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: Consider the equation

O +g(4)=0

-where L1 denotes the conformal wave operator on Rx 8" and g: R Risa
‘wificiently regular function, Then in the Goursat problem ¢ is determined
by its restriction to the lightcone, The time evolution of this Goursat
‘datum for ¢ lacks the domain of dependence properties associated with the
‘Cauchy problem, and the infinitesimal generator of the evolution is non-
Jocal. Moreover, if ¢ is a C? solution, its Goursat datum satisfies certain
ponlinear nonlocal constraints. These constraints make the regularity
:_:theory of the Goursat problem more subtle than that of the Cauchy
problem.

‘In the present paper we treat regularity for the Goursat problem in the
.case n==1. The constrainis are tractable in this case, but one must take
ccount of a certain special feature, namely that only for n=1 does the
enerator of time evolution for the conformal wave equation on Rx S”
ave zero as an eigenvalue. This fact requires a slight strengthening of the
nérgy norm successfully used to treat existence and uniqueness in the case
>1[11. The space of Goursat data for which this strengthened energy
orm is finite is denoted by H(C).

‘We show that if g is continuously differentiable, the Goursat problem
as a unique solution locally in time given arbitrary Goursat data in H{(C).
this case we describe conditions on Goursat data in H{C) that are
ecessary and sufficient for the local solution to be C2 In particular, this
mplies that the conditions are preserved by the time evolution during the
terval of existence. If g is the derivative of a function G which is bounded
om below, or if g satisfies | g(y;)—g(»2) <) |y, —y2| + ¢, for some
onstants ¢, and c,, there is a global solution given arbitrary data in H(C),
nd a gIobaI C? solution given data in H(C) satisfying the constraints.
hiese global solutions define a map from Goursat data to Cauchy data
hich is continuous from H(C) to the space of Cauchy data
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The Goursat problem for the nonlinear wave eguation {2 ) p+2(8)=0 on'
R x 8 is treated for Goursat data ¢ in the Sobolev space H(C‘ = Ly {C), where:
the lightcone C={r=|p|} is identified with &' by means of the coordinafs’
pel[~an}. U ge C'(R), there is a unique local solution given arbitrary Goursat’
data in H(C). In this case we describe conditions including nonlocal, nonlinear con
strzints on the Goursat data that are necessary and sufficient for the local solutio
to be C2 If g is the derivative of a function G which is bounded from below, or ifg
satisfies | g(»)) ~g(¥:)i <]y —ya| + ¢; for some constants ¢, and ¢,, there i is'i
global solution given arbzirary data in H(C), and a global C? solution given data ;
in H{C} satisfying the aforementioned conditions. We show that the map fron
Goursat data in H(C) to Cauchy data in L2108 ® L(SY) is continuous, wn'
continuous inverse. € 1989 Academic Press, Inc.

1. INTRODUCTION

The Goursat problem for a nonlinear wave equation, in which dat
given on a lightcone, differs in a variety of ways from the more extensiv
studied Cauchy problem. Some of thess appear in the context ‘of
equations on R"*'[2]. For a through treatment of the global Go
problem, however, it is preferable to work in Rx.$", in part becaust
time evolution of Goursat data for a nonlinear wave equation on’ R
less conveniently described as a continuous one-parameter group
Banach space. Moreover, conformally invariant wave equations on R
can be rewritten as wave equations on R x 8", and there is a strong on
tion between the scattering theory of such equations and th gl
Goursat problem on Rx 5" [1,4].
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2. GEOMETRY AND NOTATIONS

1et S'= R/2n, and specify points on §' by pe [ ~=, n]. We give the
nifold R x §' the coordinates (7, p), where € R, and pe[ —n, n]. We
ote by 47 the manifold R x §' with the Lorentzian metric dv? — dp?.
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366 BAEZ AND ZHOU

To treat the Goursat problem, we make use of the cones

C,ﬁ{(‘E,p)E’E:I-ﬁ-?p%,}p[S?T}‘

When the value of ¢ is immaterial we call any of these cones €. We give C

the coordinate p induced from the coordinate (7, p) on M, thus identifying |

C with S'. This identification is a homeomorphism, and vields (for each i
i

a map from S' to #7 that is smooth except at {p=20,7}. We use this ide
tification to transfer to C the Riemannian metric dp® on S*. y
For arbitrary ¢ R, S, will denote the spacelike surface defined by th

equation t=¢ The subscript ¢ will be suppressed when its value'js |-
immaterial. The S, (1€ R) are smooth compact submanifolds of 7, each of |

which is diffeomorphic to S'; the points of § will be specified by th
function p indicated above. '

We will use the notation L, (X) to denote the space of all real dis
tributions f on a compact Riemannian manifold X that are in L
together with their first ¢ derivatives, and denote the norm in this space’s
-1, For X=C we use the identification of C with S! to define L, (C

3. THe CaUuCHY AND GOURSAT PROBLEMS

The Laplace-Beitrami operator on 7 is
O=02—a2.

Solutions of the wave equation and its inhomogeneous and nonlin
variants will be denoted by the lower-case Greek letters ¢ and . We wil
use capital Greek letters to denote Cauchy data, e.g., ®(1)=g| s, and
PD'(1) =0, P{1). ;-

For any spacelike surface S, we define the Hilbert space of Cauchy'd

H(S) :Lz,l(S)@Lz(S)-

More specifically, the inner product in this space is defined by the eqﬁ_

<d)1 @‘Pi: ¢2®lp2> = <ap(pla &pq)2> + <(!)1, (D2> + <‘P§9 li'2>’
where on the right side {-, - denotes the usual inner product in L,
We will use boldface capital Greff_k letters to denote Goursat
Suppose ¢ is a function defined on M. To determine Goursat data
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particuiar point on C, we introduce functions @
as follows:

+ 3 d)u 3 CI), Co(t), and Cn(t)

© ., (1, p)=g(t+p, p),

@ _(t, p}=g{t+p, —p),
B(1) = (D, (1), ®_(1))
co(2) = ¢(1, 0),

For any specific cone C, we define the Bapach space H(C} in which the
norn is given by

Calt) =gt + 7, m).

] 172
10Oler=| [ 0,06 0%+ 0,0 Y|+l @)

“This norm is equivalent to the norm in L;1(C). The main part of the norm
of ®(z) is the free energy

i/2

B0 =|[118,0. 410,010

which is independent of ¢ for every €2 solution of the free wave equation
(see Lemma 2 below).

- We first examine temporal evolution in the Goursat format for the
.inhomogeneous wave equation.

LemMa 1. If ¢ is a C° solution of the equation Ulg=hizt, p) on a
:z_'ghborkood Uof C,, where h is a continuous function on this neighborhood,
eh

8.0,® (1, p)=3[03® (1, p) + h (1, p)}]

(4)
0,0,®_{t,p)=32® _(1, p)+h_(z, p))],
here b (2, p) = h(t+p, p), h_{t, p)=h(z+p, —p),0<p<n.
Proof. Noting that 9,®, = 0.4, 9,®, =(0,+3,)¢ and 8,0 _=
$,2,®_ = (~—3,+2,) ¢, Eq. (4) follows from the direct calculation. i

Given the hypothesis in Lemma 1 with the inhomogeneous term [
pl'aced by a nonlinear function of #, Eq. (4) implies certain nonlinear
nlocal constraints satisfied by the Goursat data. We consider this matter
tther when we study the regularity probiem.

Ne:_;t we prove a statement of energy conservation for the nonlinear
tion. We first compute the differential of a one-form g, physically, ¢
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may be interpreted as a component of the energy-momentum tensor:; G

associated with ¢. Let ¢ be a C? function on an open set U M and let: | same constant E, as these 1-submanifolds of A7 are all homotopic. J

G:R— R be a ¢ function. Set
e=4[(0,8)°+(2.¢)* 1 dp+ G(¢) dp + 2,904 dr.

Then on U we have

de=0.¢[U¢ + G'(¢)] dr A dp. (5 :

Now we are ready to state the following

LemMa 2. Let ¢ be a C? function on the contractible open set Uc A?I
Let ¢ be the one-form given above. Then for all S_ < U and C,c U,

(o= 1,05 00+ 0.0z, 0)") + G(8(x, )] dp

T

Lgm%m:)]u j:[c;(cnw(z, P))+G(® (1, p))] dp,

I3

where E(t) is the free energy associated with ®(t) as defined in (3). Ifi
addition ¢ satisfies the equation Ul¢g+G'(¢)=0 in U, then there i
constant E such that
e=| g=FE
o=l

for any S, or C, lying in U.

From this we conclude that E{¢) is independent of tif ¢ is a solutic&__
the free wave equation.

Proof. One casily calculates that

j e= J [4(9,8(z, p))* + (8.(z, p))*) + G(¢)] dp.

T

On C, we use the relation t=1+ |pland the definition of @ _ and ®+
check that E

[ e=] (0, @. (00 +@,0_ (1, )

-

+G(@_(1, p))+ G(@ (1, p)) L dp.

If $ is a solution to the equation D¢+ G'(¢)=0, theneis a c]osed'f.tj‘

THE GLOBAL GOURSAT PROBLEM 369

{ Eq. (5). Therefore the integrating ¢ over any S, or C, lying in U gives the

4. LocaL EXISTENCE OF SOLUTIONS

In this section we study the local existence and uniqueness of solutions

~to the Goursat problem for the nonlinear wave equation in R x §*

D¢ +g(¢)=0, (6)

and the continuity of the map thus defined from Goursat data in H(C,) to

Goursat data in H(C,). First we rewrite the equation in an abstract
"Cauchy form,

D) =T, ®(0) + & (g(D)),

 where (I)-(t) has values in the Banach space H(C), and estimate both terms
on the right-hand side in terms of the norm of d{0).

-To begin with, consider the Goursat problem for the free wave equation
i the form

[ =0
Hp.p)=®_(0,p), O<p<gn
45(93_19)“(1’—(0,9): OSpgn

©.(0.0)=®_(0,0), @,0,7)=®_(0,n).

uppose that ¢ is a C? solution and 0 <7< n. Then
t
co(t)=®, (o, 5) t@_ (o,

elt) =, (0, %) O (o,

for p<7—1/2, we have

(Dj:(t! p)=q)i ( nﬁ;ﬁ)+¢$ (0, %)—CO(O).

~/2< p<n, using the periodicity of ¢ as function of p, we have

t+2
q)i(f, p)ﬁ(bi (0, ) p*’"‘?’f)“i“‘px (0; %)_260(0)";'67:(0)

)"5‘0(0)

P~

[NETRCN

) — 26,(0)+ ¢,(0),

0T
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Define k4 by the above formulas, namely

1t is easy to see that
t

| (+2pY2 ptf2
lim ¢+(I,p)$g1T0®M(fvP)ﬂﬁ'o(f) (k,h)i(p)=£) L Mpta £(p—q)dgdp,  p<n—3;

p-a 3
. S H l, =c, 1. 2 (t4+2p)2~7m pptnm
fim ®..(4 2)= Jim @ )= l8) e = kv wp— g dg

T ptf2
+[ [ Mo+ e £o—q)dgdp
0 Y0

(42002 pif2
]

z P

Thus if we define 7,®(0) to equal @(¢) as given by the formulas above, w

see that
H

[ T, 00} ey < (1 + ¢ /DT RO -
¢t D, be the union of the C, for 0< 1<+t Then it is'easy to see that if

Now consider the inhomogencous problem. Suppose [l = h, where ¢ | < C(AT), then

C? and k is a continuous function. Let

& A HeoySclhl La(D,)s
(D(l)z T:(D(O}'i“krh’ 3 .
hus aliowing us to define k, as a bounded operator from Ly{D,) to H(C).
rom this estimate and (7), we conclude that

12Oy <[+ /11PO) i)+ ¢ Mhl oy 1[0, 7). (8)

tis easy to sec that if he L,(D,), the function ® given above satisfies the
nhomogeneous wave equation in the distributional sense. Hence we have

he following,

where T, is defined as above, and k, is a linear operator from C(ﬂ):e
Goursat data on C,. Let us compute kA, supposing that 0<t<m I

easy to see that for p<n—¢/2 we have

© (1, p)=9(t+p, £p)
=4 (S £ 5) 44 (5 35) 000
(r4 2032 12

A

{¢+2p)2 p1f2
—roon. [ [ e £o- ) drdp

0

TeeoREM 1. Let h be a function in LyD,), t<n, and let ®(0) e H(C).
hen there is a unigue continuous map @: {0, 1] - H(C) such that the
ssociated function ¢ satisfies

O = h, in D,
¢l =®(0)

he distributional sense. Moreover the estimate {(8) holds.

hp+q, +(p—q))dqdp

Similarly by using the periodicity of ¢ in the variabie p, for n—4/2<
of. We only need to prove the uniqueness, Suppose that @, and @,
two solutions. Then we have

O, — $2) =0
(1= d)l y=0.

Kot (%, p) ~ ha(5, p) = f1(x + p) + /it — p). From
' ARDHH0)=0,  £,20)+£,(0) =0,

we have

o.p=@oon,+[ [T hpre tr-a) b

[ 7

n plf2
+ j’ h(p+q, +(p—q)) dg dp
0o ~0

Wz 2
+I“+Zp f’ K(p+q, +(p—q)) dq dp.

n P
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we conclude that

515, 0) = ol ) = —F1(0) = £(0) = $:(0, 0) — $,(0, 0) = 0. §

. It should be remarked that if g satisfies conditions (18) or (17) in
i Section 6, then we have

' F® (s <S4 @40
Turning now to the nonlinear case, suppose that 4 is replaced by a- glve Ol </ D))

function of the unknown ficld, ie., ~A=g(#). The estimate (8) yields th
following local existence theorem and continuity of the map from @(0) 15

@(2).

and
D) ey <S8 ] D,(0) ()

where (4 y): R* - R maps bounded sets in R* to bounded sets in R {for

Tugorem 2. If g is a continously differentiable function on R . c:ietalls see Section 6). Therefore in this case we have

®(0)e H(C), then there is a ty>0 and a unique conlinuous @0, Fo]
H(C) such that

'."Dl([)_ Do (e S F(1, @ (0 ey @ (0M 1)) @ ,(0) — @, (0 seys
Wherc F(t, y5, y;): R* - R maps bounded sets in R* to bounded sets in R,
, for any fixed 1, the map from ®(0) to @®(¢) is boundedly Lipschitzian.

”Prqof of Theorem 3. Let y(t)=®,(1)—®,(1). Then #(7) satisfies the
equation

®(1)=T,00) + N (D),
where

N(®)= —k(g(D)).
n(1)=T,1(0) + k,(g(®,}~ g(®,))

Frocf of Theorem 2. Noting that | @()] < ¢ 19(Wlucc) and i
17](0)'{‘](,(011)_

geC! implies that the mapping ®=(®,,®_ ) (g(®,), g(®.)
boundedly Lipschitzian from H(C) to Lz(C) Then we can use the estlma_t

(8) and an iteration procedure to prove the theorem, as in [1]. rany 0<4, <1, and 1€ [0, 1,], using (8),

O <1+ /IO ey + € (071 Loy

<(1+C\/_)”’? O)HH(C}"I'CA ':j in(t "H{c)d'r:llfz.

From this it follows that the equation
B¢ = P(¢),

P any polynomial, has a solution on some D{f) given Goursa_ [

®(0) € H(C). Let B(t)= () 1}cy» a= (1 +¢5/1)111(0)ll e Therefore

B(1)< (a+ cA(1) UO B(x) erm)z

<247 + 2cA(n)) f B(t) dr,
¢}

THEOREM 3. Suppose thar @,(2), ®,(1)eH(C), O<isi,, a’)f
solutions in H(C) to the Goursat problem of Eq.(6). Then we ha
estimate

~® <2(1 ®,(0) — B,(0 (oAl :
1@ (1) — Do) < 2 + e/ 9,(0) ~ B O)llucy € | :.g.:__thc Gronwall inequality we conclude that

where ¢ is a positive constant independent of ®, and ®,, and

Ay =max{l g’ y| S M)},

B(r) < 2a%eXean,

and M(t) is defined by 9t ) sy = ~/ Bl2,) < 2aeteAtnn?a,

M(t)=max {[ ® (D) Lwicy | ®, (D) Lco(C)iOg\?é t}'_ exactly the estimate {(9). §
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W{: have prpved an estimate from Goursat data to Goursat data, Givén'.
certain conditions on g there are similar estimates from Goursat data to'iz'

study this.

Cauchy data, and from Cauchy data to Goursat data. We will
matier in Section 7.

5. REGULARITY OF SOLUTIONS

Regularity of solutions and sufficient condition on the Goursat da'ta.."(;;_.

the gonlinear wave equation on C, under which the solution given in 'tk
previous section to the Goursat problem is actually in C? :
wave equation classically. We first find 2 necessary condition, and the
prove that it is actually sufficient. To be precise, we prove the f:)llowin :

THeoreM 4. Suppose that g is differentiable on R, and D(0)e H(C). Le
B: {0, to] — H(C) be the solution found in the previous section to the Goig
sat problem for the wave equation (6} with Gowrsat data ®(0), Then
associated function ¢ is in C*{(D,)) and solves Eq. (6)
@, (0)e C*[0, n] and satisfies the following nonlinear nonlocal constrain

00 +(0,m)=0,8.(0,0)+ [ 2(®(0, p) dp =0,

and

2@, (0, m)— 92 (0, 0)

where 8,® (0, p) is given in terms of ®(0) by

0. ®,(0,p)~3,®,(0,0)

ﬂ%[apm(o,p)—apwo, 0)~ [ (@0, ) dp

with 8,® (0, 0)=42,® ,(0,0)+2,®_(0, 0)).

Proof. - Suppose that ¢ is a classical solution of the wave equati
the domain D, the union of the C, for 0 < ¢ < ¢,. Then by Lemma:
we can rewrite the wave equation (6) as :

atap(bi(tb p)z%{ﬁﬁfbi(z, p)—mg(@i{t, P})] B

and solves the

classically if and only if .
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iimtegrating with respect to p gives

6,¢bi(z, p)—a,cblt(z, O)
— 42,000 )- 2,00~ [ 5@, 0N | (13)

p particular we have

046 m) = 0,® (1 o)ﬂé[ap%(n ™= 0,®4(0) = [ g(®.(1.0) d”}

_ (14)
: -'ﬁ'oting that
3,®.(1,0y+d,0 (,0)=28,® (20),
8,0, (1, m)+23,®_(1, 1)=22,0 (1),
#¢ see that (14} vields the first constraint on the Goursat data
0,0..(1,m) =0, ®..(,0)+ | &(® (1, 0)) dp=0. (15)

Now let us differentiate (15) with respect to 1. Using (12), it is easy to see
it

D, (1, m) 82 (1, 0)
=g(®, (1, 1)) —g(® (1, 0))—2 L g(®z(1,p))0,® (1, p)dp,  (16)

ich is the second constraint on the Goursat data, where J,@ . is given
the formula (13). Setting =0 in (15) and (16), we conclude that (10)
d (11) are necessary conditions for ¢ to be a C? solution.

Next we prove that if @(0)e H(C) has @, € C*[0, z] and satisfies con-
tions (10) and (1), there is a C? solution of wave equation {6} in D,
th ®(0) as its Goursat data. It can be easily checked by direct differen-
tion that the solution given by formulas in Section 4 is a C? solution in
xcept possibly on the characteristics

f="H

{t. p)lt+1pl=2n}.

efore we only need to check that @ (4, p) has continuous first and

nd order derivatives across the line #2+p=mn Set h(t,p)=

¢(z, p)). First we can calculate 8,®, and J,@, as follows: For
+p<n,
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t
0,0 ,(1, p)== [atb (0,§+p)+a,,q)¢(o,é)]
ifpv2 [t t
+§[L h(5+p+q,i(§+pmg))dq
.',f2+ph d
o[ oy e (-3)) )
For t/2+ p>n, p <, we have
2
+JW h(i% + %(i+ - ))d
sreoen \2 ptg xlstp—ayjaq
i+ p {
( +pmn+q,_(-2—+,o-—n—q))dq
)
(0 + P - n)+3p®-(0,§)
“a{ovi oo
1] 2 H t
= hl~ +il=+p— d
“all.,. (( i))a
rﬂ”h L vp—n+ +(I+ o ))d]
+n (2 P q. T 3 p—n—4g q 1

From the expression above we can see immediately that the condmon
is enough to guarantee the continuity of the first order derivatives: of ¢
solution across the line /2 + p=mn. By similar calculation the conditi
given in (11) will guarantee the continuity of all second order deriva
Calculating all second order derivatives is a lengthy process, so here we jut
give formulas for 82® . and leave the rest to readers. For H2+p<m

¢ 172 i ¢
2 e A2 — — e —

t
wh (500 s (3+0-0)) |

1
8,0, p)=2,0, (0,—+p—ﬂ>

+[]
0@, (L p)= %[
+[
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' W[t t <
ap@t(t,p)=apfbi(0,§+p)+j h(§+p-§"q,i(§+[3~q‘))dq-_5:Fort/z%p:;‘mp m, we have
o .

20, (1, p) =020, (0,%4-,9—7!)

7 h(rras (brom))a
e pen A2 Prg T \5+TP—Y q

+r2 h(i+ + +(i+'~))d
prromn ?\2 prg LigTP—d 4

wh{t+2p -7, Tr)—~h(t+2p—n, £m)

+'[r/2+ph t n f P

. T §+pwn+Q1_<§+p_ﬁm4)) q

+fw+ph d + (L4 d
o hlzteta-md{gte-gon))ds

In order for 82 . to be continuous across /2 + p ==, we only need that

B0.(0.m)=30 0,0+ | [hls, ¥q)+hy(, T4)] dg

Note that

-] hile. Fa)+hte, F0)1 g

=7 120,85 (1, 0) ~ 2, £(® (. PN oo

—g(0(0,0)—g(® (0, m) +2 [ (@) 3@ (2, ) dol o

e formulas above are exactly the condition we obtained in (11). §

From the above calculation we know that if the constraints are satisfied,
there is a local C? solution. Since any Goursat data for a local C* solution
tisfies the nonlinear constraints (10}, and (11}, therefore the constraints
¢ preserved by the time evolution locally in time.

6. GLOBAL EXISTENCE OF THE SOLUTIONS

In this section we will study the global existence of the solutions to the
oursat problem of the nonlinear wave equation {6) in the space H(C).
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THEOREM 5. o
Goursat problem of the wave equation {6}, if g is continuously differentiable
and £

lgr)-glmli<e+eaiyi=yal  WypeR (7))
ar
G(y)z —c, VyeR, (18) |

where ¢, and ¢, are positive constants, G(y) = [ g(z) dz

It is easy to see that g(y)= )"+ P, _,{y), where r is an odd integer, andf'{"" for all te [0, n]. Combining two inequalities above gives

P,., is a polynomial of degree less than or equal to r— 1, satisfies the-

condition {18). Any bounded C' function or any function with bounded'.
derivative satisfies the condition (17). In these cases we have global: [
existence in H{C). In order to prove this theorem, we need to establish th_e}'__;

following conservation of energy:

Tugorem 6. If ®(t) is a solution to the Goursat problem of the wat}'é:_"-

equation (6) in the space B{C) defined by (2), then

()= HLEOT+ [ 6@(1, p)) dp

is independent of t, where E(t) is the free energy of ®(1), and

[, 6@ 0 do=[" (6@ (1, p))+ G@_(1, )] do.

In fact, to prove Theorem 4, we only need to prove that || ®{¢)| g, W_i]
not blow up in a finite time, ie, for any fixed 0 <ty <, |O()uic
cannot approach oo as t tends to #,. :

Case 1. 1If g satisfies the condition (17), we have, by using (8),
B ey < {1+ C\/E)ﬁ D) gy +e 2@} L)

‘ 12
< +e/D) ‘B(O)EIH(C)HH[L | D) e df} |

for 0 <t <, which implies that || ®(1)|l ¢, canmot blow up in a finite time

Case 2. 1f g satisfies the condition (18), we have, by using Theorem 6;

[E(£)]? = 20{®(0)) — 2 j G(D(1, p)) dp < 4eam + 2H(D(0)). _ 

There is a global solution ®{t)e H(C), 0<1< 0, to the. ]

THE GLOBAL GOURSAT PROBLEM 379

Noting that j"_,lapgb(t, $)1? ds < 2H®(0)) + 4c,m by using the 1-form &
defined earlier, we have

)= 96, 0)= [ 3,8(4,9)ds 401, 1)

o 172
<Vi| [ 10 oras] 1o

S2r[20(®(0)) + de;m ]2 b ¢ | D0 gy

“q)(t)”mc?)ﬂc(ﬂ‘h(o){!mcﬂ“1)

-_Q'_foz 0<t<n, where ¢ is a constant independent of | ®{0}| 1), which
implies that [[@(7)]l g, cannot blow up in a finite time.

So the only thing left to do is prove Theorem S, First let us recall that if
®(0)e H(C} and @, (1) is in C*[0, =] and satisfies nonlinear constraints

. (10) and (11), we know by Lemma 2 that H®(1))=1{®(0)) for every t.
. Now for any ®(0)eH(C), we can approximate ®(0) by a sequence of
{®,.(0)} e H(C), where @, L(0) are in C*[0, =] and satisfies constraints

10) and (11}, ie.,
| | ©,(0)— DO)llsyec, > 0

Let ®,(7) be the solution on the Goursat problem of the nonlinear wave
quation (6) with initial Goursat data ®,(0). Then by Theorem 3, we know

19,(1) = BNy 0 as n-oo

H®()— 1(®(0)) = lim [I(®,(1))— [(®,(0))] =0,

every t. Therefore we have the conservation of energy. §

t should be pointed out that if g satisfies (18) or (17), and ¢*e H(S),
I there is a unique solution ¢ to the Cauchy problem for the wave
quation (6) such that ®(0)@ &,®(0) = ¢°, and

@) ® D) 1105y </ (2 16 Naaesy)

é?e Sf{t,¥): R*-» R maps bounded sets in R? to bounded sets in R.
reover if ¢*e¢ C2(S')@ CH(S"), then ¢ C*(Rx 8'). These facts can be



380 BAEZ AND ZHOU

proved by using standard arguments in partial differential equations. The:: |

details are omitted here.

7. Tue MAP FroM CAUCHY DAaTA TO GOURSAT DATA

For nonlinear or inhomogeneous wave equations on R x S with global. ‘|
regular solutions to the Cauchy problem there are maps @, from Cauchy -

data on 8y to Goursat data on the cones

C;g:{i’f:ﬂ“‘p[}'

As explained in [1], these maps can be construed as the wave transform‘s!._:

for wave equations on R and if they are invertible the map &=, Q-1 “and if R is a region of 47 bounded by {t=0} and C_, we have

can be construed as the scattering transform.
Here we prove the continuity of the maps £, and their inverses w1t ]
respect to the norms defined by (1), (2) for the nonlinear equation

Lg +g(#) =0,

where g is a C' function satisfying (18) or {(17). For convenience we de:
below only with @ _, because C _ is one of our standard cones C,, namel
C_ .. The cone C, is the image of C_ under the isometry of M given b
(t.p)—
case £, by symmetry considerations.

TueoreM 7. Let g:R- R be a C' function satisfing (18) or (17)..Le

¢ e CHSHY® CHSY), and let ¢ be the global C? solution of Eq.(6) with

DOYDP(0)=¢°. Let D=g¢|._. Then the map 2,: CHS")@® C'(S
H(C) given by £,(¢°)=® extends uniquely to a continuous . mg
@ H(S) - H(C). Moreover, Q2_ is boundedly Lipschitzian. '

Proof. Since g C'(R) and 0], <c | @ lwe, 1811, < 1B laie
we know that g is boundedly Lipschitzian from L, (S) to L,(S), and fro
H(C) to L,(C). Suppose that ¢fe CX(S)® C'(S), where i=1,2. Let ¢
the corresponding C? solution of (6) on M. Let = ¢, — ¢, ¥° = ¢ = ¢3
and ¥ = (¢, — ¢,)| . Then by the boundedly Lipschitzian character of th
nonlinear time evolution in H(S), for all te [ —x, 0] we have

f ‘P(T)“Lz,g(sp o, ¥}l Lz{S)gh(“ P "H(S}s l ¢35 iEH(S})” l/f:{!n(sp:

where h: R* — R is bounded on bounded sets.
Define the i-form ¢ on M by

=4((0,4Y +8.9)*1 do + 8p 48,4 dr.

| and

(—t, p), which fixes S,. Thus the theorem below extends to the :
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_As in the proof of Lemma 2,

Js e= 401V s — 1¥ 1]

[ e=30¥luo~ 19(-n 012
<

| 5?1{ is easy to check that

de=20,y Uy dv A dp=0.y[g(d,)—g(d))] dt A dp,

2[ de= {1 Vagsy = 1¥ 1] — L1 ¥ e, — [¥(—7, 0|17

=2[ 2.ls(d:)—(p)) i n dp.

{”‘Pﬁmm* (-~ 0)|T°

<IWlhw+2[ 10(e) —g@)ld n dp

1= S

and by (19), the latter is less than or equal to

2.y “Lz([—n,ogxsl) i g(¢2)_g(¢1)“1,2({wn,0]xSl}
SKCE 5 Nonsy 103 e 1 ¥ s

for some function k: R? = R that is bounded on bounded sets. Thus we

¥y = LT ey — 19 (= m, 0)[ T+ [Y( —m, 0)]

k(I 85 laesys 188 msy) + DY [y Il +e I~ 100
<[(eh+EYES  lnesys 1631wy + 1172 10 Tays

H{:nce the map £, is boundedly Lipschitzian with respect to norms
fined by (1) and (2). Since C*(S')@® C!(S") is dense in H(S), this implies

£, extends uniquely to a continuous map £ _: H(S) - H{C), which is
bounded Lipschitzian. §
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If g satisfies (18) or (17}, we proved global existence for the Goursati;f'
problem in the previous section. It is easy to prove, using the estimate in -

(8), that
Q-1 H(C) > H(S)

exists and is boundedly Lipschitzian. We omit the details.
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