wy

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 3 5, Number 2, October 1989

SCATTERING FOR THE YANG-MILLS EQUATIONS

JOHN C. BAEZ

ABSTRACT. We construct wave and scattering operators for the Yang-Mills equa-
tions on Minkowski space, My = R*. Sufficiently regular solutions of the
Yang-Mills equations on My are kaown to extend uniguely to solutions of
the no:nmwmm&:m eguations on the universal cover of its conformal compaci-

—~—

ification, M = R x §%. Morcover, the boundary of My as embedded in M
is the union of “lightcones at future and past infinity”, C4 . We construct
wave operators Wy as continewous maps from a space X of time-zero Cauchy
data for the Yang-Mills equations to Hilbert spaces H{Cs) of Goursat data on
C.+ . The scattering operator is then 2 homeomorphism §: X -» X such that
UWy = W_§, where Ut H(C,) — H(C.) is the linear isomorphism arising
from a conformat transformation of M mapping C_ onto Cy. The maps
W4 and § are shown to be smooth in a certain sense.

1. INTRODUCTION

The conformal invariance of the Yang-Mills equations in four dimensions
greatly facilitates the study of the temporal asymptotic behavior of their solu-
tions. There is a natural conformal embedding : of Minkowski space, M, =
R*, into the universal cover of its conformal compactification, M = R x S°.
Conformally invariant wave equations on M, may thereby be extended to cor-
responding eguations on M [1, 2]. In particular, if 4 is a connection satisfying
the Yang-Mills equations on M , 1" A4 satisfies the Yang-Mills equations on M, .
Techniques used to prove global existence for the Yang-Mills Cauchy problem
on M, extend to prove global existence on M , allowing the derivation of pre~
cise asymptotics for Yang-Mills fields on My [3, 4]. Here we construct wave
and scattering operators for the Yang-Mills equations on M, in terms of the
embedding 1: My — M.

The boundary of M, in M is the union of two characteristic cones C , the
“lightcones at past and future infinity”. Points of C, correspond to limits of
null lines in M,, as the time coordinate in M, approaches Hoo. The scattering
theory of conformally invariant wave equations on M, is thus closely related

to the Goursat problem on Qv in which solutions are determined by dataon a

characteristic cone [5]. Moreover the surface where the time coordinate of M,
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is zero is just the Cauchy surface {0} x5* c M witha single point removed. For
the equation 3+ A1 * = 0 this allowed the formulation of wave operators W,
as nonlinear maps from a Hilbert space of Cauchy data at time zero to Hilbert
spaces of Goursat data on the cones C [6]. These maps can be correlated
with the traditional wave operators mapping sufficiently regular solutions of
0F + if} = 0 to temporally asymptotic solutions of the free wave eguation,
Moreover, the maps W, are smooth with smooth inverses, so the scattering
operator W, (W_)™" exists and is a diffeomorphism [7).

A difficulty in extending this approach to the Yanpg-Mills equations is that
global existence has not been proven for finite-energy Cauchy data, but only for
data having more derivatives. The techniques used in [6] o sclve the Goursat
problem and invert the operators W, rely heavily upon the fact that the spaces
of Goursai data have energy-type norms. Thus while we construct wave opera-
tors for the Yang-Mills equations and show they are sinooth in 2 certain sense,
we do not prove them invertible,

Nonetheless, a scattering operator of a different sort can be constructed. The
group SO7(2,4) of conformal transformations of M nasa unique ceniral
element { mapping C_ onto C_, and the action of this element { on solutions
of conformally invariant equations on M corresponds to scattering [5]. We
show that for the Yang-Mills equations this map is smooth, and describe its
refationship to the wave operators,

2. THE SCATTERING OPERATOR

First we recall the basic global existence theorem of [4]. We shall identify the
universal cover of conformally compactified Minkowski space, M ,with Rx 5
given the metric df° — ds°, where df* and d5° are the standard Riemannian
metrics on R and §° , respectively. Let g be the Lie algebra of a compact Lie
group. Given a smooth manifold A, possibly with boundary, let OF (A, g)
denote the g-valued differential p-forms over M . {We use this notation in in-
formal contexis when no particular degree of differentiability need be specified.)
Following the notation of [8], the Yang-Mills equations for 4 € @p?\m L} may
be written as
(1} F=dd+i[d.4]; d«F+[4,+F]=0.

In temporal gauge, the 4¢ component of A is assumed to vanish, where 1
is the R-valued coordinate on M. We shall identify elements A & bmﬁﬁ,wv
with vanishing 41 component with functions 4: R — D;hu .8} Let d_ denote
exterior differentiation of g-valued forms on s »and let # denote the Hodge
soperator on g-valued forms on 5% with respect 1o the metric ds*. Given
4,B¢ o ?u &), we make the following definitions:

Ax B= 14,8}, [4;Bi=x[Ad,x B},
Ved=s ded, VAd=+dA4,

I
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: [P
and given f € Q°($”,g) we define V1 to be d_f. Note that if A deno
m\mmumom.mnwa_ﬂm operator on Q?& 18}, wehave Ad = Vx(Vx Ay—-vi
C&um to denote §,, and working in temposal gauge, the equations (
equivalent to the evolution equation
{2y A4 +4xAqx.&fmxExéﬁﬂxixmfwmxﬁxé“
together with the constraint
{3) : V-4 +id; 4A1=0.

Identifying ,m.m. with SU(2), et V., 1 £7<3,be an orthonormal ba
left-invariant vector fields on 5°. Let bw_ﬁm_mu -8} denote the space of g-v

3.
one-forms on §° with all components [ying in the Sobolev space &* a.J s
the stmcture of a real Hilbert space with the following norm:

Iy = 3>

1gig3’ S la+ :_Shmﬁxu

where here A denotes the Laplacian as a selfadjoint operator on hma 3 g)
| -] denotes any Hilbert norm on g. v

The evolution equation (2} may be desingularized by differentiating it
qmmnm& o t and using the constraint (3) to rewrite the resulting term V(¥
as A4 ~VI4;4]. Let H denote the real Hilbert space Q)8  genls,
Q,(87,8);H willbeused as a space of Cauchy data (4,4 A" Let W de
the set of Cauchy data in H satisfying (2) and {3), that is, those (A, ,4,,.4
H such that d...mu.:hmmmtno and v
Ay VXAV XA+ A, % (T 4))+ 4V x (4 AN+ A4, % (A, x4, =
Note that X is a closed subset of H; we give X the metric arising from
normon H. Let L be the unbounded operator on H with domain b_au i
b.x.wu .8} @Dwaw.wv given by o

Em_.mm,ktﬁiﬁhf ~{A+ 1}4,},
and let ¥: H - H be the function given by
?‘ﬁ\um .hu.kwy = mO»Ov\hml_ .\mm:
where
FUA s ) = Ty 4] Ay X (V% Ay) ~ y x (V% )~V x (A, x 4,)
—A; (4, x 4,) - 34, x (4, X A3+ A, .

It follows m,onm results in [4] that L generates a strongly contisuous or
_um.:mﬁﬁm_. semigroup on H, and that the function N is C° from H to
with all derivatives bounded on bounded sets.

The global existence result may be stated as follows:
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Lemma 1. For any Cauchy datim uy € X there is @ unique continuous u: R—X
salisfving

(4) ult) = e ug + \ A N ) ds.
0

Let (4,00, 4,00, 4,(0) = u(f), and lei 4 € QY (M, g) denote the gvahied
one-form corresponding to the continuous function 4 R — bwaw ). Then A
satisfies (2 and (3) in the distributional sense.

Proof. This follows from Theorems 3 and 4 of [4]. O

Define the map T Rx X — X as follows: given #5€ X, let uw: R— X be
the unigue continuous sofution of {4), and let T{fhu, = u({}. T is clearly a
group action of R on the space X, This group action extends to an action )wm,
R x SO{4), which is the identity compenent of the group of isometries of M:

Lemma 2. The group SO(4) has a sirongly continuous orthogonal representation
on H given by:

g(d, dy, A = (™) A4, (87" 4, (g7 Y Ay)

where g°: (S g} — 'i8% g denotes the pullbacik map induced by the dif-
Jeomorphism g: S§* s § corresponding to g € SO4). If g € S04} and
we X, then gu e X. Moreover, there is a group action T R x SO{4)X — X
given by:

T, pu=TH{zw), {{,geRxS0EH), ueH,.

Proof. Since the action of SO{4) on 5% is isometric the linear transformation
of M given by uw+ gu is an isometry. The action of SO(4) en any Sobolev
space H* ﬁ,ww } is strongly continuous, s¢ (g, u} > gy isa continuous orthogo-
nal representation, Moreover, if 1= {4, ,4,,.4;)€X and gu= (8,,B,.B;),
then simple computations show that V- B, + [B;; B,] = 0 and

wugrﬁxﬁdxm_v.vm.xmﬁxm_vmywdx@._xm_v.m.wh_xﬁm_xm_vnmu

hence gu € X. That T is a group action follows from the fact that T{fgu =
gT (), a consequence of the SO(4)-invariance of equation (4). O

As mentioned above, the action of the central element ¢ € §07(2,4) on
the space of solutions of the Yang-Mills equation may be interpreted a5 the
scattering operator [$]. In its action as a conformal transformation of M it
corresponds 10 the isometry {7, ~1) € RxSO(4}. Thus we define the scattering
operator $: X = X by S=T(n,~T). Ina certain sense S is smooth, but
since X is not a submarifold of H [9], some care is required to make this
precise. We will show that the action T of R x S0{4) on X extends to a
tocal action T of R x SO{4} as €™ maps defined on neighborhoods of X.

SCATTERING FOR THE YANG-MILLS EGQUATIONS

More precisely:

Theorem 3. Forany (t,g) € RxS0{4) there is an open set U CH cor
X and a function T{t,g): U, ~+ H such that:

(&) The restriction of Tt,2) to X is T, g).

(b) When both sides are defined, T(t, g)Ts, kv =Tl +5,gh .

(VI ist < |t} then U, QU If 120 and v € U,, T(s,Nv is con
as a function of 5 from {~t,1] to H. .

(d} For all nz the funetion T(t, g): U, — ¥ has a continvous nih
derivative D"T(1, g): Hx W — H, where B” denotes the n-fold produc
For all v & U, the multilinear map D'Tis,g)v: H" — H satisfies

sup{ID"T(s, g)v)}: g € SO}, s < [} < o0
wﬁg\ . Suppose that u; € X and ¢ > 0. We shall show that for some ¢,/
if vy —upl <&, 051, S ¢, and v: [~fy, 0} » H is a continuous fu:
such that .

(5) v(s) = e"vy + \a UEL;E%&K?

sz. SUDee fu(sHl < M. It then foliows from the theory of no:
SEmigroups [10] that for any v, € H with vy — [l < ¢ there is a
contipuous mcnnmcn v:[—1,11— H satisfving {5).
. Let F:R® — R be a continuous function, increasing in each variabl
that
NG - N < Fl=3 pllle -2, x,peH.
Let u: R—X beasin Lemma 1, and let
M= sup fu(s}j+1 and C= sup Je).
sezl-1.0] SE[—1 0}
Choose & > 0 such that eCe®™™*) & | The vatue of ¢ depends
mm& .ﬁ let us write it as &(uy,1}. By the definition of ¢ and the !
invariance of the equations {4) and (5), we may choose this function s
&(uy, iy = e{gu,,t) for all g € SO(4). Moreover we may choose this fu
so that 0 <5 <7 implies e(uy, 1) < 6(ug,5).
Let v, m,m have mmo%to__ <y, 1} Let 01, <1, and let vi{-g
H be continuous, satisfying {5}. The proof now proceeds by contrad:
assume that for some 5 &€ [~1,, 4] we have Ju(s)—uls) > 1. Let

T=inf{sl: s @ I~1y, £g), fu(s) — uisi > 1} .
By continuity, either JJv(t} ~ u{z)|| = 1 or Jlu(~1) —u{-t}f = 1. Wi

assume that jv{r) ~ u(r)ff = 1, as the other case is analogous. By (4) an
for any 5 € [0,1] we have

9(6) = 9 < Ceg, ) +.C | " F(is)

I st Yo sy — w5y e

< Ca{ug, 1) + CF{M , M) \ oty — w45
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Thus by Gronwall’s inequality and our choice of 2(u,.?},
o (t) — (@] < ey, Ce" M

a contradiction. We conclude that forall 5 € [—1,,¢,], lo{s)~u{s)] £ 1; hence
SUPoct o ot fo(s)]] € M as was to be shown.
Now for any 7€ R define the open set U, CH as follows:

U= {J{v: v —ull < e, 1)}
HeX
Given vy € U, let v: [~,f] — H bethe unigue continuous function satisfying
(5). Given s with |s] <1 let T(s)v, = v{s), and for g & SO(4) let
N T(s, 8)vy = TS, -

Statements {(a) and {¢) of the theorem now foliow directly from the defini-
tions. Statement (b) follows from the same arguments used in Lemma 2. To
prove the differentiability claimed in (d) it suffices by (7) and Wn:._.uum Zto prove
the existence of continuous Fréchet derivatives D'7(f): H x H" — H. This
foliows by induction on a using Theorem B’ of [11] and the fact that 2 is
C* with bounded derivatives on bounded sets. This Hwﬂmm@E Emo._ mmnmww“m.:nm
that for v € U, and || < |¢], the Frechét derivative D"T{sjv: H" - H isa
stropgly continuous function of 5. By the uniform boundedness theorem we
conclude that

<1,

sup D" Tish] < o0.

i< B
Since SO(4) acts as orthogonal transformations of H and T(s,2) = gT(5),
we have D'T{s, z)v] = §D*T(s)v]l. hence

sup{|2"T(s, gpvll: g € SO . sl skl <0 O

Corollary 4. For some openseis U,V ¢ mm containing X, the scattering operator
&: X — X extends 1o a diffeomorphism S: U — V.
Proof. Take U = U nT{-n, ~INU_, let § be the restriction of Iz, ~ 1) to
U,andlet ¥ =5U. Then §: U - ¥ is C° by part (¢} of the theorem, and
fovelU, T(~n, -5y = v by part (b), so T{—a, - |V isa C7 inverse

of §. O
3. THE WAVE OPERATORS

In this section we describe wave operators mapping a ﬁ.mcowv. au.EB in X
1o restrictions of the corresponding solution of the Yang-Mills equation to ﬁ.sm
“lightcones at infinity”, C, < M. Let p denote the arclength from the point

in §° corresponding to the identity of SIN{2). Let C ", be the subsets Mw M
given by the equations { = +(z — p}. We define the Sobolev spaces H {C)

through the identification of €, with § 3 by means of the one-to-one maps

{,x}—x, Q.imnﬁnwxhu.
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The Sobolev space H _mﬂwv is of particular significance, being the s
..mmwmm.mzanmm Goursat data” for the conformally invariant scalar wave el
on M, that is, the space of restrictions to ﬁ.w of finite-energy solut
{3+ 1)¢ = 0, where O denotes the I’Alembertian on functions @ i
[6]. Let &, + denoie the pullback of the bundle of g-valued one-forms or
the subspace C, , and let H{C ) denote the space of sections of E,
components fying in the Sobolev space H _mﬂt .

We shal formulate the wave operators for the Yang-Mills equations it
of the spaces H(C, 11> as follows. As Cauchy datum u ¢ ¥ determinesa s
of the Yang-Miils equations in temporal gauge, 4 & D;aumv. Eett
denote the lifts to M of the previously described vector fields ¥.oon S
fetting \_mq = §, , the vector fields X;, 0<1i< 3, form an orthonormal b
vector fields on M. We shall show that the restrictions 4jC, , (X, ADIC,
(XX, A)C,, are well-defined as elements of H(C +) - Moreover, the fur
U AlC, , = (X A)C, ,and u— (X AC, extend to smooth fur
defined on an open neighborhood of X.

We make use of a lemma on the inhomogeneous wave equation for g-
one-forms. Let R be the region of M defined by {~n <t < #},and
be the space of g-valued oneforms on R with all components in the S
space hmﬁc , given the structure of a real Hilbert space.

Lemma 5. [f 4,, 4, £ 05 ,0) and h & Q' (M, are ¢ sections
there is a unigue C™ section A b;g LB} such that

(6) HDITC‘AH»“ Am,\ﬂomvrﬂmﬂm\h_vhuv“

where [3 denotes the I’Alembertian on Q"M ,g). The restrictions AlC
Junctions of R, 4,, and A,, and the functions (MR, A, ,4,) — AIC,
defined extend uniquely to continuous maps

T VoS’ ,g) e 0s°,g) — H(C,) .

Proof. This is a straightforward consequence of Lemma 6 of [71, which
an analogous result for the inhomogenecus scalar wave equation. O

Note that by the theory of the Cauchy probiem for the inhomogeneous
equation, if (4,,4,) & bmamumv @ Dw?m.uvmv and % € V then there
a unique 4 & S_MQN, } satisfying (6) in the distributionat sense. The :
lemma then allows us to define AJC + asan element of H(C, ).

Theorem 6, Given v € X, let (40, 4,0, A40)=T(u, and let 4 4
the element of 3" (M, g) corresponding to A1 R — Swau.mv. Then A4
(XANC, . and (X X A)C, , where 0 < i 5 3, are well-defined elemer.
H(C, ) as in Lemma 5. Moreover, for some open set U CH containing A
Sunctions 1 AC, , u (X ANC,, and u — (X, X ANC, extend 10
maps from U fo H(C,)-
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Progf. By symmetry it suffices to consider the restrictions to €, . Suppose that
u & Uy, and for Jt| <z let {A,(1),4,(0), 4,(t) = T(¢,1)u, where the open
set U G H and T(t,]} are as in Theorem 3. Let A4 denote the element of
Q'(Rr ,8) corresponding 10 A, i {-7, 7} — bwau g}, and let A{u) denote the
element of V corresponding to

Ay (A+ DA [-r,7] — (S, g) -

By equation (5} and the definition of L and N, we have {0+ DA = A(w)
in the disiribufional sense. Note that by statements {c}, (d) of Theorem 3, the
functions w1 A(u) is C*° from U, to V. Letus write u=(8,,B,,5;). By
Lemma 5 and the remarks following, we may define A|C = N,QR& By, By,
and conclude that 1+ AJC, isa C* function from U, to H(C ).

Next we treat X A[C_. Since the Lie derivations X, commute with the
differential operator £1, we have

O+ DX, A = Xh(n)
in the distributional sense. For 1 </ < 3 the map # = X {4}y is C7 from
U, 1o V, by Theorem 3. Moreover, by {5} we have
(7 Xoh(u) = XA, + (A + 1)A) = k{4, . 4,)

in the distributional sense. Since N is C°° with bounded derivatives on
bounded sets, & is C° from 445°, g)@0(S°, g) to Q}(S°,g), with bounded
derivatives on bounded sets. It follows from Theorem 3 that the map u —
Xeh(u) is C* from U, to V.

For each i, XAl , and X X 4|, _, are well-defined distributions by the
theory of the Cauchy problem. Then for | </ < 3 we have

(X, X XN, o = (V) By, ¥iBy),
while for /=0 we have
(XpA, Xg A)lypog = (By. B3) .

For each i it is evident that the map uw— (XA, X X, 4)],_, is C* from H to
b.__au.wv & bﬁ_va.w ,g}. Thus by Lemma 5 and the remarks following, we may
define

(X, ANC, = T, (Xh(u), (XA, XX, A% o) s

and conclude that uw (X, 4}|C, 52 C* function from U o H{C,).
We use a similar argument for (X X, A)|C, . Given u ¢ X we have

(O + DAX A = X, X h(u)
in the distributional sense. By (7) we have

XpXR(u) = XK(A,, Ay).

SCATTERING FOR THE YANG-MILLS EGQUATIONS

For 1£7<3,since Xk is C* from bw«.wu,E@Srmw.mu to bwau;
mo:o,wm from Theorem 3 that the map u ~— Ko X h(u) I € from U b
For i = 0 we obtain the same conclusion as follows. By the chain rule ﬁa

2

Xhlw) = Holel{d,, A4;) = (A, A4, + (A, A4,
where k; denotes the Fréchet derivative with respect 10 4, of the expres
for k{4, 1Ay} . Tt follows from the Sobolev inequalities that the right sic

C* from H to Q%,wu + 8}, with bounded derivatives on bounded seis {see

Lemma 2.2 of [4]}. Thus by Theorem 3, the map u e X2h(5) is C%° ¢
U oV, ’

Foreach /, \«o\ﬂ.\m_ﬁo and Hw\ﬁ.m_ic are well-defined distributions, by
theory of the Cauchy problem, For | <7< 3 wehave
z
(XpXid, X Al = (V:B,, ViBi).
and for i =0 we have
2 3
(Ko A Xo M, = (By, ~ (A+ 1B, +k(B,, B,)) .

For each 7, it is evident that the map u s (XX, 4. XX, 4), o 18 C% fr
brad -
U, to (5%, g ®bm__au -8}, Thus by Lemma 5 we may define

X AIC, = T XX h(), (X, X A, XX, Y ),
and note that y +- (XX ANC, is € from U, 10 HIC,). o

By the above theorem there exist continuous “wave operators” WX

H(C,) E._nw that W, (u} = AIC, where 4 € D_Q\NVE is as in the theore
H.:o refation between these wave operators and the scattering operator 5
given as follows: .

Theorem 6. Ler U: H(C - H{C ) be the isomorphism of real Hilbert spa
given by

U, x} = Ali+ 7, ~x)  (1,x)eC, CRxS .
Then we have W_§ = uw, .

Progf. Suppose u e X, andlet 4 & D_Q«m,mv be the corresponding solutic
of the Yang-Mills nn:mm.om in temporal gauge, s in the statement of Theore:
.m. Then if B e D_Cem,mv denotes the solution of the Yang-Mills equatic
1 temporal gauge corresponding to Su e X, by the definition of § we ha
B(t,x}=A(t+n, — x). Thus

W_Su=B|C = U4IC,)=UW,u.
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