SCATTERING FOR THE YANG-MILLS EQUATIONS

JOHN C. BAEZ

data for the Yang-Mills equations to Hilbert spaces $H(C_{\pm})$ of Goursat data on wave operators W_{\pm} as continuous maps from a space X of time-zero Cauchy is the union of "lightcones at future and past infinity" ABSTRACT. We construct wave and scattering operators for the Yang-Mills equations on Minkowski space, $\mathbf{M}_0 \cong \mathbf{R}^4$. Sufficiently regular solutions of the W_{\pm} and S are shown to be smooth in a certain sense. from a conformal transformation of M mapping C- $UW_+ = W_-S$, where $U: \mathbf{H}(C_+) \to \mathbf{H}(C_-)$ is the linear isomorphism arising C_{\pm} . The scattering operator is then a homeomorphism $S: X \to X$ such that ification, $\mathbf{M} \cong \mathbf{R} \times S^3$. Moreover, the boundary of \mathbf{M}_0 as embedded in M the corresponding equations on the universal cover of its conformal compact-Yang-Mills equations on M_0 are known to extend uniquely to solutions of onto C_+ . The maps , C±. We construct

1. INTRODUCTION

embedding $i: \mathbf{M}_0 \to \widetilde{\mathbf{M}}$. cise asymptotics for Yang-Mills fields on M_0 [3, 4]. Here we construct wave on M_0 extend to prove global existence on M, allowing the derivation of preand scattering operators for the Yang-Mills equations on M_0 in terms of the greatly facilitates the study of the temporal asymptotic behavior of their soluthe Yang-Mills equations on $\widetilde{\mathbf{M}}$, \imath^*A satisfies the Yang-Mills equations on \mathbf{M}_0 \mathbb{R}^4 , into the universal cover of its conformal compactification, $\widetilde{\mathbf{M}} \cong \mathbb{R} \times S^3$ tions. There is a natural conformal embedding ι of Minkowski space, $\mathbf{M}_0\cong$ Techniques used to prove global existence for the Yang-Mills Cauchy problem responding equations on M [1, 2]. In particular, if A is a connection satisfying Conformally invariant wave equations on M_0 may thereby be extended to cor-The conformal invariance of the Yang-Mills equations in four dimensions

characteristic cone [5]. Moreover the surface where the time coordinate of M_c theory of conformally invariant wave equations on M₀ is thus closely related null lines in M_0 as the time coordinate in M_0 approaches $\pm \infty$. The scattering "lightcones at past and future infinity". Points of C_{\pm} correspond to limits of to the Goursat problem on M, in which solutions are determined by data on a The boundary of \mathbf{M}_0 in $\widetilde{\mathbf{M}}$ is the union of two characteristic cones C_\pm , the

Received by the editors April 28, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 81E13; Secondary 35Q20

is zero is just the Cauchy surface $\{0\} \times S^3 \subset \widetilde{\mathbb{N}}$ with a single point removed. For the equation $\Box f + \lambda f^3 = 0$ this allowed the formulation of wave operators W_{\pm} as nonlinear maps from a Hilbert space of Cauchy data at time zero to Hilbert spaces of Goursat data on the cones C_{\pm} [6]. These maps can be correlated with the traditional wave operators mapping sufficiently regular solutions of $\Box f + \lambda f^3 = 0$ to temporally asymptotic solutions of the free wave equation. Moreover, the maps W_{\pm} are smooth with smooth inverses, so the scattering operator $W_{+}(W_{-})^{-1}$ exists and is a diffeomorphism [7].

A difficulty in extending this approach to the Yang-Mills equations is that global existence has not been proven for finite-energy Cauchy data, but only for data having more derivatives. The techniques used in [6] to solve the Goursat problem and invert the operators W_{\pm} rely heavily upon the fact that the spaces of Goursat data have energy-type norms. Thus while we construct wave operators for the Yang-Mills equations and show they are smooth in a certain sense, we do not prove them invertible.

Nonetheless, a scattering operator of a different sort can be constructed. The group $SO^{\sim}(2,4)$ of conformal transformations of $\widetilde{\mathbf{M}}$ has a unique central element ζ mapping C_{-} onto C_{+} , and the action of this element ζ on solutions of conformally invariant equations on $\widetilde{\mathbf{M}}$ corresponds to scattering [5]. We show that for the Yang-Mills equations this map is smooth, and describe its relationship to the wave operators.

2. The scattering operator

First we recall the basic global existence theorem of [4]. We shall identify the universal cover of conformally compactified Minkowski space, $\widetilde{\mathbf{M}}$, with $\mathbf{R} \times S^3$ given the metric $dt^2 - ds^2$, where dt^2 and ds^2 are the standard Riemannian metrics on \mathbf{R} and S^3 , respectively. Let \mathbf{g} be the Lie algebra of a compact Lie group. Given a smooth manifold M, possibly with boundary, let $\Omega^p(M,\mathbf{g})$ denote the \mathbf{g} -valued differential p-forms over M. (We use this notation in informal contexts when no particular degree of differentiability need be specified.) Following the notation of [8], the Yang-Mills equations for $A \in \Omega^1(\widetilde{\mathbf{M}},\mathbf{g})$ may be written as:

$$F = dA + \frac{1}{2}[A,A]; \quad d*F + [A,*F] = 0.$$

In temporal gauge, the dt component of A is assumed to vanish, where t is the \mathbf{R} -valued coordinate on $\widetilde{\mathbf{M}}$. We shall identify elements $A \in \Omega^1(\widetilde{\mathbf{M}}, \mathbf{g})$ with vanishing dt component with functions $A \colon \mathbf{R} \to \Omega^1(S^3, \mathbf{g})$. Let d_s denote exterior differentiation of \mathbf{g} -valued forms on S^3 , and let $*_s$ denote the Hodge *-operator on \mathbf{g} -valued forms on S^3 with respect to the metric ds^2 . Given $A, B \in \Omega^1(s^3, \mathbf{g})$, we make the following definitions:

$$A \times B = *_{s} [A, B], [A; B] = *_{s} [A, *_{s} B],$$

 $\nabla \cdot A = *_{s} d_{s} *_{s} A, \nabla \times A = *_{s} d_{s} A,$

and given $f \in \Omega^0(S^3, \mathbf{g})$ we define ∇f to be $d_s f$. Note that if Δ deno Laplace-Beltrami operator on $\Omega^1(S^3, \mathbf{g})$, we have $\Delta A = \nabla \times (\nabla \times A) - \nabla (\nabla x) = 0$. Using ' to denote ∂_t , and working in temporal gauge, the equations (equivalent to the evolution equation

(2)
$$A'' + \nabla \times (\nabla \times A) + A \times (\nabla \times A) + \frac{1}{2}\nabla \times (A \times A) + \frac{1}{2}A \times (A \times A) =$$
 together with the constraint

(3)
$$\nabla \cdot A' + [A; A'] = 0$$

Identifying S^3 with SU(2), let V_i , $1 \le i \le 3$, be an orthonormal ba left-invariant vector fields on S^3 . Let $\Omega_k^1(S^3, \mathbf{g})$ denote the space of \mathbf{g} -v one-forms on S^3 with all components lying in the Sobolev space $H^k(S^3)$, the structure of a real Hilbert space with the following norm:

$$\|A\|_k^2 = \sum_{1 \leq i \leq 3} \int_{\mathcal{S}^3} \left| (\Delta + 1)^{k/2} A(V_i) \right|^2$$

where here Δ denotes the Laplacian as a selfadjoint operator on $L^2(S^3, \mathbf{g})$ | · | denotes any Hilbert norm on \mathbf{g} .

The evolution equation (2) may be desingularized by differentiating it respect to t and using the constraint (3) to rewrite the resulting term $\nabla \times (\nabla \cdot \mathbf{a} + \nabla t \mathbf{A}', \mathbf{A}')$. Let \mathbf{H} denote the real Hilbert space $\Omega_1^1(S^3, \mathbf{g}) \oplus \Omega_2^1(S^3, \mathbf{g}) \oplus \Omega_2^1(S^3, \mathbf{g})$; \mathbf{H} will be used as a space of Cauchy data (A, A', A''). Let \mathbf{X} de the set of Cauchy data in \mathbf{H} satisfying (2) and (3), that is, those $(A_1, A_2, A_3, A_4, A_3, A_4, A_4, A_4, A_4, A_4, A_5, A_5) = 0$ and

$$A_3 + \nabla \times (\nabla \times A_1) + A_1 \times (\nabla \times A_1) + \frac{1}{2}\nabla \times (A_1 \times A_1) + \frac{1}{2}A_1 \times (A_1 \times A_1) =$$

Note that X is a closed subset of H; we give X the metric arising from norm on H. Let L be the unbounded operator on H with domain $\Omega^1_1(S^3)$.

norm on H. Let L be the unbounded operator on H with domain $\Omega_4^1(S^3, \mathbf{g}) \oplus \Omega_2^1(S^3, \mathbf{g})$ given by

$$L(A_1, A_2, A_3) = (A_2, A_3, -(\Delta + 1)A_2),$$

and let $N: \mathbf{H} \to \mathbf{H}$ be the function given by

$$N(A_1, A_2, A_3) = (0, 0, k(A_1, A_2))$$

where

$$\begin{split} k(A_1, A_2) &= \nabla [A_1; A_2] - A_1 \times (\nabla \times A_2) - A_2 \times (\nabla \times A_1) - \nabla \times (A_1 \times A_2) \\ &- A_1 \times (A_1 \times A_2) - \frac{1}{2}A_2 \times (A_1 \times A_1) + A_2 \ . \end{split}$$

It follows from results in [4] that L generates a strongly continuous or parameter semigroup on H, and that the function N is C^{∞} from H to with all derivatives bounded on bounded sets.

The global existence result may be stated as follows:

satisfying **Lemma 1.** For any Cauchy datum $u_0 \in X$ there is a unique continuous $u: R \to X$

(4)
$$u(t) = e^{Lt} u_0 + \int_0^t e^{L(t-s)} N(u(s)) ds.$$

Let $(A_1(t),A_2(t),A_3(t))=u(t)$, and let $A\in\Omega^1(\widetilde{\mathbf{M}},\mathbf{g})$ denote the **g**-valued one-form corresponding to the continuous function $A_1\colon\mathbf{R}\to\Omega^1_3(S^3,\mathbf{g})$. Then Asatisfies (2) and (3) in the distributional sense.

Proof. This follows from Theorems 3 and 4 of [4].

 $\mathbb{R} \times SO(4)$, which is the identity component of the group of isometries of \mathbb{M} : group action of R on the space X. This group action extends to an action of Define the map $T: \mathbb{R} \times \mathbb{X} \to \mathbb{X}$ as follows: given $u_0 \in \mathbb{X}$, let $u: \mathbb{R} \to \mathbb{X}$ be the unique continuous solution of (4), and let $T(t)u_0 = u(t)$. T is clearly a

on H given by: **Lemma 2.** The group SO(4) has a strongly continuous orthogonal representation

$$g(A_1,A_2,A_3) = \{(g^{-1})^*A_1,(g^{-1})^*A_2,(g^{-1})^*A_3\}$$

 $u \in X$, then $gu \in X$. Moreover, there is a group action $\Gamma: \mathbb{R} \times SO(4)X \to X$ where $g^*: \Omega^1(S^3, \mathbf{g}) \to \Omega^1(S^3, \mathbf{g})$ denotes the pullback map induced by the diffeomorphism $g: S^3 \to S^3$ corresponding to $g \in SO(4)$. If $g \in SO(4)$ and given by:

$$\Gamma(t,g)u = T(t)(gu), \quad (t,g) \in \mathbb{R} \times SO(4), \ u \in \mathbb{H}$$

space $H^k(S^3)$ is strongly continuous, so $(g,u) \mapsto gu$ is a continuous orthogoof H given by $u \mapsto gu$ is an isometry. The action of SO(4) on any Sobolev nal representation. Moreover, if $u=(A_1,A_2,A_3)\in X$ and $gu=(B_1,B_2,B_3)$, then simple computations show that $\nabla\cdot B_2+[B_1,B_2]=0$ and *Proof.* Since the action of SO(4) on S^3 is isometric the linear transformation

$$B_3 + \nabla \times (\nabla \times B_1) + B_1 \times (\nabla \times B_1) + \tfrac{1}{2} \nabla \times (B_1 \times B_1) + \tfrac{1}{2} B_1 \times (B_1 \times B_1) = \emptyset,$$

gT(t)u, a consequence of the SO(4)-invariance of equation (4). \square hence $gu \in X$. That Γ is a group action follows from the fact that T(t)gu =

operator $S: X \to X$ by $S = \Gamma(\pi, -I)$. In a certain sense S is smooth, but since X is not a submanifold of H [9], some care is required to make this precise. We will show that the action Γ of $R \times SO(4)$ on X extends to a local action Γ of $R \times SO(4)$ as C^{∞} maps defined on neighborhoods of X. scattering operator [5]. In its action as a conformal transformation of M it corresponds to the isometry $(\pi, -I) \in \mathbb{R} \times SO(4)$. Thus we define the scattering the space of solutions of the Yang-Mills equation may be interpreted as the As mentioned above, the action of the central element $\zeta \in SO^{\sim}(2,4)$ on

More precisely:

X and a function $\Gamma(t,g)$: $U_t \to \mathbf{H}$ such that: **Theorem 3.** For any $(t,g) \in \mathbb{R} \times SO(4)$ there is an open set $U_i \subseteq \mathbb{H}$ 6

- (a) The restriction of $\Gamma(t,g)$ to X is $\Gamma(t,g)$.
- as a function of s from [-1,1] to H. (b) When both sides are defined, $\overline{\Gamma}(t,g)\overline{\Gamma}(s,h)v = \overline{\Gamma}(t+s,gh)v$. (c) If $|s| \le |t|$ then $U_t \subseteq U_s$. If $t \ge 0$ and $v \in U_t$, $\overline{\Gamma}(s,I)v$ is con
- For all $v \in U_t$ the multilinear map $D^n T(s,g)v \colon \mathbf{H}^n \to \mathbf{H}$ satisfies derivative $D^{"}\Gamma(t,g)\colon H\times H"\to H$, where H" denotes the n-fold produc (d) For all $n \ge 1$ the function $\overline{\Gamma}(t,g)$: $U_t \to H$ has a continuous nth

$$\sup\{\|D^n \overline{\Gamma}(s,g)v\|: g \in SO(4), |s| \le |t|\} < \infty.$$

if $||v_0 - u_0|| < \varepsilon$, $0 \le t_0 \le t$, and $v: [-t_0, t_0] \to \mathbf{H}$ is a continuous fu such that *Proof.* Suppose that $u_0 \in X$ and $t \ge 0$. We shall show that for some ε, t

$$v(s) = e^{Ls}v_0 + \int_0^s e^{L(s-s')}N(v(s')) ds',$$

then $\sup_{s\in [-\rho_0,\rho_0]}\|v(s)\|\leq M$. It then follows from the theory of no semigroups [10] that for any $v_0\in \mathbf{H}$ with $\|v_0-u_0\|<\varepsilon$ there is a continuous function $v\colon [-t,t]\to \mathbf{H}$ satisfying (5).

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function, increasing in each variable

$$||N(x) - N(y)|| \le F(||x||, ||y||) ||x - y||, \quad x, y \in \mathbf{H}.$$

Let $u: \mathbb{R} \to \mathbb{X}$ be as in Lemma 1, and let

$$M = \sup_{s \in [-1,t]} ||u(s)|| + 1$$
 and $C = \sup_{s \in [-1,t]} ||e^{t.s}||$

 $\varepsilon(u_0,t)=\varepsilon(gu_0,t)$ for all $g\in SO(4)$. Moreover we may choose this fu invariance of the equations (4) and (5), we may choose this function s and t; let us write it as $\varepsilon(u_0,t)$. By the definition of ε and the . Choose $\varepsilon > 0$ such that $eCe^{CF(M,M)t} < 1$. The value of ε depends

so that $0 \le s \le t$ implies $\varepsilon(u_0, t) \le \varepsilon(u_0, s)$. Let $v_0 \in \mathbf{H}$ have $||v_0 - u_0|| < \varepsilon(u_0, t)$. Let $0 \le t_0 \le t$, and let $v : [-t_0]$. H be continuous, satisfying (5). The proof now proceeds by contradassume that for some $s \in [-t_0, t_0]$ we have ||v(s) - u(s)|| > 1. Let

$$t = \inf\{|s|: s \in [-t_0, t_0], ||v(s) - u(s)|| > 1\}.$$

for any $s \in [0, \tau]$ we have By continuity, either $||v(\tau) - u(\tau)|| = 1$ or $||v(-\tau) - u(-\tau)|| = 1$. We assume that $||v(\tau) - u(\tau)|| = 1$, as the other case is analogous. By (4) an

$$\begin{aligned} \|v(s) - u(s)\| &\leq C\varepsilon(u_0, t) + C \int_0^s F(\|v(s')\|, \|u(s')\|) \|v(s') - u(s')\| \, ds \\ &\leq C\varepsilon(u_0, t) + CF(M, M) \int_0^s \|v(s') - u(s')\| \, ds' \, . \end{aligned}$$

828

Thus by Gronwall's inequality and our choice of $\varepsilon(u_0,t)$,

$$||v(\tau) - u(\tau)|| \le \varepsilon(u_0, t) C e^{CF(M, M)\tau} < 1,$$

 $\sup_{s\in\{-t_0,t_0\}}\|v(s)\|\leq M \text{ as was to be shown.}$ Now for any $t\in\mathbf{R}$ define the open set $U_t\subseteq\mathbf{H}$ as follows: a contradiction. We conclude that for all $s \in [-t_0, t_0]$, $||v(s) - u(s)|| \le 1$; hence

$$U_{l} = \bigcup_{u \in \mathbf{X}} \{v : \|v - u\| \le \varepsilon(u, |l|)\}.$$

Given $v_0 \in U_t$, let $v: [-t, t] \to \mathbf{H}$ be the unique continuous function satisfying (5). Given s with $|s| \le t$ let $\overline{T}(s)v_0 = v(s)$, and for $g \in SO(4)$ let

$$\overline{\Gamma}(s\,,g)v_0=g\overline{T}(s)v_0\;.$$

3

tions. Statement (b) follows from the same arguments used in Lemma 2. To prove the differentiability claimed in (d) it suffices by (7) and Lemma 2 to prove strongly continuous function of s. By the uniform boundedness theorem we that for $v \in U_i$ and $|s| \le |t|$, the Frechét derivative $D''\overline{T}(s)v \colon H'' \to H$ is a follows by induction on n using Theorem B' of [11] and the fact that N is the existence of continuous Fréchet derivatives $D^n\overline{T}(t)\colon \mathbf{H}\times\mathbf{H}^n\to\mathbf{H}$. This Statements (a) and (c) of the theorem now follow directly from the definiwith bounded derivatives on bounded sets. This theorem also establishes

$$\sup_{|s| \le |t|} \|D^n \overline{T}(s)v\| < \infty.$$

Since SO(4) acts as orthogonal transformations of **H** and $\overline{\Gamma}(s,g)=g\overline{T}(s)$, we have $\|D^n\overline{\Gamma}(s,g)v\|=\|D^n\overline{T}(s)v\|$, hence

$$\sup\{\|D^n\overline{\Gamma}(s,g)v\|\colon g\in SO(4), |s|\leq |t|\}<\infty\quad \Box$$

 $S: X \to X$ extends to a diffeomorphism $\overline{S}: U \to V$. Corollary 4. For some open sets $U, V \subseteq \mathbf{H}$ containing X, the scattering operator

Proof. Take $U=U_{\pi}\cap \overline{\Gamma}(-\pi,-I)U_{\pi}$, let \overline{S} be the restriction of $\overline{\Gamma}(\pi,-I)$ to U, and let $V=\overline{S}U$. Then $\overline{S}\colon U\to V$ is C^{∞} by part (c) of the theorem, and if $\underline{v}\in U$, $\overline{\Gamma}(-\pi,-I)\overline{S}v=v$ by part (b), so $\overline{\Gamma}(-\pi,-I)|V$ is a C^{∞} inverse

3. THE WAVE OPERATORS

given by the equations $t=\pm(\pi-\rho)$. We define the Sobolev spaces $H^k(C_\pm)$ in S^3 corresponding to the identity of SU(2). Let C_\pm be the subsets of $\widetilde{\mathbf{M}}$ "lightcones at infinity", $C_{\pm} \subset M$. Let ρ denote the arclength from the point to restrictions of the corresponding solution of the Yang-Mills equation to the through the identification of C_{\pm} with S^3 by means of the one-to-one maps In this section we describe wave operators mapping a Cauchy datum in X

$$(t,x) \mapsto x$$
, $(t,x) \in C_{\pm} \subset \mathbb{R} \times S^3$.

components lying in the Sobolev space $H^1(C_+)$. the subspace C_{\pm} , and let $\mathbf{H}(C_{\pm})$ denote the space of sections of on M, that is, the space of restrictions to C_{\pm} of finite-energy solut "finite-energy Goursat data" for the conformally invariant scalar wave en [6]. Let E_\pm denote the pullback of the bundle of **g**-valued one-forms or $(\Box + 1)\phi = 0$, where \Box denotes the D'Alembertian on functions ϕ : The Sobolev space $H^1(C_{\pm})$ is of particular significance, being the space $H^1(C_{\pm})$

of the Yang-Mills equations in temporal gauge, $A \in \Omega^1(\widetilde{M}, g)$. Lett denote the lifts to \widetilde{M} of the previously described vector fields V_i on Sdefined on an open neighborhood of X. $u \mapsto A|C_{\pm}$, $u \mapsto (X_iA)|C_{\pm}$, and $u \mapsto (X_0X_iA)|C_{\pm}$ extend to smooth fur $(X_0X_IA)|C_{\pm}$ are well-defined as elements of $H(C_{\pm})$. Moreover, the fur vector fields on $\widetilde{\mathbf{M}}$. We shall show that the restrictions $A[C_{\pm}, (X_iA)]C$ letting $X_0 = \partial_i$, the vector fields X_i , $0 \le i \le 3$, form an orthonormal b of the spaces $H(C_{\pm})$, as follows. As Cauchy datum $u \in X$ determines a s We shall formulate the wave operators for the Yang-Mills equations in

space $L^2(R)$, given the structure of a real Hilbert space be the space of g-valued one-forms on R with all components in the So one-forms. Let R be the region of \widetilde{M} defined by $\{-\pi \le t \le \pi\}$, and We make use of a lemma on the inhomogeneous wave equation for g-

Lemma 5. If A_1 , $A_2 \in \Omega^1(S^3, \mathbf{g})$ and $h \in \Omega^1(\widetilde{\mathbf{M}}, \mathbf{g})$ are C^{∞} sections there is a unique C^{∞} section $A \in \Omega^1(\widetilde{\mathbf{M}}, \mathbf{g})$ such that

(6)
$$(\Box + 1)A = h, (A, X_0A)|_{t=0} = (A_1, A_2),$$

defined extend uniquely to continuous maps functions of h|R, A_1 , and A_2 , and the functions $(h|R,A_1,A_2)\mapsto A|C_{\pm}$ where \square denotes the D'Alembertian on $\Omega^1(\widetilde{\mathbf{M}},\mathbf{g})$. The restrictions A|C

$$T_{\pm}: \mathbf{V} \oplus \Omega^1_1(S^3, \mathbf{g}) \oplus \Omega^1_0(S^3, \mathbf{g}) \to \mathbf{H}(C_{\pm})$$
.

an analogous result for the inhomogeneous scalar wave equation. Proof. This is a straightforward consequence of Lemma 6 of [7], which

a unique $A \in \Omega_1^i(R, \mathbf{g})$ satisfying (6) in the distributional sense. Note that by the theory of the Cauchy problem for the inhomogeneous equation, if $(A_1,A_2)\in\Omega^1_1(S^3,g)\oplus\Omega^1_0(S^3,g)$ and $h\in V$ then there lemma then allows us to define $A|C_{\pm}$ as an element of $\mathrm{H}(C_{\pm})$.

maps from U to $\mathbf{H}(C_{\pm})$. functions $u \mapsto A[C_{\pm}, u \mapsto (X_iA)]C_{\pm}$, and $u \mapsto (X_0, X_iA)[C_{\pm}]$ extend to $\mathbf{H}(C_{\pm})$ as in Lemma 5. Moreover, for some open set $U \subseteq \mathbf{H}$ containing X $(X_iA)|C_{\pm}$, and $(X_0X_iA)|C_{\pm}$, where $0 \le i \le 3$, are well-defined elemen the element of $\Omega^1(\widetilde{\mathbf{M}},\mathbf{g})$ corresponding to $A_1: \mathbb{R} \to \Omega^1_3(S^3,\mathbf{g})$. Then A Theorem 6. Given $u \in X$, let $(A_1(t), A_2(t), A_3(t)) = T(t)u$, and let A d

 $u \in U_{\pi}$, and for $|t| \le \pi$ let $(A_1(t), A_2(t), A_3(t) = \overline{\Gamma}(t, I)u$, where the open set $U_{\pi} \subseteq H$ and $\overline{\Gamma}(t, I)$ are as in Theorem 3. Let A denote the element of $\Omega^1(R, \mathbf{g})$ corresponding to $A_1 : [-\pi, \pi] \to \Omega^1_3(S^3, \mathbf{g})$, and let h(u) denote the element of V corresponding to *Proof.* By symmetry it suffices to consider the restrictions to C_+ . Suppose that

$$A_3 + (\Delta + 1)A_1 : [-\pi, \pi] \to \Omega^1_1(S^3, \mathbf{g})$$
.

By equation (5) and the definition of L and N, we have $(\Box + 1)A = h(u)$ in the distributional sense. Note that by statements (c), (d) of Theorem 3, the functions $u \mapsto h(u)$ is C^{∞} from U_u to V. Let us write $u = (B_1, B_2, B_3)$. By Lemma 5 and the remarks following, we may define $A|C_+ = T_+(h(u), B_1, B_2)$, and conclude that $u \mapsto A|C_+$ is a C^{∞} function from U_u to $H(C_+)$. Since the Lie derivations X_i commute with the

differential operator \(\sigma, \text{ we have} \)

$$(\Box + 1)X_iA = X_ih(u)$$

in the distributional sense. For $1 \le i \le 3$ the map $u \mapsto X_i h(u)$ is C^{∞} from U_{π} to V, by Theorem 3. Moreover, by (5) we have

$$X_0 h(u) = X_0 (A_3 + (\Delta + 1)A_1) = k(A_1, A_2)$$

in the distributional sense. Since N is C^{∞} with bounded derivatives on bounded sets, k is C^{∞} from $\Omega_1^1(S^3, \mathbf{g}) \oplus \Omega_2^1(S^3, \mathbf{g})$ to $\Omega_1^1(S^3, \mathbf{g})$, with bounded derivatives on bounded sets. It follows from Theorem 3 that the map $u \mapsto 0$ $X_0 h(u)$ is C^{∞} from U_{π} to V.

For each i, $X_iA|_{i=0}$ and $X_0X_iA|_{i=0}$ are well-defined distributions by the theory of the Cauchy problem. Then for $1 \le i \le 3$ we have

$$(X_iA, X_0X_iA)|_{i=0} = (V_iB_1, V_iB_2),$$

while for i = 0 we have

$$(X_0A, X_0^2A)|_{t=0} = (B_2, B_3)$$
.

 $\Omega^1_1(S^3, \mathbf{g}) \oplus \Omega^1_0(S^3, \mathbf{g})$. Thus by Lemma 5 and the remarks following, we may For each i it is evident that the map $u \mapsto (X_i A, X_0 X_i A)|_{i=0}$ is C^{∞} from H to

$$(X_iA)|C_+ = T_+(X_ih(u), (X_iA, X_0X_iA)|_{t=0}),$$

and conclude that $u \mapsto (X_i A) | C_+$ is a C^{∞} function from U_n to $H(C_+)$. We use a similar argument for $(X_0X_iA)|C_+$. Given $u \in X$ we have

$$(\Box + 1)X_0X_iA = X_0X_ih(u)$$

in the distributional sense. By (7) we have

$$X_0 X_i h(u) = X_i k(A_1, A_2).$$

SCATTERING FOR THE YANG-MILLS EQUATIONS

For i = 0 we obtain the same conclusion as follows. By the chain rule we For $1 \le i \le 3$, since $X_i k$ is C^{∞} from $\Omega^1_3(S^3, \mathbf{g}) \oplus \Omega^1_2(S^3, \mathbf{g})$ to $\Omega^1_0(S^3, \mathbf{g})$ follows from Theorem 3 that the map $u \mapsto X_0 X_i h(u)$ is C^{∞} from U_{π} to

$$X_0^2 h(u) = X_0 k(A_1, A_2) = k_1(A_1, A_2)A_2 + k_2(A_1, A_2)A_3$$

 U_{π} to V. Lemma 2.2 of [4]). Thus by Theorem 3, the map $u \mapsto X_0^2 h(u)$ is C^{∞} f C^{∞} from H to $\Omega^1_0(S^3,g)$, with bounded derivatives on bounded sets (see for $k(A_1,A_2)$. It follows from the Sobolev inequalities that the right significant where k_i denotes the Fréchet derivative with respect to A_i of the expres

For each i, $X_0X_iA|_{i=0}$ and $X_0^2X_iA|_{i=0}$ are well-defined distributions, by theory of the Cauchy problem. For $1\leq i\leq 3$ we have

$$(X_0 X_i A, X_0^2 X_i A)|_{i=0} = (V_i B_2, V_i B_3),$$

and for i = 0 we have

$$(X_0^2A, X_0^3A)|_{l=0} = (B_3, -(\Delta+1)B_2 + k(B_1, B_2)).$$

 U_{π} to $\Omega^1_1(S^3, \mathbf{g}) \oplus \Omega^1_0(S^3, \mathbf{g})$. Thus by Lemma 5 we may define For each i, it is evident that the map $u \mapsto (X_0 X_i A, X_0^2 X_i A)|_{i=0}$ is C^{∞} ÷

$$(X_0X_iA)|C_+ = T_+(X_0X_ih(u), (X_0X_iA, X_0^2X_iA)|_{i=0}),$$

and note that $u \mapsto (X_0 X_i A) | C_+$ is C^{∞} from U_{π} to $\mathbf{H}(C_+)$.

given as follows: The relation between these wave operators and the scattering operator S $\mathbf{H}(C_{\pm})$ such that $W_{\pm}(u) = A|C_{\pm}$ where $A \in \Omega^1(\widetilde{\mathbf{M}}, \mathbf{g})$ is as in the theore By the above theorem there exist continuous "wave operators" $W_{\pm}\colon X$

given by **Theorem 6.** Let $U: \mathbf{H}(C_+) \to \mathbf{H}(C_-)$ be the isomorphism of real Hilbert space

$$(UA)(t,x) = A(t+\pi, -x) \qquad (t,x) \in C_+ \subset \mathbf{R} \times S^3$$

Then we have $W_S = UW_+$.

of the Yang-Mills equation in temporal gauge, as in the statement of Theore $B(t,x) = A(t+\pi, -x)$. Thus in temporal gauge corresponding to $Su \in X$, by the definition of S we have 5. Then if $B \in \Omega^1(\widetilde{M}, \mathbf{g})$ denotes the solution of the Yang-Mills equatic *Proof.* Suppose $u \in X$, and let $A \in \Omega^1(M,g)$ be the corresponding solution

$$W_{-}Su = B|C_{-} = U(A|C_{+}) = UW_{+}u$$
. \Box

equations, without which this work could not have been done. Acknowledgments. The author wishes to thank Irving Segal and Zheng-fan Zhou for many discussions concerning the Goursat problem and the Yang-Mill

REFERENCES

- Y. Choquet-Bruhat and D. Christodoulou, Existence of global solutions the Yang-Mills, Higgs, and spinor field equations in 3+1 dimensions, Ann. Ecole. Norm. Sup. (4) 14 (1981), 481-506. S. M. Paneitz and I. E. Segal, Analysis in space-time bundles. I, J. Funct. Anal. 47 (1982), 78–142.
- D. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields on 4-dimensional Minkowski space, Comm. Math. Phys. 83 (1982), 121–191, 193–212.
- Y. Choquet-Bruhat, S. M. Paneitz and I. E. Segal, The Yang-Mills equations on the universal cosmos, J. Funct. Anal. 53 (1983), 112–150.
- I. E. Segal, Reduction of scattering to an invariant finite displacement in an ambient space-time, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 7266-7268.
- 7. J. Baez, Scattering and the geometry of the solution manifold of $\Box f + \lambda f^3 = 0$, J. Funct. Anal 6. J. Baez, I. E. Segal and Z. Zhou, The global Goursat problem and scattering for nonlinear wave equations (to appear).
- 8. D. Bleecker, Gauge theory and variational principles, Addison-Wesley, Reading, Mass. 1981. (to appear).
- 10. I. E. Segal, Non-linear semi-groups, Ann. of Math. 78 (1964), 339-364. V. Moncrief, Reduction of the Yang-Mills equations, Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Math., vol. 836, Springer, New York 1980.

Current address: Department of Mathematics, University of California, Riverside, California 95121 Department of Mathematics, Yale University, New Haven, Connecticut 06520