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Abstract. Bell's inequality dealing with ‘local hidden variables’ is given two formulations in terms of
C*-algebras. In particular, Bell's inequality holds for all states on 4 ® B whenever 4 and B are unital
C*-algebras at least one of which is Abelian, i.c., at least one corresponds to a classical physical system.

In this Letter I prove two versions of Bell’s Inequality [1] applicable to C*-algebras.
For convenience all C*-algebras discussed will be assumed to be unital. Let A ® B
denote the projective tensor product of C*-algebras 4 and B. A state won A® Bisa
‘product state’ if it is of the form w, ® w, for states w, on 4, w, on B. A state w on
A ® B is ‘decomposable’ if it is in the weak-* closure of the convex hull of the product
states on 4 @ B. Bell’s inequality can be viewed as a theorem about decomposable
states:

THEOREM 1. Let A and B be C*-algebras and let w be a decomposable state on A ® B.
Ifa,a’ € A and b, b’ € B are self-adjoint and of norm <1 then

lo(@® (b - b)) + [w@ @B +b))<2.
Proof. The proof follows [1]. Suppose @ = @, ® w,. Then
(a® (b - b))
= wy(@)w,(b) - w(a)w,(b")
= w(@wy(b) (1 + wy(a")w,(b")) -
— oy(@)wy(b") (1 + wy(a o, (b))

SO
|w(a® (b~ b))
<1+ a@)w(d')] + 11 + wy(a’)w,(b)|
<1+ ofa)w®') + 1+ wla)wy(b)
<2+ (@ @b +5))
hence,

lw@®@ B ~b') +|o@ ®B+b) <2.
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If w is a convex combination of product states, w = Z¢,w,, the above implies
[0@® (- b))+ |wa@ (@ + b))
<Zcfloa@a®@B-0)) +|ola @®bB+b))}<2.

If wis a weak-* limit of such convex combinations the inequality holds by continuity.

a

If A and B are the C*-algebras corresponding to two physical systems, the product
system has C*-algebra 4 @ B, and admits ‘local hidden variables’ in Bell’s sense when
all its states are decomposable. This happens if at least one of the two systems is
classical:

PROPOSITION. If either A or B is Abelian, all states on A ® B are decomposable.
Proof. As in Theorem IV 4.14 of [2], one can show that every pure state on A ® B

is a product of pure states. (The theorem deals with the injective tensor product but the

proof carries over without modification.) Thus, every state on 4 ® B is decomposable.

O

Using this one can obtain another formulation of Bell’s inequality:

THEOREM 2. If A and B are C*-subalgebras of a C*-algebra C such that [A4, B] = 0,
and either A or B is Abelian, then

lo(a(b - b)) + |w(@ (B + b)) <2

for any state w on C and self-adjoint a,a’ € A, b, b’ € B with norm < 1.

Proof. By Proposition IV 4.7 of [2] there is a *-homomorphism p: 4 ® B — C such
that p(a® b) = ab for all ac 4, be B. Thus, for all ae 4, be B, w(ab) = w o p(a® b),
where wo p is a state on 4 ® B. By the Proposition above, w o p is decomposable, so
by Theorem 1 the desired result follows. O

If A and B are non-Abelian type I C*-algebras, the usual counter-example involving
2 x 2 matrices [1] shows that Bell’s inequality (as formulated in Theorem 1) fails for
certain indecomposable states. For applications to quantum field theory it would be
interesting to see if the assumption that 4 and B be type I can be dropped.
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