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The wave transforms for the equation 03 S+ 42 =0 on R* can be represented as
maps from the Hilbert space H(S) of finite-energy Cauchy data for the equation
{C1+1}o+Ap>=0 on BxS? to Hilbert spaces H(C,) of finite-energy Goursat
data. We show that the wave transforms and associated scattering transform are
diffeomorphisms. The action of the group G = SO~(2, 4} on solutions of the latter
equation gives rise to actions of & as diffeomorphisms of H(S) and H(C, )} which
are intertwined by the wave and scattering transforms, Moreover, the spaées H{S)
and H{C ) have sympiectic structures relative to which the group G and the wave
and scattering transforms act as sympiectomorphisms. These symplectic structures
extend to flat Kihler structures that are invariant under the scaling-extended
Poincaré group P.  © 1989 Academic Press, Inc,

1. INTRODUCTION

- The relation of scattering to the geometry of solution manifolds of
relativistic wave equations is of interest not only for its own sake but also
for its relevance to quantum field theory [4, 6]. Many basic questions in
the subject are unanswered, but for conformally invariant equations the
teduction of scattering to a global Goursat problem overcomes a nurnber
of difficulties [2, 77.
.In the Goursat problem for a wave equation, solutions are determined
by data given on a lightcone. Minkowski space, M, = R* has an essentially
unique conformal embedding in the Einstein universe, M = % x $3, and the
boundary of M, as embedded is the union of two lightcones, C,
presenting the limits of spacelike surfaces in M, as the Minkowski time
approaches + co. Sufficiently regular solutions of a conformally invariant
¥ave equation on M, extend to solutions of a closely related equation on
Mj The scattering transform can then be construed as the map from
Goursat data on C_ to Goursat data on C .
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318 - JOHN C. BAEZ

The methods of {2] and the present paper apply to equations of the.
form CIf + H'(f) =0, where H is a nonnegative homogeneous polynomial:-
of degree four in the multicomponent scalar section f on M,. For :
notational simplicity, however, we treat the equation O f + Af* =0 (12> 0y
as a representative case. Here the scattering transform is shown to be a dif.
feomorphism of the Hilbert spaces of finite Einstein energy Goursat data”
H(C _)and H(C ). Thus the spaces H(C . ) give distinct but diffeomorphic. -

presentations of the finite-energy solution manifold as a Hilbert space.

We determine symplectic structures for the spaces H(C ) relative to:
which the conformal group G =S507(2, 4) acts as symplectomorphisms; -
the scattering transform is then seen to be a symplectomorphism intertwin-
ing the actions of G on H(C_) and H(C, ). The symplectic structures on:
the spaces H(C, ) extend to flat Kéhler structures preserved by the group:
generated by the Poincaré group and dilations, P, which has Pc G. The
finite-energy solution manifold thus has P-invariant flat Kihler structures;

2. Space-TiMeE GEOMETRY

In this section we introduce notation concerning the geometry of th

generalizations of Minkowski space and the Einstein universe to arbitrary:

dimension. This material appears in [2, 3] and the references therein.

Let M,, “Minkowski space,” denote R x R” with the coordinates (x;, x)
where x=(x,,..,x,), and the “Minkowski” metric dx?—dx? whe
dx?=dx2+ - +dx2. The coordinate x, is called the “Minkowski time’
and the integer » is the space dimension. In what follows we always assum
n> 1.

The conformal compactification M of M, may be defined a
SO(2, n+1)/SO(1, n). M has a unique conformal structure that is preser
ved by the natural action of G = SO(2, n + 1). As a conformal manifold it i
equivalent to (S' x §")/Z,, where Z, acts by the product of the antipoda
maps on S' and S”, and the usual direct product Lorentzian metric is usec
on §'xS". )

M denotes the universal cover of M, given the conformal structure lifte
up from that of M, which is invariant under the natural action of G on M
If we specify points of Rx 8" by (t, ), where te R is called the “Einstein
time” and v e 57, and let ds? denote the standard Riemannian metric oni'S?
then M is conformally equivalent to the “Einstein universe,” Rx S" w
the conformal structure corresponding to the “Einstein” metric dt® - ds

We specify points of the manifold S” as images of pairs (p, ), wh
pel0,n] and we S" ", under a function defined as follows, We regard
as embedded in R”*! as the unit sphere, so that w=(u,, ., u,, ;) whet
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Sw?=1 Regarding $"~' as corres

pondingly embedded 1 "
‘map (p, w)e [0, n]x §"= gy ed in R", we then

! into $” by the map
(ps @)= (cos p, sin p w).

. The map is C*, and when restricted to {0, )= S"~
-onto an open subset of $” denoted by §*.
| MxeMg, welet r=(x]+ ... +x2)1”2 and define §e 5%~ R
Sor X aéQ. Then the conformal embedding of M,
embedding - Mg -+ M given by

"is a diffeomorphism

le 6 ¢ by x =8
in M lifts to a conformal

SIn T, = pixg

sin pl,,,=pr

. wlr(x}m 9:«

‘where

P=({{1—(x5—r?)/4) + x2)~ 112 (1
We identify M, with its image under ¢ in M,

UMo) = {|t] + [p| <n} = M,

?.?:!d; extend p to a smooth function on N by
P= 5((EOST+CO§p}. The function p is the conformal facto
Einstein and Minkowski metrics, ie, on M,

the equation
r relating the

dt® — ds? = p*(dx - dx?),

. Let P denote the group of con
‘“scale-extended Poincaré group.”
0 a conformal action on M, and i
he group G.

The boundary of M, as embed
he “lightcone at future infinity,”
; defined by

ded in M is the union of two lightcones,
C,, and the “lightcone at past infipity,”

Co={tr=n—pl

i give C_ twhe coord%na@ (p, @) obtained by restricting the functions
___(_;p,w) on .M’ thus @ent:fymg C_ with §% this identification is a
"eomorphism, and yields a map from S” to M that is smooth on §™*)

ve ise this identification to transfer to C - the Riemannian metric ds? and
Ssociated volume form v on $™.
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3. Tue CONFORMAL WAVE EQUATION

In this section we describe the conformal wave equation and Cal‘culatef Hie
the conformally invariant inner product of solutions of this equation jn |
terms of Goursat data. Results stated without proof can be foupd m {2, 3%

We will use C*(X) to denote the space of all k times continuously dif-
ferentiable real-valued functions on a manifold X. L, (X) wiii. denote the.
space of all real distributions f on a compact Riemannian manifold X thfl_t_f-:__ :
are in L,{X) together with their first g derivativeg, amjl denote the formin
this space as [, ,- For X = C we use the identification of C, with §" to
e e Laplace-Beltramj
operator 4, which has a standard realization as a self-adjoint operator on

Associated with the metric ds® on §” is the (negative)

L, [(8"). The conformal wave operator on M is the differential operat
7 + ¢,, where [0 denotes the D’Alembertian 82— 4,
Einstein metric, and

¢p==A{{n—1)2)%
The conformal wave equation on M is given by
(U+e)e=0,

but it is useful to reformulate it as follows. Let B denote the positi
self-adjoint operator {—4,+¢,)"> on L, (S"). Then.H_,(S) der_a_qt
Ly p(SYB L, _1(S") as a complex Hilbert space with the fOiIO\.K.«'.l.I.l
complex structure J and inner product (-, ->_:

HPy, @)= (~B~'d;, BP))

Re((@:, 1), (Y1, ¥3)) = L» (B'2@)(B'?¥,)+ (B~ @, ) (B~ 1Y,

Im((@s, @), (%1, ¥3)) o= [ @1 ¥a=Do¥,.

Then the Cauchy problem for the conformal wave equation is g
abstractly as the first-order equation :

0, P(1)= AP(1),
where
A(¢l: ‘;Dz)m (quv "‘BZ¢1)a

The operator JA is naturally identifiable with a seif-adjoint operato

relative to the:
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H_.(S). which may be defined as the self-adjoint generator of the one-

parameter unitary group on H_ ,(S) of matrices

(

?;' The operator J4 is positive, with pure point spectrum bounded away from

i zero. If we R, the domain D((JA)*) completed with respect to the inner
~ product

cos tB

- Bsin (B

B~ 'sin (B
cos tB

(B, ¥, =(D,(JAF+ ¥y |

‘is a complex Hilbert space, which will be denoted as H.{S). The common
_'part M« H,(S) of these domains, with the topology of convergence in each
H,(S), coincides with C*(S$*)@® C*(8”} in its usual topology, and will be
denoted as H,,(S). As a consequence of the spectral theorem, the operators
¢ on H _,(S) extend by continuity to a strongly continuous unitary group
onH,(S) for any 2 <0, and restrict to a strongly continuous unitary group
‘on H,(S) for any finite « >0,

- The precise relationship between the conformal wave equation (2) and
the first-order equation (3) is then in part as follows. Let E be the space
of smooth solutions of (2) given the C=(M) topology. Suppose that
DeH,(S). Let e'® = (P (1), D,(2)), and define ¢ = Td by

@l =P(2).

Then @eE; moreover, the map T H_{S)—>E thus defined is an
isomorphism of the topological vector spaces H_,(S) and E. We use the
isomorphism " to transfer to E the complex structure J and the inner
products -, . 3,.

The group G has a representation R on E given by

(R(g™ 1 e)x) = lide. ] o(gx), (4)

ere |dg. || denotes the norm of the differential dg: T M- T,.M relative
to the Einstein metric on the tangent spaces 7, M and T ML Since & acts
smicothly on M and lidg Il depends smoothly on (g, x), the representation
:GxE > E is continuous. Thus T—'RT is a continuous representation of
G on H_(S). For any aeR, T 'RT extends uniguely to 2 continuous
presentation of G on H,(S), which we denote by U regardless of the
value of «. The value a= —1 is special in that the representation U is
thitary on the space H_ ,(S).

The space H,(S)=H(S) is called the space of “finite-energy Cauchy
13,” and is important in the theory of nonlinear variants of the conformal
Ve equation. We write the inner product {, 2o simply as {-,->. Let

geG, xeM,
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H(C,), the spaces of “finite-energy Goursat data,” denote L, ,(C,)

there are unique continuous maps W=*: H(8) - H(C ) such that
W =T¢|C,

if @eH,,(S). The operator W associates to a finite-energy Cauchy datum
the corresponding Goursat datum on the lightcone €, . The operators W=

are real-linear, one-to-one and onto, and orthogonal in the following sense:

Red @, W)mj

Cx

where we use the identification of C, with $” to interpret B as an operator
on H(C ;). Thus the spaces H(C, ) have a unique complex structure J and:

complex inner product (-, -} relative to which the operators W* 4re

unitary. Context will serve to distinguish these from the complex structure
and inner product on H(S}); in particular, we will use capital Greek letters
to denote Gauchy data, and use boldface capital Greek letters to denots
Goursat data. .
Let L* = W*A(W*)~'. The self-adjoint operator JL* on H(C,)
positive, with pure point spectrum bounded away from zero. If «e R, t
domain of (L*)* completed with respect to the inner product '

(D, ¥, = (@, (L))

is a complex Hilbert space, which will be denoted by H,(C ). The coi
mon part (1, H,(C ) of these domains, with the topology of convergence
in each H,(C ), will be denoted by H_(C ). For any a € R, the operators
W#* restrict or uniquely extend by continuity to unitary operators from
H,{S) to H,(C.), which will also be denoted by W*. We define the
continuous representations U= of G on the spaces HC.,) by b

U(g)@=W*U(g)(W*)"'®, geG, ®eH(C,)

In the remainder of this section, we explicitly calculate the compl
structure J and inner product {-,->_, in terms of Goursat data.

ProposiTioN 1. Suppose @, ¥ e H(C . ). Then
Im(d, ¥ _, mj (D3,¥ — ¥3,®).
Cx

Proof. Note first that since ®, ¥ ¢ H{C ), the function ®d,¥ —-‘i’

Following physics terminology, the spaces H(C _) and H(C, ) may also be
called the spaces of “in” and “out” fields, respectively. As shown in [27

yii

(BW=D)(BW*¥), (.5_.)..
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is integrable. Let ® = W d, ¥ = WEW. Since H_ (5) is dense in H(S) and

- the operators W are unitary, it suffices that (6) hold if &, ¥eH_(S).
. This is an immediate consequence of the following lemma, which will be
CiF useful in the sequel as well:

LemMa 2. Suppose @, e C*(M) satisfy

(O+co=ge, (DO +e, =gy,

where g € C(M). Ler

¢!:(¢’at@)!tﬁf’ WI=(wﬁaT¢)ITﬂlﬂ

nd let @ =@ |C, and ¥ =y |C, . Then Im{@,, ¥, _, is independent of 1,

nd the following equation holds:
Im{®,, ¥,>_, mj (D0, ¥ —¥5,0).
Cy

Proof.  Simple calculations show that the n-form # on M given by

n=@N*djr—~ YA = dp

xs closed, and that

| =] wo—yop)=imco, ¥, .

inge the submanifolds {z=1}, C,, and C_ define homologous n-cycles

o M,
Jor=l_m

or any value of 7. Thus, speaking more carefully, it suffices to show that
Li itn=] (@3,%- w5, D)
..(Sf_ds, where i, : C, — M is the inclusion map. For some form u
*dop=(C.pdp+8,0dt) Asin" pdw+pun dradp

nd i% dv=i% dp, so

% (x dp) = i%((2, +8,) ¢ sin"~ ' p dp A doo)
=3,P A v
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Similarly, i§ (= dj)=20,¥ A v. Thus |
it = (03,¥-¥3,0)v,

b Next we prove that the complex structure J is as stated. As shown in
© | [3) the space CE of complex smooth solutions of the conformal wave

“equation has a complex structure given by the usuaj multiplication by i,
~and a G-invariant sesquilinear form given by

implying that (7) holds. §

To describe the symmetric form Re{, - > _; and the coml_)iex structure J
on H.(C,) it is convenient to use an alternate presentation_ of Goursa_
data. fet EZ"; denote C, — {p =0, n}, and give C% the coordinates (s, @
where :

Kewddy=i' [ Gow-ya.p

CE is the direct sum of two C-invariant subspaces, E_,, and E,., the
‘positive and negative frequency smooth complex solutions of the conformal
wave equation. E., and E,,, are pre-Hilbert spaces with inner products

(20 and = (L), respectively. The complex structure J on F
‘extends to a map J: CE — CE such that if Ppos € Epos and ¢, € E

s= F2cotp.

These coordinates implement a diffeomorphism by means of which we
identify C* and Rx 87! Given a function @: C, — R, we define the
function @;: RxS"'-R by

neg?
Jr(@pos + @ncg) o= i@pas + igoneg-

D (s, ©) =sin® =2 p®d(p, w). Suppose that ¢ e CE. Let D =0|C, and define ®, by (8). Then since

i the real and imaginary parts of ¢ are elements of E, (9) implies that
TaeoREM 3. Given ®, WeH_(C.), let the functions ®g and ¥g on |

Bx 8" be given as in (8). Then <<<P,<P>>=f“1f

Rx§7-1

Imd®, ¥5_, = j@ L (@,0,% ;¥ 0,®,) ds do

. Note that

57

d Dgls, )= (1 +4%) "= P(p ),
an

0@ lies in C*(R x $"~') and decays, together with all its derivatives, at
ast as fast as (1 + £s) =", Thus the Fourier transforms F®; and Fd, are
il defined in the distributional sense and (10) implies

Re<d>,‘l‘>_1m2j

o 57

L Iol(F @)™ (F¥,) do do

where F, the Fourier transform in the s variable, is defined as

(FOG) (0, ) = (2m)~12 [ &= (s, w) ds Kowdr=2]  olFbo, 0)f do do.

: explained in [2], the spaces E_,, and E, are invariant under the

but may need to be taken in the distributional sense. Moreover, the comple«_’_c tion of the Minkowski time translations ex p(T,) e G, and

structure J is given as
(U (exp(1T,)) ®)ols, 0) = ®y(s— 1, ).
-t PURPEATES | ' " . . . .
(J®); (5, w}=mn P-”-J (83577 Dls’, w) ds g us the space {F®;:@eE,,} is invariant under the multiplication
. crators €%, and by the above
Proof. First note that since d,=4sin’pd, and ds=2cscp ho
equation K p)r=2 ol FD (¢, )i do dew =0

R §n- |
= oW 8, D) ds do oL . .
Im(®, ¥, “Lxs,,_} (®g 0. ¥s G o) €E ;. This implies that given 9eCE, oK, if and only if

follows from Proposition 1 by a change of variables. Supp(Fd,) < {(0, w): 6 > 0).
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- theory are developed in [2]; in particular, the scattering transform is

expressed as a map from H(C_) to H(C, ). In this section we show that

~'the scattering transform is a diffeomorphism.

It is useful to consider an integral equation associated with (12). By non-
linear semigroup theory [57, for any @ e H(S), k=0 an integer, there is a

| “anique continuous function ¥: B «» H.{S) such that

Similarly, given ¢ € CE, ¢ € E,., if and only if _
supp(F®4) < {(0, w) o <0}

Hence considering ¢ < E as an element of CE, the formula for J' im-plieg_-
that :

o - Fo,. (i) :
O =i~ Hom) e ! V(1) = D4 [ 0= 91N s) s, (14)
. ¢
In other words, up to a sign J@, is the Hilbert transform of @, in they |
variable. Since @, has the above smoothness and decay properties the. - where

the Hilbert transform holds, so that S .
usual formula for the NC#,, #,)= (0, ~29%),

=gl — -1 g ,- . . . . -

(P (s, 0)=n""p 'U'J (s=5)7 Bls’, @) ds t follows that if deH_(S), there is a unique continuous function
#:R—>H_, (S} such that (14) holds. We will also need the following
Last, note that if ®, ¥ eH_(C,), Eq. {9) implies eguianty property:
Re<®, W) =1m(®, /¥ - PROPOSITION 4. Given 1€ R, define F,: Ho(S) — H,(S) by F(®)= ¥(1),
vhere W(1) satisfies (14). Then F, is smooth; that is, for all n and all
e H(S) the Frechét derivative D"F (P) exists as a bounded multilinear map
vom Hy(S)" to H,(S). Moreover, WD "FA D) is uniformly bounded Jor ¢
anging over any bounded interval,

Y j a(Fb )~ (FJ¥ ) do do,
i

x §r !
so Eq. (11} implies that

- Proof. One can differentiate the right side of (14) to prove inductively
hat D"F (&} exists, and satisfies a linear integral equation. The latter,
ogether with the fact that the maps F, are boundedly Lipschitzian and
niformly so for ¢ ranging over any bounded interval, implies that

DF(D) is uniformiy bounded for ranging over any bounded
aterval.  J

Re<¢,\i'>_1=2j

R x 5°

|01(Fbg)~ (F¥5) do doo. 1

4, SMOOTHNESS OF THE SCATTERING TRANSFORM

: i tion given b :
If n=3, the ponlinear variant of the conformal wave equa £ o - The relationship between (12} and the integral equation {14) is in part as
llows. Let E; be the set of smooth solutions of (12 given the topology of
niform convergence of all derivatives on compact subsets of M. Suppose
at e H_(S), and let ¥: R — H (S} satisfy (14). Define ¢ = T,& by

(O+1)e+ip>=0, 2120

is also conformally invariant. This equation is equivalent to the {classig_a
“massless @* theory” equation in Minkowgki space, ih the following s¢
Suppose @ is a smooth solution of (2) on M, and let f == po | M,, whejr?
given as in (1). Then fis a smooth solution of 5

Of+47=0

@ !'c:fm lfll(r)

ben gpeE,; moreover, the map T,:H_(8)—>E, thus defined is a
omeomorphism of H,,(S) and E,.

In {27 it is shown that there are unique continuous maps, the “wave
on Mg, where here {} denotes the D’Alembertian on M,; convers_e} 4 s_;forms” Wi H(S) > H(C + ), such that
sufficiently regular solution of (13} yields a solution of (12). The deta

implications of this equivalence for the scattering theory of the massles W= (T,®)C,
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if ®eH(S), and that these maps are homeomorphisms. Thus the “scatter._-:i'

ing transform”
S;=Wiwr)!

is a homeomorphism from H(C_) to H{C ). In fact:

TueoreMm 5. The maps W H(S) - H(C ) and the map S;: H(C%)q_;'_. . but by the definition of W in Lemma 6,

H{(C .} are diffeomorphisms.

Proof. It suffices to show that W is a diffeomorphism. First we prove |

the existence of a wave transform for the inhomogeneous variant of the  Thus we have

conformal wave equation. Let R denote the region in M defined by |

{0<t<n—p}.

LEMMA 6. For any geC®(M) and PeH_(S) there is a unig

@ e C*(M) such that K
(O+e)p+g=0 __
((pa ar¢}§t:0=d§' (I

The restriction ¢|C"* is a function of @ and g|R, and the';_ﬁ
(gIR, @) @|C™ thus defined extends uniquely to a bounded [z‘ngg:_r_
aperator W: L,(R)xH(S) - H{C,). B

Proof. The existence of ¢ e C (M) satisfying (15) is a CONSEQUence:
the regularity theory of the Cauchy problem, and that ¢{C, depends only:

on ¢ and g|R is a consequence of the unit propagation speed associated

with the conformal wave equation. Let R’ denote the regio
[0, 7] x 8"< M. By {2, Lemma 2 and Proposition 3] we have

lol1CL <21+ | 1.0l
R
<IPI7+ g1 Rl 3.0 1 R L

and by the formulation of the Cauchy problem as an integral equatios
1001 da <1+ [ Nglolads
<ol + g R,

if te [0, n]. Thus we have

el CL P < P2+ g | RIL(IP] + 7' g| R|12)

- equivalently that @ - ¢ extends to a smooth function from H(S) to L(R)
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or, since ¢ |C, depends on g only through g|R,
B P T LR T-TE igl RI(H@) + 7' g| R,).

Since the map (g| R, @)+ ¢ | C* is linear, the existence of W as a bounded

g operator from Ly(R)xH(S) to H(C, ) follows. |

Now suppose that & e H_(S) and let @=T,9. Then W} (®)=¢|C,,

W(ie®, @)=9|C..

Wi (D)= W(ig®, ). (16)

A

Since W} is continuous and H_ () is dense in H(S), (16) holds for all
Pe H(S) if @+ W(ip®, @) extends to a smooth function from H(S) to
H(C, ). To prove the latter, it suffices by Lemma 6 to prove that the
function @+ ¢* extends to a smooth function from H{S} to L,(R), or

By Sobolev, this follows from Proposition 4,

... Since (16) holds for all e H(S) and & W(ig®, @) is smooth from
H(S) to H(C,), the function W is smooth. By [2, Theorem 167, the
inverse of W} is boundedly Lipschitzian. Thus Wi is a diffeomorphism.

- In connection with this theorem, we note that in [8, lines 10-11] the

‘expression “C “” should be replaced by “finite-energy,” and the citation of
[[1] should be replaced by a citation of [21

5. GEOMETRY OF THE SOLUTION MANIFOLD

In this section we study the conformally invariant symplectic geometry of

the finite-energy solution manifold of Eq. (12), and its relation to the scat-
tering and wave transforms. We also describe Kihler structures on the

finite-energy solution manifold that arise from Kihler structures on the
Spaces on “in” and “out” fields, and are invariant under the Poincaré group
d scaling.

- The group & has an action R, on E, given by

(Ri(g™")@)(x) = lldg ]| o(gx),

'S:i_nce G acts smoothly on M and |dg, | depends smoothly on (g, x), the
action R,;: G xE;—E, is continuous. Thus T7iR,7T, is a continuous

geG, xeM.
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action of G on H_,(S). As shown in [2], this action extends uniquely to a’. .

continuous action of G on H(S), which we denote by U,.

We use the definition of symplectic (resp. Kihler) manifold that involves: |
only “weak” nondegeneracy of the symplectic (resp. Hermitian) form on' |-
each tangent space: a continuous bilinear form g on a topological vector. |
space V' is “weakly nondegenerate” if for any nonzero we V there exists:
ve V such that g(u, v} #0. Thus the Hilbert space H(S) becomes a sym- |
plectic manifold by identifying any tangent space T, H(S) with H(S) and" :
giving it the symplectic form Im<{, - > _,. Similarly, the spaces H(C p)are |

symplectic manifolds with symplectic form Im<¢.,.> _,.
For each ge G the map U,(g): H(S) - H(S)
that is, a diffeomorphism such that

Im{dU (g}, dU;(g)v) . =Im{uw, vy,

where u, ve T H(S). (This is stated in [8], and is also easily derived from:::;

Lemma 2 and Proposition 4 above.) We define the group actions U 01:1"_';_';

H(C ;) by
Ut (g)=WEU (W W)\

THEOREM 7. The maps WF:H(S)-»H(C,) are symp!ectomorphism_s
intertwining the group actions U, and U . The map S,: H(C_) - H(C, )is
a symplectomorphism intertwining the group actions U and uy.

Froof. The only nontrivial point is that the wave transforms Wi are
symplectomorphisms. By continuity it suffices to show that
Im{dW; (u), dW{v}) ,=Im{u, v},

for xe H(S) and u, ve T,H(S) corresponding to vectors in H_(S) under.
the identification of tangent vectors with elements of H(S). By
Proposition 4, T;(x + au)(g) is a smooth function of {q, g)e R x M. Let

oo,

geM.
Then by Eq. (12) it follows that

(O+De=0,{{0+ 1) Ti(x+a)}],uo
=0,{~ AT {x+au)} ..o
—3AT(x)* .

Moreover

HW((P, a't@)it:(}

is a symplectomorphism,-_?:'_"
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and

AW {u) =03, W (x+au)|,.o=9|C,.
Similarly, if we let =0, T,(x +av}l, .o, the function v satisfies
(L + D+ 34T ,(x)? =0,
(W, 0¥} co=0,

and
AW (v)=y|C,.
Thus by Theorem | and Lemma 2 we have
Im{dWi (u), dW3 (v)) L =Tm{e|C ,¢(C,>_,
=Im{{(@, 8.0} |cmop (. 2:¥) im0
1

. THEOREM 8. The group action U : G xH(C,)— H(C, ) is continuous,
and for each geG the map Ut(g): H(C,)-H(C.) is a symplec-
= tomorphism. If geB the map Uz(gy H(C,)—H(C,) is complex-linear
_~and preserves the continuous sesquilinear form (-, - _; on H(C &)

=Imd{u, vy _,.

. Proof. The only statement that is not an immediate consequence of

© previous theorems is that for ge P the map Uf(g) H(C,)~H(C,) is

complex-linear and preserves ¢, ->_,. The action of the group P on M
preserves C . Thus if ® e H,(C, ) and ge P,

(U (g) @)x)=lidg; 'l p(g™~'x) = (U*{g) ®)(x)

for all xe C,, so Uf(g)® = U=(g)®. Since Uf{g) and U*(g) are con-
tinuous on H(C , } and H . (C.)is dense in H(C ), the restriction to P of
Ut and U* are equal. The statement to be proved then follows from the
fact that the representation U* of G on H_,(C, ) is unitary. J

- A Kihler manifold is “flat” if the associated curvature tensor vanishes.
The above theorem implies the following:

* COROLLARY 9. The symplectic structure Im{.,->_, on H{S) is the
imaginary part of the Kéhler structures g* given by
go(u vy ={dWiu, dWity) u, v T H(S)

—%s

The Kihler structures

i 8+ are flat and are preserved by the action U ; of the
group P on H(S).
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Proof. This is a straightforward consequence of Theorems 7 and 8. i

Note that the action U, of P on H(S) factors through to an action of P,
It is not presently known whether the Kihler structures & are not only.
P- but actually G-invariant, or even invariant under the central element -

teG.
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0. INTRODUCTION

Let M be a compact, connected, N-dimensional, Riemmanian manifold

:\ifﬂh inner product -, ->, and let U: M — R' be a given smooth function.
. ..__.-For each §>0, define Z: C*(M)~ C®(M) by

[£341=e"V - (e7P¥Vg), (0.1)

where we have used V and V., respectively, to denote the gradient and

~ divergence operations corresponding to the Riemmanian structure on M.
- Next, let g, denote the normalized Reimmanian measure on M, and define
. the probability measures u, by

¢~ BULx)
ppldx) =

toldx)  with zﬁgj e=PUN (dx).  (0.2)
M

£

Using (-, -), to denote the inner product in L*(M, y,), one sees that

— (@ LYy = &b W)= [ V8V dyy (03)

for all ¢, e C(M). In particular, S’ﬂ is symmetric and non-positive an
Joperator on L*(M, u,). In addition, it is well-known and easy to ) prove that
£y is essentially self-adjoint and that its self-adjoint extensions Z, has 0 as
a:simple, isolated eigenvalue for which the constants are eigenfunctions.

We now define A(8) to be the size of the gap between 0 and the rest of
the spectrum of .%;. That is,

A(B) = inf{&x(¢, $): p& C=(M) and vary(g)=1}, (0.4)
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