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We consider Wick products of the free Bose field in the abstract context of a 
complex Hilbert space H equipped with a self-adjoint operator A satisfying A >EZ 
for some E > 0. Let (K, W, r, u) be the free Bose held over H, and let H = dT(A). 
Let H, and Ko3 denote D”(A) and D”(Hf, respectively, given their natural 
Frechtt topologies. Then for any f,, . . . . f. E H*, the Wick product :@(f,) . . @(f,): 
is constructed as a continuous sesquihneat form on K, characterized by a 
generalization of the Heisenberg commutation relations. As an application, we treat 
pointwise products of the free scalar field and its derivatives on Rx M, M an 
arbitrary complete Riemannian manifold. For example, if f E Ck( R x M) for large 
enough k, then JR x ,,, f(p) W(P)“: corresponds to an operator with domain K,. If 
in addition f is real-vdued, n = 2, and M is compact, then this operator is essen- 
tially self-adjoint. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

A substantial portion of the theory of quantum fields can be formulated 
in an abstract Hilbert space context. Traditionally, however, construction 
of the Wick products of free quantum fields at a point of space-time have 
relied heavily on symmetries of the space-time, which allow the application 
of harmonic analysis [6, 9-l 11. Here we show how essential aspects of the 
theory may be developed in the general context of a complex Hilbert space 
H equipped with a self-adjoint operator A such that A 2 EI for some E > 0. 
(In physical applications A plays the part of the “single-particle free 
hamiltonian.“) In particular, for any continuous linear functionals f, , . . . . fn 
on Dm(A) (with its natural FrechCt topology) the Wick product 
:@(fi) . . . @(f,): exists as a sesquilinear form characterized by a generaliza- 
tion of the Heisenberg commutation relations. 

This approach allows a unified development of the theory, which may 
then be applied in a wide variety of contexts. For brevity we consider only 
the case of Bose fields. We give illustrative applications to the theory of the 
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massive neutral scalar field on space-times of the form iw x M, M an 
arbitrary complete Riemannian manifold. 

For a somewhat related study of Wick products, see [8], Some of the 
following material first appeared in the author’s thesis [I]. The author 
would like to thank his thesis advisor, Irving Segal, for help and 
inspiration. 

2. WICK PRODUCTS AS SESQUILINEAR FORMS 

Given a complex Hilbert space H, there is a unique “free Bose field” 
(K, W, I’, u) characterized by the following properties: 

(a) K is a complex Hilbert space. 

(b) W is a strongly continuous map from H to U(K) such that if 
f, gEH, then W(f) W(g)=e’m<LR)‘2iW(f+g). 

(c) r is a strongly continuous unitary representation of U(H) on K 
such that for any UEU(H) and fcH, f(U) W(f)ZJU)-‘= W(Uf), and 
for every positive self-adjoint operator A on H, the self-adjoint generator 
of the group r(eirA) on K is positive. 

(d) The vector UEK is cyclic for the action of the W(f) and 
invariant under the r(U). 

Given f E H, the “field operator” @p(f) is defined to be the self-adjoint 
generator of the group W(tf ), t E [w. Given a self-adjoint operator A on H, 
C(A) is defined to be the self-adjoint generator of the group T(eirA) on K. 

In what follows, we will assume that A is a self-adjoint operator on H 
with A > EI for some E > 0. Define the FrechCt space H, to be the vector 
space Dm(4=n,,o D(A”) with the seminorms /IA”.II. Let H=dT(A); by 
the above we have H > 0. Define the Frechtt space K, to be the vector 
space WH) = nnz,O D(H”) with the seminorms (((H+ Z)“.(l. As shown in 
[93, for any f E H the operator G(f) is essentially self-adjoint on D”(H), 
and if n 2 0 is an integer there is a constant c such that 

ll(H+V'@(fbll<c IIA"fll JI(H+Z)“+“*xll 

for all f E @A”) and XED(H”+“*). As a consequence, the map 
(f, x)~@(f )x is continuous from H, xK, to K,. To treat Wick 
products of field operators we will use a related continuity result for the 
“annihilation operator” a(f) = 2 -lj2( c@( f) + i@( if)), where f rz H. By the 
above, the map (f, x)+-+a(f)x is continuous from H, x K, to K,, but a 
stronger statement is true: 
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PROPOSITION 1. For every integer n > 0 there exists c such that 

l/(H+ ZY atfbll G c ll~“-mfll 1lW-t ZY+m x/l 

for every f E D”(A), x ~5 D”(H), and integer m 3 1. 

Proof. We make use of the following: 

LEMMA 2. Zff El-l and xEKccr then for all rn> 1 

Il4f Ml G IV +f II IIHVL 

Proof: Let P be the self-adjoint projection onto the span off in H. For 
all gED”(A) we have 

Ilfll’ (g, pg>= I(f> g)12G ll~-mfl12 lI~mgl12f II~-“fll’ (b5A2mg) 

hence,asD”(A)isdenseinH, l(f(1*P~IIA-“fl12A2”.Thus Ilfll’dZJP)< 
ll,4-“f~~*d~(A*“). As is well known, llfl12dT(P)=a(f)*a(f), and A>0 
implies dP(AZm) < dT(A)2” = Hz”. Thus we have 

a(f)* a(f) d lIA-mfl12 Hz”. 

proving the lemma. 1 

Now suppose that f E Da, (A ) and x E D m (H). Differentiating the relation 
eiHfW(f)i?-iHt~ = IV(e’“Y)x we obtain [H, a(f)] x = - a(Af )x, hence 

H”a(f)x= c (- l)k i a(Akf)Hnekx. 
OS/C$Pl 0 

By the lemma this implies that for some constant c depending on n and E, 
for all f E D”(A), XE Dm(H), and m 2 1 

IIH”4f)xll GC IV-WI ll(H+Z)“+“xll. 1 

The above proposition lets us define annihilation operators a(f) for all 
f~ H*, as follows. For any integer n let H, denote the completion of D(A”) 
in the norm ll,4”.11. The proposition implies that the function 
(f,x)C*a(f)x from H,xK, to K, extends uniquely to a continuous 
function a,, : H, x K, + K, . If n < m, we identify H, with a subspace of H, 
and identify the restriction of a, to H, with a,. Moreover we may identify 
the vector space H*, with the union UE, H, (in a conjugate-linear 
manner). Relative to these identifications, the union of the functions a, is 
a function from Hz x K, to K,, which we again write as (f, x) I+ a(f )x. 

We topologize the space H*, as the inductive limit of the Banach spaces 
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H,. As such, Hz is a barrelled space, so the uniform boundedness principle 
applies [3]. Thus the function (f, x) pax is jointly continuous from 
Hz xK, to K,. 

THEOREM 3. For each n 2 1, there is a function from (Hz)” x KZ, to @, 

(f-*2 . ..>f”. x9 y)w :@(f1)...@(f,): (x, y), 

such that: 

(a) The function (fl, . . . . f,, x, y) H :@(fl) -. @(f,): (x, y) is jointly 
continuous, real-linear, and symmetric in the arguments f,., conjugate-linear in 
x, and complex-linear in y. 

(b) For allf EH and x, yeK,, :@(f): (x, y)= (x, @(f)y). 

(c) For alffi, . . . . f,EHz, :@(fl)...@(f,): (u, v)=O. 

(d) Let 9(f)“: (x, y) stand for :@(fi) ... @(f,): (x, y) withfi= f for 
all 1 Giiin. Then for aIlf EH$, geH,, and x, yeK,, 

:@(f)“:(x,@(g)y)-:@(f)“:(@(g)x, y)=inImf(g):@(f)“-‘:(x, y). 

Moreover, the :@( f, ) . . . @(f,,): are uniquely characterized by these proper- 
ties, and satisfy 

:@(fl). . . @(f,): (x, y) = 2-“‘* c ( klJs U(fk)X? I-I 
SE (1, . . . . n) ks(l,...,n)-S 

_n(fk)Y). 

(1) 

ProoJ We prove existence by showing that (1) defines a function from 
(Hz)” x KL to @ satisfying (a-d). Note first that by Proposition 1 we have 
the following extensions of the usual commutativity of annihilation 
operators: if f, g E Hz, a(f) a(g) = a(g) a(f) as continuous operators from 
K, to K, . By Proposition 1 and the fact that the a( fk) commute, (1) gives 
a well-defined function from (Hz)” x KL to @. Property (a) follows from 
Proposition 1 and the uniform boundedness principle. Property (b) is 
evident. Property (c) holds because a( f )v = 0 for all f E Hz. To check (d), 
note that (1) implies 

Extending the usual commutation relations via Proposition 1, if f E Hz 
and gEH,, 

a(f)” @(g)--(g)4f)P=2-1’2Pf(g) a(f)“-’ 
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as operators from K, to itself, hence 

:@(f)“: (x, @(g)y)=2-n’2 
c i) 

;: (au‘)” x9 QtS)“-k @(g)y) 
Osk<n 

7 -m =a 

c 0 O<k$n 

; Wf)” @P(gbG 4fYk Y> 

-k2-q&g(a(f)k- * x, a(fyk y) 

+ (n-k) 2-“2fk)(a(.!-)k x, QtS)“-k-’ Y>) 

= :4(f)“: (@(g)x, y) -; nfm :@(f)” - ‘: (x, y) 

+;nf(s) :wT-‘: (x, Y) 

= xqf)“: (@(g)x, y) + in Im f(g) :@(fj” - ‘: (x, y). 

To prove uniqueness we use the following: 

LEMMA 4. Suppose F is a continuous sequilinenr form on K, such that 
F(x,@(f)y)=F(@(f)x,y)for ai1f~l-I~ and x, ~EK,. Then for some 
cc@, Ffx,y~=c(x,y)jbraiix, ~EK,. 

Proof. Let N= &(I), and let Pk be the spectral projection onto the 
eigenspace of N with eigenvalue k. Via the Fock-Cook representation we 
identify P,K with SkH, the symmetrized k-fold Hilbert space tensor power 
of H. Let D denote the algebraic span of vectors of the form 
S(fi @ ... Qfk), where k> 0 is arbitrary and fl, . . . . fkcDDOfAj, and S 
denotes the symmetrization operator. It is easily seen that D is dense in 
K,, and that ifSoH, the operator Q(f) maps D to itself. As shown in 
[lo], if F is a sesquilinear form on D with F(x, 4(f) y)=l;(@(f)x, y) for 
allSEH,, all x, y E D, then F is a constant multiple of ( ., . ), The lemma 
follows directly from these facts. 1 

Now let 

be an alternate set of functions from (Hz)” x KL to @ satisfying (a j(d). 
By Lemma 4 it follows inductively that :Y(f)“: (x, y)= :@(f)“: (x, y) 
for all n. In order to conclude that :!P(f;). . . yl(fn): (x, y)= 
:@(fi) ... @(fn): (x, y), it suffices to note that if V is a real vector space and 
F: I”’ + R is a symmetric multilinear function with F(z, . . . . I) = 0 for all 
z E V, then F = 0. This in turn follows from the fact that if Y is finite-dimen- 
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sional, the symmetrized tensor product S”V is an irreducible representation 
of GL(V), hence is spanned by elements of the form z@ ... @z, as these 
span a subrepresentation. 1 

The Wick powers thus defined have the following covariance property: 

THEOREM 5. Let Ii: H -+ H be a unitary operator that restricts to a 
continuous linear operator from H, to H,. Then I’(U) restricts to a con- 
tinuous linear operator from K, to K, . If in addition U: H, + I-I, has a 
continuous inverse, then for all f,, . . . . f,, E Hz and x, y E K, we have 

:@(u*fli) ... @P(Ul*f,): (4 y) = :@(f,) ... @i(f,): (r(U)& qU)y), 

where U*: Hz 4 Hz denotes the adjoint of U: H, * H,. 

ProoJ Let U: H + H be a unitary operator which is continuous from 
H, to itself. Let the operators N, S, and Pk and the space D be as in the 
proof of Lemma 4. As is well known, r(U) 1 S’H = UQ . .. @ U and 
HIskH=C14i9k Ai,k, where Aiek is the self-adjoint operator on SkH given 
by I@ ... 6,440 ... @I, with the factor A in the ith place. As a conse- 
quence, H and r(U) map D to itself. 

Writing an arbitrary element x E D as a finite sum Cka,, xk with 
XkESkH, we have 

l<T,k llAi,k(U@ “’ @ u)x*11)2)1’z. (2) < 
Since U is continuous from H, to itself, there exist m, cb 0 such that 
IlAUf 1) <c IIA”f I( for all f E H,. This implies that 

ItAj,,(U@ “’ @u)x,ll <c /I(18 “’ @A”@ “’ @z)xkII, (3) 

where the factor of A” occurs in the ith place. As may be checked by 
formula for H above. 

10 ... @IA”‘@ ... @I<H”(,. 

Since these two operators commute on a common domain of essential self- 
adjointness, namely SkH n D, we have 

II(l@ ... @A”@ ... @1)x,1) < IlH”Xkll. 

By (2), (3), and (4) we have 

(4) 

> 

w 
c k IIHmd12 . 

k,O 

(5) 
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Since A 2 EZ, we have H > EN, and these operators commute, so 
llHul[ >E I(Nu(l for all UED. Since Nxk=kxk, (5) implies 

> 
112 

IIHr(U)xJI GCE-’ =CE-1 lIHm+lxll. 

It follows that for any n B 0, x E D, we have 

llH”f(U)xj) <(~a-‘)” /\Hnfmtl)x\\. 

Since D is dense in K, this inequality is also valid for any XE K,, so r(U) 
is continuous from K, to itself, as was to be shown. 

Next suppose U and U-’ are continuous from H, to itself. Then T(U) 
and r( U- ‘) are continuous from K, to itself, so 

i~(U*f)x=a,w(tu*f)X(,=o=d,f(U-1) w(ff)r(u)xl,=o 

=I-(U-‘)a,W(tf)f(U)xl,=,=if(U-‘)@(f)f(U)x 

for allfEH, and XEK,. Similarly, @(U*if)x=T(U-‘)@(if)f(U)x, so 
a( Pf) = f(P) a(f) f(U) as continuous operators from H, to itself. It 
follows from formula (1) that if fi, . . . . fn E H, and x, y E K,, then 

:@(u*f,)...@(u*fJ: (x, y)=:@(f~)-*.@(fn): (f(U)& f(U)y). 

By the continuity stated in part (a) of Theorem 3, this equation holds for 
alIf,, . . ..f.,~Wk. I 

3. FREE BOSE FIELDS ON MANIFOLDS 

We now apply the general theory to the case of free Bose fields on 
manifolds. In these applications H, is a subspace of the space of sections 
of a vector bundle over a manifold. In what follows, manifolds will always 
be assumed paracompact and C O”. 

PROPOSITION 6. Let C*(X, E) be the space of C” sections of a C” real 
vector bundle E over a manifold X. Let H be a complex Hilbert space, let A 
be a self-adjoin1 operator on I-4 such that A >, EI for some E > 0, and suppose 
that there is a continuous real-linear embedding T: H, + C w (X, E). Then 
given us C*(X, E)* there is a unique element T’p E H% such that for all 
f EH,, Re(T#u(f))=u(Tf). The map T#: Cm(X, E)* +H*, is real- 
linear. Define 

:cp(~~)~~~cp(~L,): (x, Y)= :@(T’P~)...@(T#P,): Ix-, Y) 
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for i4, . . . . ~,EC~(X,E)*, x, ~EK,. Then thefunction (pl, . . . . ,u,,,x, y)~ 
:&u,)...q&): (x, y) from (Cm(X, E)*)"xKk to C is real-linear in each 
argument pi, complex-linear and continuous in y, and conjugate-linear and 
continuous in x. 

ProojI The only point that is not a direct consequence of Theorem 3 is 
the existence of a unique function T# with the required properties. Here 
note that given a continuous real functional ,u on V, T#,u must be a 
complex-linear functional on H, with Re( T “p( f )) = p( Tf). This implies 
that T#p(f) =p(Tf) + i-‘p(T(if)). With this definition it is easy to see 
that T# has the required properties. 1 

The hypotheses of the above proposition are applicable to Minkowskian 
and Euclidean free quantum fields, as well as to “light-cone” and “infinite 
momentum frame” quantization (in mathematical terms, the Goursat 
problem [2]) and white noise on complete Riemannian manifolds [ll]. 
Note that Cm(.I’, E)* contains functionals f of the form 

f(g) = @k(P)), gEv, 

where p E X, q E (E,)*, and D is any linear differential operator on E with 
C” coefficients. This permits the definition of pointwise Wick products of 
fields and their derivatives. 

As a concrete and notationally simple example, consider the “free neutral 
scalar field of mass m” on Iw x h4, where M is a complete Riemannian 
manifold. Here the Hilbert space H is taken to be a space of Cauchy data 
for real solutions of the Klein-Gordon equation 

(0 +m*)$=O 

on [WxM. 
To be precise, suppose m > 0, and for real a let H”(M) denote the 

completion of the space of real-valued functions f E C,“(M) with respect to 
the norm 

If II== II@ +m*Y’*f 11L2cMj, 

where d denotes the unique extension to a self-adjoint operator on L*(M) 
of the (nonnegative) Laplace-Beltrami operator on C,“(M) [4]. Let 
Ha(M) denote the intersection of the spaces H”(M), a FrechCt space with 
seminorms 1) . )I oL. 

Let H = H’/‘(M) @H-“*(M). Let B= (d + m*)“‘, and give H the 
structure of a complex Hilbert space with complex structure 
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and inner product 

((fl,fA kl, it*)) 
=(B1’2fi,B1’2gl)+<B-1’2f2,g-1’2g2)+i(<fi,g2)-(f2, gl>h (6) 

where all the inner products on the right side are those of L*(M). Let 

A= 

realized as a self-adjoint operator on H. Note that with this choice of A, 
H, is isomorphic to H”(M) @ H”(M), hence continuously embedded in 
C”(M)@ C”(M). 

There is a continuous map T: H, + C “( R x M) given by 

T(f I(4 4) = (e?fh (4h (64)E~XM 

where (e”‘f )I denotes the first component of the pair e”“‘f E H,. Given 
Pl, . . . . P” E C”(R x M)*, we may define the function (,u,, . . . . pL,, x, y)~ 
:@r) . ..cp(pJ. (x, y) from (Ca(R x AI)*)” x Kk to @ as in Proposition 6. 

Given pr , . . . . pns RxM, define :cp(pI) . ..cp(p.,): to be :(p(6,,)...(~(6J:, 
where a,, is the Dirac delta measure at pi, an element of C,(R x M)*. 
Then we have: 

THEOREM 7. Suppose M is a complete Riemannian manifbld. The 
function 

(P 19 *-*3 Pn>x? Y)H :cp(Pl)...cp(P,): (x3 Y), 

defined as above, is continuous from (52 x M)” x Kk to @, linear in y, 
conjugate-linear in x, and C” as a function of (pl, . . . . p,) E ([w x M)“. 

Proof: This is a consequence of Theorem 3, Proposition 6, and the fact 
that the map p H T#(6,) is C” (in the Frechet sense) from R x M to H*, 
with its inductive limit topology. m 

The Wick power q(p)“: is defined to be the sesquilinear form 
:cP(P~)~~~cP(P,): with ply . . . . pn =p E R x M. When integrated against suf- 
ficiently smooth functions on R x M, the Wick powers give rise to densely 
defined operators on K. The following result illustrates this. 

THEOREM 8. Suppose M is a complete Riemannian manifold, and suppose 
K E iw x M is compact. Then for any n, a 2 0 there exist c, k, b 2 0 such that 

/I RxMf(P) :cp(p)“:((H+Z)“x, Y) <c llfll@ llxll II(H+Z)~y(l 
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for allf EC;(K) andx, y6K,. Thus for any f E C$( R x M), the sesquilinear 
form jWxMf(P) :dP)“: corresponds to an operator on K with invariant 
domain D”(H). 

Proof: Given a compact subset KG R x A4 choose a bounded interval 
ZSR and a compact set SEM such that KcZxS. Given x, yeK,, let 
x,=(P~~,~+,,H)x and y,=(P,,.,+,,H)y. By Theorem 7, for some 
Y, Cl > 0, 

ll:dO, 4)“: (W+ZY x, Y)II ,t,m(s) G CI II (H + Oy 41 II W + OY Y II 

for all x, y E K, . Thus by Theorem 5 we have 

ll:dt, 4)“: ((H+Z)” XI, Y,)IIL.~,,,~,~c~(~+ lJy (m+ lJy llxIll I(y,[l. (7) 

Given f E C;(K), let f = cz _ m fi, with each J”i supported in 
[j,j+ l)xS, where h denotes the Fourier transform in the time variable. 
Each function fi is supported in R x S. Choosing k large enough we have 
for some c2 > 0 

for allfE C;(K). 
Since the sequences ((xJ and I( y,[[ decrease more rapidly than the 

reciprocal of any polynomial in 1, by (7) and (8) we have an absolutely 
convergent sum 

s RxMftP) v(p)“: (x9 Y) 

and since for each q E S the Fourier transform of the integrand is supported 
in (j+ m - I- 1, j+ m - I+ 2), the integral vanishes unless j equals 
l-m- 1 or l-m. Thus we have 

IJ WxMf(P) :cp(p)“: (x, Y) 

G f 2 1 1 I.f-m-ci(tv 4) :dtv 4)": (x,, Y,)I dt&. 
/=Om=Od=O,l tQx.s 
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By (7) and (8) it then follows that for some c3 > 0 

II Iw x .f(P) v(p)“: (W + 0” Jh Y) 

<c,cz Ilfll@ f 5 2 (ll-m-dl+ 1)-Y-’ 
/=Orn=Od=O.l 

x (f-t llY (m+ 1)’ l/~,/l /lY,ll 

Gc3 llfllck f f (V-ml + l)r-’ (I+ lJY (m+ 1y llx,ll IIymll. 
I=0 m=O 

Since 1+ 1 < (If-ml + l)(m + 1) for Z, m in the indicated range, the above 
is less than or equal to 

c3 Ilfllc~ 1 (t-t 11-l b+ lP+’ llx~ll IIY,IL 
I, m 

By Cauchy-Schwarz we conclude that for some c > 0 this is less than or 
equal to 

c llflld lI4I lIw+w+ZYII~ 

from which the theorem follows. 1 

An examination of the proof of this theorem makes it clear that it could 
be sharpened in a number of directions; in particular, the estimate (8) 
could be replaced by one which only required a certain number of 
derivatives off(r, q) with respect to t to lie in L’. 

Suppose that fe C,“(R x M) is real-valued, so that swX Mf(~) :cp(p)“: as 
defined in Theorem 8 is a densely defined symmetric operator. It is of some 
interest to find conditions under which this operator admits self-adjoint 
extensions, and when such extensions are unique. Existing results along 
these lines include the following. If n = 1, the operator is essentially self- 
adjoint on D”(H). By the technique of [ll], if f is even with respect to t 
the operator admits a self-adjoint extension, not known to be unique. An 
essential self-adjointness result for arbitrary n, applicable to special choices 
off and M, appears in [7]. 

To conclude, we prove the following result for n = 2: 

THEOREM 9. Suppose M is a compact Riemannian manifold. Then if k is 
sufficiently large and f E CE( IF4 x M), the operator R = SW x M f (p) :(p(p)‘: js 
essentially self-adjoint on D”(H). 
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Proof. Suppose ge D”(A) and x, yeD”(H). Let q(p) denote the 
element of Hz corresponding to 6, E C “(R x M)*. By Theorem 3, 

(x9 CR, @k)l Y> = 2i@ jRxMfb4 Wt;l(d d v(P)) (4 Y). 

Identifying Hz with H”(M)* 0 H”(M)* by means of the pairing (6), and 
writing p = (t, q) E R x A4, we have ~(0, q) = (B-l 6,, 0), hence 

r](t, q) = (B-l cos tB 6,, sin tB 6,). 

Thus 

s Iwx M f(z-4 Im(tl(p) d rl(~) 
= x M f(t, q)(B-’ cos tBgz - sin tBg,)(q)(B-’ cos tB 6,, sin tB 6,). 

For h E C;(M) and bounded measurable F: [w + R, 

s h(q) f’(B) &dq = F(W M 
the integrand being a compactly supported continuous H”(M)*-valued 
function. Thus 

I Rx M f(p) Im(rl(p) g) 0) 

= RxMf(t,q)(B-2cos2tBgZ-B-‘costBsintBg,, 

BP’ cos tB sin tBg2 - sin* tBg,). 

It follows that 

(x, CR,@,(g)l~)=i(x, @(G!)y), 

where T: D”(H) + D”(H) is given by 

(9) 

T=2jRxMf(t,q) T(t)dtdq 



BOSON WICK PRODUCTS 223 

and 

T(t) = 
-B-‘cos tBsin tB B-2 cos’ tB 

-sin2 tB B-‘cos tBsin tB > * 

Define the unitary equivalence U: H -+L’(M) (the complex L2 space) by 
U( g, , g2) = B112g, + iB- lf2g2. Then 

UT(t) u-‘k, + &,I 

= B-‘(cos tB sin tB(ig2 -g,) + cos’ tBg2 -i sin’ tBg, >. 

It follows that while T is not complex-Iinear, it is a member of sp(H), i.e., 
it is a bounded real-linear operator such that Im(x, Ty) + Im( TX, y) = 0 
for all x, y EH. Moreover, if T* denotes the adjoint with respect to 
Re( ., a), a calculation using (10) shows that 

U(T+T*)U-‘(g,+ig,)=2i/ f(t, 9) B- ‘e’““g dt dq. 
LRXM 

This operator is the product of g H 2iB-‘2, which is a bounded transfor- 
mation of L’(M), with the operator jf(t, q)e2i’B dt dq (the integral taken in 
the strong operator topology). Let F(1) = IM f(t, q) dq; we have FE C#3), 
and 

I f(t, q)e2”B 
RXM 

dt dq = i, l@)e’“’ dE(A), 

where dE(1) is the spectral projection-Valued measure corresponding to B. 
If k is farge enough, this operator is Hilbert-Schmidt, hence T+ T* is 
Hiibert-Schmidt. We may then make use of the following: 

LEMMA 10 (Klein). Suppose TE sp(H) and T-b T* is Hilbert-Schmidt. 
Then there is a selfadjoint operator S on K, essentially self-adjoint on D (as 
defined in Lemma 4) such that 

for all g E H. 

e -“s@( g)eifS = @(e”g) 

ProoJ: This is Proposition 2 of [S]. 1 

Note that if S satisfies the conclusions of this Lemma, so does S f cl for 
any CE IT& We will suppose that 

(v, Sv) = (v, Rv). (11) 
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Now we show that R ) D = S) D. First we note: 

LEMMA 11. IRKED andgEDOO(A), then x is in the domain of[S, Q(g)] 
and [S, @(g)]x=i@(Tg)x. 

Proof: Let x E D and gE D”(A). Then @(g)x E D c D(S) so x is in the 
domain of S@(g). Thus we need to show that Sx is in the domain of 0(g) 
and that @(g)Sx = (S@(g) - i@( Tg))x. Since @(g) = Q(g)* it is enough to 
show that for all y E O(@( g)), 

C@(g) Y, Sx) = (Y, (S@(g) - i@(Q))x). (12) 

Since D is dense in D(@(g)) with its graph norm topology, it suffices to 
prove (11) for all y E D. When y E D, by Lemma 11 we have 

(@k).hSx)= -ia,(e~““~(g)y,x)l,=, 

= -id,(@(e’Tg)e-i’Sy, x) JrzO 

= - if3,(eCifsy, @(e”g)x) lrzo. 

Since XED(CP(T~)), and y ED(S) by Lemma 10, this implies (12). 1 

It follows from this lemma, formula (9), and remarks in the proof of 
Lemma 4 that R 1 D and S 1 D differ by a multiple of the identity operator. 
By (11) it follows that RJD=SID. -- 

Since S is essentially self-adjoint on D, R 2 (R I D) = (Sl D) = S, so R is 
a symmetric extension of S. Since S is self-adjoint this implies R = S. Thus 
R is essentially self-adjoint, as was to be shown. fi 
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