

< [ H0u)ls 1o26)s los(o)l ds

< gl lealix loallx

" by Holder’s inequality. §

LemMa 4. For some constant ¢, for all pe X,
N @h zszaemys Nl 2agr2om < € il
Proof. Tt follows from the Sobolev inequalities that if re [2, 6],
ol rogrys lol s < C llelx-

Therefore by the Riesz-Thorin theorem ol 1,0 < ¢ flolx if 1/p=8/3 and
1/q=8/6+ (1 —0)/r, where 0<6<1. If we choose =3, r=3¢e[2,6],
then

i1 11 7

11
»8 g 164 24
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hence Wl ;s < ¢ [@llx. If we'choose 6= & o= Le 2, 6], then

11 1 1 9

K]
P g a8 a8 2
hence [if pas 0 < ol B

Proof of Theorem 1. Given ueH, let ¢ be the unique distributional
solution of (1) with {@, @)|,,.o=1u It follows from conservation of energy
that @ e L=(L>); so to show that @ eX, it suffices to prove @ e L*(L®).
The proof resembles that of Lemma 3. Writing

oty =0o(t) =1 [ K(t=3) 9ls)" s

by Lemma 1 it suffices to show that ¥ e L3(L%), where

Wt = —4 j K(t—~5) os)® ds.
[¢]
By Holder’s inequality,
26 PR VIO 1T0] K (6)

By conservation of energy, the first factor is bounded by a comstant
independent of 1:

(N < oo+ el < e (N

To treat the second factor, we note that by Lemma 2,

WO <2 | Kl =3) To(s) s ds.

By Lemma 5 below, for some constant ¢,

() llgm: < ¢ B2 Lo ()13

so by conservation of energy, for some constant C,

WOl <C [ klr=s) ()13 ds (8)

for ali ¢
It follows from (6), (7), and (8) that for some constant c,

8/9

uw(rnaﬁsc(gk(t—s) lo(s)iI 3 ds) g ©)
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Brenner’s theorem 1 in [4] implies that @el*(L®). It follows that
lo(s)l1F* e L¥. Since ke L'(R), it follows from Young’s inequality that

[ k=5 () 7? ds e LP(®);
Q

so by (9), ¥ € L*(L®) as desired.

We prove that u+— ¢ is analytic for small  using the contractive map-
ping technique. This will also provide a different proof that ¢ € X for small
ueH. By Lemmas 1 and 3, there is an apalytic map R: Hx X — X given by

RGw )0 = 0o(6) = 4 || K(t=3)(s)* s,

where ¢ is as above,
By Lemmas I and 3 we can choose ¢ such that

A

L K(t—5) ¢.(s) p2(s) @3(5} cisnx <cloillx foalix lealix
and
§i§90!ix ¢ ”u"H

Choose r>0 such that 16cr® < 1. Suppose that cflulg<r, so that
ool < r. Then we claim that the map R(x, -): X - X preserves the open
set

E={yeX: Y —oolx<r}

and is a contradiction on this set. If ¢ € E, then

IR, ¥) = @ollx S ¢ I lx < el — @ollx + Boollx) <7,

so R{u, W) e E. Moreover, if ¢, . € E, then

LG 10) = R 0l = || K= 900000 = () s

< el il + H‘ffznx}z Wfl_'abz”x
< o2 ool x+ 1 — @ollx + W2 — @l x)* 1 — ¥l x
< 16cr® oy —dallx < Wi —dall .

Given ueH there is a unique @ £X such that R{x, @) = . Since R{y, -)
is a contraction of the open set E if ¢ lull g <r, it follows from the analytic
implicit function theorem [37 that the function w+— ¢ is analytic from
{urcllulg<r}toX

X
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LemMa 5. For some constant c,

Hfaiisn,L scl|fl 3’? (Bl §’2
for all fe LM R n L¥R?).
Proof. Since
1 e € (¥ gt 3 2 VrFl 8/75

it suffices to estimate each of the terms on the right side. For the first term,
Holder's inequality implies

Nfsll 8/7 \.{ l[fH 3/2 “f%E 32,2;11:
and since 24/11 e [2, 67, the Sobolev inequalities imply

L s < e BAIRIAISA.

For the second term, Holder’s inequality implies

WA VRS Vi PP /A PR WA Tl W e A/ P

and since £€[2, 67, the Sobolev inequalities imply
L2Vl <c IS0 AT B

Proof of Theorem 2. The map ur— ¢ given by Theorem 1 is analytic
from a neighborhood 2 of the origin of H to L*(L®). It follows that for
1 e L2 the inverse wave operators are given by

W?uz u +Jiw U(—$)(0, —Ap(s)*) s,
0

the integral converging absolutely in H, and that WJ;':Q->H are
analytic. It is easily seen that the derivative of the maps W ;! at the origin
is the identity operator on H. It follows from the analytic inverse function
theorem [3] that the maps W, are also analytic on a neighborhood of the
origin of H. Since S=(W_.) ' W_, the map § is analytic on a
neighborhood- of the origin of H as well. §

A

3. Proor oF CoMPLETE INTEGRABILITY

Proof of Proposition 1. Morawetz and Strauss [9] have shown that

w(dW v, dW  w) = w(v, w) (10}
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if o, we T, and ue F, where & is a certain dense subspace of H such
that W, : & — & is a diffeomorphism. By Theorem 2, the maps W, are
real-analytic on a neighborhood 2 of the origin of H, so (10) holds for all
n,weT HifueQ §

Proof of Proposition 2. This follows directly from the definition of the
maps W,. B

Proof of Theorem 3. Note that by conservation of energy there exist
arbitrarily small neighborhoods of the origin in H that are invariant under
V(t) for all ¢, namely those of the form

Q={ueH: 'fé{{Vu;)2+m2uf+u§)+%u‘f<s}.

Choosing £2 small enough, by Theorem 2 and Propositions 1 and 2, Wt
is an anpalytic symplectomorphism from @ to a U{t)-invariant neigh-
borhood Q' of the origin of H, and W ~' intertwines the action of ¥(¢) on
€ with the action of U(f) on §'. Thus it suffices to prove the theorem for
the action of {/(z) on &, that is, in the free case.

Given keR? let ky=(k*+m?)%. There is an isomorphism
R:H — L}R? C) such that:

0o(x) = (2m) " Re j (Ru)(k) etk -0 =1 g3
Given a real-valued function 4 e C(R?), define the function F;,: H — R by
Fyf) = [ h(k) [(Re)E)| k™ d*%.

Note that F, is analytic on H. Furthermore, given t¢R and uek,
U(1)* F, = F, because RU(1) u=e""Ru.

We define the functions F; and corresponding vector fields v, as follows.
Let {4} be a sequence of real functions in CF’ (R?} spanning L'(R?, C)* in
its weak-* topology, and let F;= F,. Clearly the map wr R™Y20h; Ru) is
continuous and linear from H to H and can be identified with an analytic
vector field on H, which we denote by v,.

It is well known that if », we 7, H are identified with vectors in H by
translation:

wfv, w)=Im f RoRwk; ' d’k.
Thus if we T, H,
dF,(w)=2Re | h, RuRwk; d%k = (v, ),

as claimed.

LN
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Statement (1) is proved as follows:
(v, v)=Tm [ Ro,Rojks " d%=4Tm [ by |Rul® k5 dhe=0.

To prove statement (2), we show that the space L < T, H is isotropic for
all weD, where D<H is the set of » such that Ru is a.e. nonzero. An
argument as in [27] shows that the complement of D is of first category
in H. Suppose that ue D and ve T ,H. Then if ve L,

2Re | hRuBok* d%k =0

for all i, which implies that RuRv is ae. imaginary, since {h;} spans
LY(R? C)*. Thus given v and w in L, RvRw |Ru|? is ae. real, so by the
definition of D, RvRw is a.e. real. It follows that

wlz, w)=1mfku‘jm:gl k=0

as was to be shown. §

APPENDIX

Proof of Lemma 1. We follow the arguments of Marshall, Strauss, and
Wainger [6, 7]. For brevity we use ¢ rather than ¢, to denote the unique
distributional solution of (T +m?) @ =0 with (@, $}| ;=0 =1 By conser-
vation of energy, Joliepzy<Clully, so it suffices to show that
ol es < Clullg.

Note that

B~%p(1, Y= B~?cos{tB)u, + B~ *Vsin{tB) u,.

Let oV denote the measure dV=ky"®* 4% on the surface {ko=
(k* +m*)*} in Mg. Then

B~ (1, x}=(2n)"** Re j Flk) e o =k-%) gy
whete

F(k) = (2n~)”3f2j (Bu, — iug)(k) e dx.

S
In other words, B~ %p =Re Fd4V, where ™ denotes the usual Poincaré-
invariant inverse Fourier transform on Mg, up to a constant. Suppose that
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b, p, and ¢ satisfy the hypotheses of Lemma 6 below. Then using that
lemma and the Plancherel theorem, it follows that

AN 5
%EB"PJ(P” Loy S JFdVi Lo S CYF gy = CEEBW”H “"2{3141 — it )2,

hence

(1BY= 20 oy < € | Buy — ity

In particular, we may choose b=2% p=3, and g=35 The Sobolev
inequalities then imply

!%@%EJ}(LG) ¢ ElBi’M’ﬁD"LS(LS) o {Bu; —iuyl, = C ull g,

as was to be shown.

Limma 6. If ¢ =2 and the following hold,

b=5(%—_é)~—-1, (11)
2<r(5-7)<t | (12)

then
s
HFdVH LP(LA) <C ifFH LAdVy-
Proof of Lemma 6. By duality and an argument given by P. Tomas
[147, it is enough to show that
Elﬁ* ﬂ/'?/ﬂ o S C iiﬁﬁ LA(LT)s
where 1/p+ 1/p' =1 1/g+ /g =L

Note that if f(3)=![F{S,-)Equ, and k(r) is such that Eih*a/??/(r,-)flq:g
k(t) |4l - for ailrheL’f'(Rt’), then

1E = AV oy < I 1l oy
Young’s inequality implies that
e # Fll, < Bl 185 = 1kl 2 1E o zoy-

Thus torprove the lemma it suffices to show that ke LP*(R) for some k
such that

k= AV, ), <k (A,

Note that _ _
hox c?f\/(r, _)__—_Bw(bﬂ}eswh_
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Given reR and ze C, et
P(z, t)= B~ =18

We will show by interpolation that | P(b, -}|| 1 o€ L7(R).
Note, first, that if Re{z)= 1, the Plancherel theorem implies
[ P(z, £} 2 2< 1. Second, as we show below,

IP3/2, Dl e <t~ (14 1)~ ¥ In(2 + 1) (13)

for all ¢>0. Moreover, [5], for all yeR, [B?| o pmo<c(l+|yI*):
Composing these operators we conclude that

1P(z, Ol o1, maro < el + Im(2)])? (1 + 1) In(2 + 1)

if Re(z) = 3. The space BMO plays the role of L™ in complex interpolation
theory [5]. Therefore by the Stein interpolation theorem, P(b, ) maps
LY(R?) to L(R?) and

1P(B, )l o, oS et {1+ 1) In(2 + ),
where ¢e[0, 1], =552 1, and l/g=(1-—¢e)/2; hence e=1—-2/g It
follows that | P(d, 1)l ;s o€ L7 if ¢>2 and (11) and (12) hold.
Now let us show that (13) holds. By the definition of P(z, 1),
PG, 1) =B~ = G(1,-) /.

where
G(t, x) = [ keg reihar—ix) g

Thus it is enough to show that for some constant C,
G X)L+ 07 2 In(2 + 1)

for every xe R Let R=|x|l and r=Jik|. Using spherical coordinates, it
follows that

© i
G, x)=4n [ [ Iy etorerReosort sin o do dr
o 0

0

— STE * - 32 d FROIy ot
-= L kg2 (") sin(rR) dr,
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and ihtegi‘ating by parts gives

8ni reo  [cos(rR) 3rsin(rR)
G{I’X)ZTL gko( 7 T IRK d

It follows that |G(s, x)| < ¢t for 0<r<1. For 121 we have

Gt x) == j: g COZ%LR ) dr;%;f I 5; PCGEALLED, ;?égf) dr
B g ) g T [ e 2
— %725 J:o cos{kyt) WIS;;:;éLR) dr.
Denote the three terms in the last expression by 7,, I, and I, respectively.
It is easy to see that |I,l, [[5] < C1~*?, since

Thus we only need to prove that |I}] < Ct~**In{l +1) or

J= et Y2 In(1 41},

j kg 3e™ cos(rR) dr
0

for r= 1. J can be estimated as follows:

« . cos(rR) @ . Cos(rR]
T<|] e 4|t J, e i

H o
< J- g0 ———005(3:5) drl + CJ. ¥ gy
¢ ko H

drl + 2ot Y2

A

r ko cos{rR}
o T

To estimate the integral
t . cos{rR)
- ik .
I—j;)e of P dr,

o

we use the following:
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LeMMa 7. (1Y If h is a function on an interval [a, b] such that B" 2 A >0,
then |§ ™) dx| <842 (2)If h is a function on an interval [a, b] such
that B 20 and ' = >0, then |{% ™™ dx] <4~ '

Proof. This is due to Van der Corput; see [15]. §
Let

H{s, 1)= .[0 e cos(rR) dr = E% (et +rR) 4 pithor=rRYy gy,

We have

t
I=H{, t){(f? +m?) "+ J Hir, 1) rkg ™" dr.
0

From Lemma 7 and (d%/dr*)(kot + rR) = tm’k; >, we have
|H(r, )] < et~V
Therefore
LH(E, 2 +m2) 728 g2

and

!
lJ Hir, tyricg "™ dr
9

i
<o~ J kg ?rdr
0

Lt P In(1 +1);
so for some constant ¢, {7] <ct: Y In(l1+1). §

Proof of Lemma?2. Recall that K(¢) g=B~"sin(¢B) g. It is easy to see
that if Re{z)= -1,

IB7°K(#) gll.<lgl.-
As we show below,
1B *2K(r) gl <mit} { gl (14)

where
ct— 2 i re(0, 1/m];

m(t) < {ct—sjz in(i+¢ i re[l/myoo})

As in the proof of Lemma 1, the Stein interpolation theorem implies that

1B=*K(#) gll < Kle) gy
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where e [0, 1}, &=15¢/2— 1, H/g={(1—¢}/2, and k(r) satisfies

ei—i? if te (0, i/m]:
k(1)< {Ct—-fis,n'Z(ln(i +8))y  if te[1l/m, o)

Thus,
IB=*K(1) B gl , < k(1) | B gl

which implies that
HE(2) gl <k(t) gl g

where r=p —be=r"4+1-—5g/2. Taking d=4¢/2, we obtain the desired
gstimate.
To prove (14) it suffices to show that

12, ) = gl S (8 o Nglls <m(z) gl

where

I{t, x

)_f szn(kot)rsm(rR) (15)

h k3? R
From the proof of Lemmal we already know that /{4, x)i<

et 1a(1 +¢) if t = 1/m. We only need to show that |I(z, x)| < ¢t~ for
te [0, I/m]. Letting s = R/t and u=~Fkyt, we can rewrite (15) as

e gj i T__ 22
1, x)xt"“”z.](z,x)mt—sfzJ' Smusm(ﬁm)du

mt U vz Su

If s> then

. 1 ) ’
(e, %)) sjo =i du+f1 s gy < 2+ 16,

In the case of s<i ¢, we divide the integral for J(z, x) into three parts J,,
Js3, and J, given by

[+
J;“J 57 sin u sin v du,
-3

. :
J?_=f §7 3 sin usin v du,
2

2
Js =j 5™ 2 sin usin v du,

mi
where v=s5./u’ — m>t.
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Since #7** is a decreasing function for we[s % o), and
{@/du)(u+v) =4, the second intermediate value theorem and Lemma 7
imply that

|7} <sup < 16.

w
j. ei{u + ) du
Eac

fw efe—vd gy
n

s

+ sup
W
For ue[2, s7*] the function s~*u~>?sin v is decreasing since

dsinv cot b u? 3 sinv< 4 3\siny <o,
dusur Y w—m? 2 32} W

noting that vcot v <1, where ve [0, §]. By the second intermediate value
theorem, this implies

s

| S} = J. s sin w sin o dul <2,
2

Finally, it is trivial that

JZ sinusins Ju® —mi2

[J] e du

st ul,l?. Su

2
éJ. U e dg
o

Combining these estimates gives }1(¢, x)] <ct™'* when (0, 1/m]. §

As Marshall, Strauss, and Wainger have shown [7], with further work
one can remove the logarithmic term from the statement of Lemma 2 and
the proofs of Lemmas 1 and 2.
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